3 research outputs found

    GDP : using dataflow properties to accurately estimate interference-free performance at runtime

    Get PDF
    Multi-core memory systems commonly share resources between processors. Resource sharing improves utilization at the cost of increased inter-application interference which may lead to priority inversion, missed deadlines and unpredictable interactive performance. A key component to effectively manage multi-core resources is performance accounting which aims to accurately estimate interference-free application performance. Previously proposed accounting systems are either invasive or transparent. Invasive accounting systems can be accurate, but slow down latency-sensitive processes. Transparent accounting systems do not affect performance, but tend to provide less accurate performance estimates. We propose a novel class of performance accounting systems that achieve both performance-transparency and superior accuracy. We call the approach dataflow accounting, and the key idea is to track dynamic dataflow properties and use these to estimate interference-free performance. Our main contribution is Graph-based Dynamic Performance (GDP) accounting. GDP dynamically builds a dataflow graph of load requests and periods where the processor commits instructions. This graph concisely represents the relationship between memory loads and forward progress in program execution. More specifically, GDP estimates interference-free stall cycles by multiplying the critical path length of the dataflow graph with the estimated interference-free memory latency. GDP is very accurate with mean IPC estimation errors of 3.4% and 9.8% for our 4- and 8-core processors, respectively. When GDP is used in a cache partitioning policy, we observe average system throughput improvements of 11.9% and 20.8% compared to partitioning using the state-of-the-art Application Slowdown Model

    Performance analysis methods for understanding scaling bottlenecks in multi-threaded applications

    Get PDF
    In dit proefschrift stellen we drie nieuwe methodes voor om de prestatie van meerdradige programma's te analyseren. Onze eerste methode, criticality stacks, is bruikbaar voor het analyseren van onevenwicht tussen draden. Om deze stacks te construeren stellen we een nieuwe criticaliteitsmetriek voor, die de uitvoeringstijd van een applicatie opsplitst in een deel voor iedere draad. Hoe groter dit deel is voor een draad, hoe kritischer deze draad is voor de applicatie. De tweede methode, bottle graphs, stelt iedere draad van een meerdradig programma voor als een rechthoek in een grafiek. De hoogte van de rechthoek wordt berekend door middel van onze criticaliteitsmetriek, en de breedte stelt het parallellisme van een draad voor. Rechthoeken die bovenaan in de grafiek zitten, als het ware in de hals van de fles, hebben een beperkt parallellisme, waardoor we ze beschouwen als “bottlenecks” voor de applicatie. Onze derde methode, speedup stacks, toont de bereikte speedup van een applicatie en de verschillende componenten die speedup beperken in een gestapelde grafiek. De intuïtie achter dit concept is dat door het reduceren van de invloed van een bepaalde component, de speedup van een applicatie proportioneel toeneemt met de grootte van die component in de stapel
    corecore