7,794 research outputs found

    Seasonally Frozen Soil Effects on the Seismic Performance of Highway Bridges

    Get PDF
    INE/AUTC 12.0

    Heterogeneous relaxation dynamics in amorphous materials under cyclic loading

    Get PDF
    Molecular dynamics simulations are performed to investigate heterogeneous dynamics in amorphous glassy materials under oscillatory shear strain. We consider three-dimensional binary Lennard-Jones mixture well below the glass transition temperature. The structural relaxation and dynamical heterogeneity are quantified by means of the self-overlap order parameter and the dynamic susceptibility. We found that at sufficiently small strain amplitudes, the mean square displacement exhibits a broad sub-diffusive plateau and the system undergoes nearly reversible deformation over about 10410^4 cycles. Upon increasing strain amplitude, the transition to the diffusive regime occurs at shorter time intervals and the relaxation process involves intermittent bursts of large particle displacements. The detailed analysis of particle hopping dynamics and the dynamic susceptibility indicates that mobile particles aggregate into clusters whose sizes increase at larger strain amplitudes. Finally, the correlation between particle mobilities in consecutive time intervals demonstrates that dynamic facilitation becomes increasingly pronounced at larger strain amplitudes.Comment: 20 pages, 7 figure

    Investigation of instability, dynamic forces, and effect of dynamic loading on strength of cages for the bearings in the high pressure oxygen turbopumps for the space shuttle main engine

    Get PDF
    Experiments were performed to determine the effect of cyclic loading on bearing cage strength. A long term working tensile load of approximately 1300 N (300 lbs) was found to be the likely maximum. Higher loads caused a decrease in cage tensile strength after the 125,000 cycle testing period. Poisson's ratio in compression was found to be highly dependent upon the direction of the fiberglass plies. At room temperature the value was 0.15 with the plies and 0.68 across the plies. At -196 C (-321 F), the value with the plies was 0.20. The results of the analyses conducted have again demonstrated the critical need for improved lubrication in the high pressure oxygen turbopump bearings. Lubricant films with low shear strength and low friction coefficients promote cage stability and decrease ball/cage forces during marginal operating conditions. The analysis of the effect of combined bearing loads on ball/cage loads has identified a radial load of 3600 N (800 lbs) as the maximum for the current clearance of the balls and cage pockets. Liquid oxygen impinging on the cage in the direction of rotation was found to enhance cage stability

    Modeling of Bearing Dynamics Using Combined EFEM-DEM Method

    Get PDF
    The objective of this investigation was to develop a 3D dynamic model to study the rotorbearing- housing system. To achieve the objective, an existing dynamic bearing model (DBM) was combined with a flexible bearing housing model and a flexible rotor model. The DBM is based on the discrete element method (DEM), in which all bearing components are assumed to be rigid and have six degrees of freedom. The 3D explicit finite element method (EFEM) was used to develop the flexible housing and rotor models. To couple the bearing outer race (OR) with housing, a novel algorithm was developed to detect contact conditions between the housing support and OR and then calculate contact forces based on the penalty method. A study of housing support geometry demonstrates that bearing support plays a large role on the dynamic performance of the bearing. Motion of bearing outer race is closely related to the geometry and deformation of the housing. The effect of elastomeric bushing support on bearing dynamics was also studied and then compared to the bearing housings made with linear-elastic material. The EFEM was used to model a cylindrical elastomeric bushing, which was then coupled with DBM. Constitutive relationship for the elastomeric material is based on the Arruda-Boyce model combined which uses a generalized Maxwell-element model to capture both hyperelastic and viscoelastic behaviors of the material. Comparison between the two types of housings illustrated that elastomeric materials as expected have large damping to reduce vibration and absorb energy which leads to a reduction in ball-race contact forces and friction. It was also shown that a desired bushing support performance can be achieved by varying bushing geometry. Simulations using the combined EFEM bushing and DBM model demonstrated that the elastomeric bushing provides better compliance to bearing misalignment as compared to a commonly used rigid support model. Modeling with a bearing surface dent showed that vibrations due to surface abnormalities can be significantly reduced using elastomeric bushing support. It has also been shown that choosing a proper bushing is an efficient way to tuning bushing vibration frequencies. The model was further developed to study the effects of rotor and support flexibilities on the performance of rotor-bearing-housing system. The system is composed of a flexible rotor and two supporting deep-groove ball bearings mounted in flexible bearing housings. In order to combine the dynamic bearing model with finite element rotor and support system, new contact algorithms were developed for the interactions between the various components in the system. The Total Lagrangian formulation approach was applied to decrease the computational effort needed for modeling the rotor-bearing-housing system. The combined model was then used to investigate the effects of bearing clearances and housing clearances. It was found that as the rotor is deformed due to external loading, the clearances have a significant impact on the bearing varying compliance motion and reaction moments. Results also show that the deformation of the flexible housing depends on the total force and moment generated within the bearing due to rotor deformation. The first critical speed of rotor was simulated to investigate the unbalance response of the rotor-bearing system. It was demonstrated that rotor critical speed has a significant effect on inner race displacement and reaction moment generated at bearing location. The dynamic behavior of the cage in a ball bearing was studied using experimental and analytical investigations. For the experimental investigation, a wireless sensor telemeter system was designed and developed to monitor the cage motions. The sensor, which was integrated on the bearing cage, is comprised of a commercially-available capacitor-inductor (LC) circuit. The LC circuit on the rotating cage was coupled to a transceiver which was stationary and positioned in close proximity to the cage. In order to achieve the objective of the analytical investigation, the explicit finite element method (EFEM) was used to simulate the bearing cage. The EFEM cage model was then combined with the dynamic bearing model to simulate the cage motion during operation. The results from the experimental measurement using the telemeter were then compared with the analytical modeling. The developed telemeter demonstrated the capability of the cage telemeter in detecting various bearing frequencies. These include: the cage frequency, shaft frequency, and ball pass frequency on outer race (BPFO) which was introduced by creating a spall on bearing outer race. Compared to standard accelerometers which are commonly used to measure vibrations on the bearing housing, the cage telemeter has shown advantage in sensing cage motions and detecting bearing defect regardless of the location of the damage. Analytical simulation using the EFEM cage model correlated well with the experimental results and provided more insight into the bearing cage dynamics

    Dynamic and thermal analysis of high speed tapered roller bearings under combined loading

    Get PDF
    The development of a computer program capable of predicting the thermal and kinetic performance of high-speed tapered roller bearings operating with fluid lubrication under applied axial, radial and moment loading (five degrees of freedom) is detailed. Various methods of applying lubrication can be considered as well as changes in bearing internal geometry which occur as the bearing is brought to operating speeds, loads and temperatures

    Shape Animation with Combined Captured and Simulated Dynamics

    Get PDF
    We present a novel volumetric animation generation framework to create new types of animations from raw 3D surface or point cloud sequence of captured real performances. The framework considers as input time incoherent 3D observations of a moving shape, and is thus particularly suitable for the output of performance capture platforms. In our system, a suitable virtual representation of the actor is built from real captures that allows seamless combination and simulation with virtual external forces and objects, in which the original captured actor can be reshaped, disassembled or reassembled from user-specified virtual physics. Instead of using the dominant surface-based geometric representation of the capture, which is less suitable for volumetric effects, our pipeline exploits Centroidal Voronoi tessellation decompositions as unified volumetric representation of the real captured actor, which we show can be used seamlessly as a building block for all processing stages, from capture and tracking to virtual physic simulation. The representation makes no human specific assumption and can be used to capture and re-simulate the actor with props or other moving scenery elements. We demonstrate the potential of this pipeline for virtual reanimation of a real captured event with various unprecedented volumetric visual effects, such as volumetric distortion, erosion, morphing, gravity pull, or collisions

    The Vibration Ring

    Get PDF
    The vibration ring was conceived as a driveline damping device to prevent structure-borne noise in machines. It has the appearance of a metal ring, and can be installed between any two driveline components like an ordinary mechanical spacer. Damping is achieved using a ring-shaped piezoelectric stack that is poled in the axial direction and connected to an electrical shunt circuit. Surrounding the stack is a metal structure, called the compression cage, which squeezes the stack along its poled axis when excited by radial driveline forces. The stack in turn generates electrical energy, which is either dissipated or harvested using the shunt circuit. Removing energy from the system creates a net damping effect. The vibration ring is much stiffer than traditional damping devices, which allows it to be used in a driveline without disrupting normal operation. In phase 1 of this NASA Seedling Fund project, a combination of design and analysis was used to examine the feasibility of this concept. Several designs were evaluated using solid modeling, finite element analysis, and by creating prototype hardware. Then an analytical model representing the coupled electromechanical response was formulated in closed form. The model was exercised parametrically to examine the stiffness and loss factor spectra of the vibration ring, as well as simulate its damping effect in the context of a simplified driveline model. The results of this work showed that this is a viable mechanism for driveline damping, and provided several lessons for continued development

    High Speed Cylindrical Roller Bearing Analysis, SKF Computer Program CYBEAN. Volume 1: Analysis

    Get PDF
    The CYBEAN (CYlindrical BEaring ANalysis) program was created to detail radially loaded, aligned and misaligned Cylindrical roller bearing performance under a variety of operating conditions. The models and associated mathematics used within CYBEAN are described. The user is referred to the material for formulation assumptions and algorithm detail
    • …
    corecore