
Methodes voor de prestatieanalyse van het schalingsgedrag
van meerdradige programma's

Performance Analysis Methods for Understanding Scaling Bottlenecks
in Multi-Threaded Applications

Kristof Du Bois

Promotoren: prof. dr. ir. L. Eeckhout, dr. ir. S. Eyerman
Proefschrift ingediend tot het behalen van de graad van
Doctor in de Ingenieurswetenschappen: Computerwetenschappen

Vakgroep Elektronica en Informatiesystemen
Voorzitter: prof. dr. ir. J. Van Campenhout
Faculteit Ingenieurswetenschappen en Architectuur
Academiejaar 2013 - 2014

ISBN 978-90-8578-703-7
NUR 980
Wettelijk depot: D/2014/10.500/49

To my family.

Dankwoord

De weg naar een doctoraat is lang en verloopt over een parcours dat
onderweg bezaaid is met verschillende hindernissen. Om deze tocht
toch tot een goed einde te brengen, heb ik de afgelopen vier jaar de
hulp en steun gekregen van een aantal bijzondere mensen. Daarom, nu
de finishlijn van dit doctoraat bereikt is, is het dan ook de hoogste tijd
om hier even bij stil te staan.

Allereerst wens ik mijn beide promotors, prof. Lieven Eeckhout en
dr. Stijn Eyerman, oprecht te bedanken voor hun onvoorwaardelijke
steun, inzichtvolle feedback en actieve hulp bij het schrijven van ar-
tikels en als apotheose deze thesis. Dat ik dit doctoraat tot een goed
einde heb kunnen brengen, is voor een groot deel dankzij hen. Daarom
overdrijf ik niet wanneer ik zeg dat ik mij geen betere begeleiding had
kunnen voorstellen.

I would also like to thank dr. Jennifer B. Sartor for all her great help on
writing papers, her assistance with Java, and for providing interesting ideas.

Daarnaast wil ik alle leden van mijn examencommissie bedanken,
omdat ze de tijd namen om dit proefschrift te lezen, in vraag te stellen
en te verbeteren. I would also like to address a special word of thanks to Prof.
Margaret Martonosi and Prof. Per Stenström for accepting my invitation to
be part of my PhD committee and their willingness to travel to Ghent, despite
their busy schedules.

Wat ik bovendien nooit zal vergeten, is de aangename en vriende-
lijke werksfeer die heerst in onze onderzoeksgroep. Daarom wil ik alle
collega’s en in het bijzonder mijn bureaugenoten van de afgelopen jaren
bedanken: Andy, Cecilia, Frederick, Max, Sam, Sander, Shoaib en Stijn.
Ook Marnix, Michiel en Ronny mogen hier zeker niet ontbreken, onder
meer omwille van hun zeer geapprecieerde hulp bij praktische proble-
men. Een heel speciaal woordje van dank heb ik voor Max en Klaas,
twee collega’s die al snel goede vrienden werden en waarmee ik ook

ii

naast het werk tal van onvergetelijke momenten mee heb beleefd.
Het Vlaams Supercomputer Centrum (VSC) voor het beschikbaar

stellen van een enorme hoeveelheid rekenkracht en de feilloze techni-
sche ondersteuning.

Ten slotte wil ik mijn familie en vrienden bedanken om er steeds te
zijn wanneer ik hen nodig heb. In het bijzonder wil ik mama en papa
bedanken, eigenlijk kunnen woorden niet beschrijven hoe dankbaar ik
jullie ben omwille van alle kansen die jullie mij gaven en me steeds
steunen in alles wat ik doe en me vormden tot de persoon die ik nu
ben, enz.

Kristof Du Bois
Gent, 24 juni 2014

Examencommissie

Prof. Rik Van de Walle, voorzitter
Decaan Faculteit Ingenieurswetenschappen en Architectuur
Universiteit Gent

Dr. Jennifer B. Sartor, secretaris
Vakgroep ELIS
Faculteit Ingenieurswetenschappen en Architectuur
Universiteit Gent

Prof. Lieven Eeckhout, promotor
Vakgroep ELIS
Faculteit Ingenieurswetenschappen en Architectuur
Universiteit Gent

Dr. Stijn Eyerman, promotor
Vakgroep ELIS
Faculteit Ingenieurswetenschappen en Architectuur
Universiteit Gent

Prof. Filip De Turck
Vakgroep Informatietechnologie
Faculteit Ingenieurswetenschappen en Architectuur
Universiteit Gent

Prof. Wolfgang De Meuter
Vakgroep Computerwetenschappen
Faculteit Wetenschappen
Vrije Universiteit Brussel

Prof. Margaret Martonosi
Princeton University
USA

Prof. Per Stenström
Chalmers University
Sweden

iv

Leescommissie

Dr. Stijn Eyerman
Vakgroep ELIS
Faculteit Ingenieurswetenschappen en Architectuur
Universiteit Gent

Prof. Filip De Turck
Vakgroep Informatietechnologie
Faculteit Ingenieurswetenschappen en Architectuur
Universiteit Gent

Prof. Wolfgang De Meuter
Vakgroep Computerwetenschappen
Faculteit Wetenschappen
Vrije Universiteit Brussel

Prof. Margaret Martonosi
Princeton University
USA

Prof. Per Stenström
Chalmers University
Sweden

vi

Samenvatting

Gedurende vele jaren konden processorfabrikanten de prestatie van
één enkele rekenkern verhogen. Er was immers een toename in tran-
sistordensiteit, als gevolg van de wet van Moore; en de schalingsthe-
orie van Dennard stelde dat het verbruikte vermogen van een transis-
tor schaalde met de grootte ervan. Tijdens deze periode resulteerde de
trend van dalende transistorgroottes in een toenemende klokfrequentie
en/of pijplijnbreedte van de processor, waarvan de Intel Pentium 4 een
goed voorbeeld was. Aan deze trend kwam echter een einde omwille
van beperkingen op het verbruikte vermogen en de daaraan gerela-
teerde koeling. Als reactie hierop introduceerden processorfabrikanten
multi-core processors waarbij meerdere rekenkernen op eenzelfde chip
geplaatst worden.

De verschillende rekenkernen op een multi-core processor kunnen
onafhankelijk van elkaar instructies uitvoeren, maar ze moeten wel een
aantal componenten op de chip delen, zoals bijvoorbeeld een cache
of een bus. Het delen van deze componenten zorgt ervoor dat ze ef-
ficiënter gebruikt worden, maar heeft als nadeel dat de verschillende
rekenkernen een invloed hebben op elkaars prestatie. Bijvoorbeeld in
het geval van een gedeelde cache kan een rekenkern ervoor zorgen
dat data van een andere rekenkern verwijderd wordt, wat leidt tot een
toegenomen aantal missers voor de andere rekenkern.

Om ten volle gebruik te kunnen maken van deze meerdere rekenker-
nen moeten software-ontwikkelaars ook hun programma’s aanpassen.
Immers waar het vroeger voldoende was één draad te hebben per pro-
gramma, is het nu interessanter om meerdere draden per programma
te hebben zodanig dat de draden parallel kunnen uitvoeren op de ver-
schillende rekenkernen. Meestal kunnen deze verschillende draden
echter niet geheel onafhankelijk van elkaar uitvoeren omdat ze gege-
vens moeten delen of wachten op elkaar. Daarom voorziet software in
synchronisatiemethodes. Deze synchronisatie is nodig om een correcte

viii SAMENVATTING

uitvoering van het programma te verzekeren, maar heeft als nadeel dat
draden opnieuw een invloed hebben op elkaars uitvoering, net zoals
bij de gedeelde hardware componenten.

Deze twee types van interacties tussen draden zijn bepalend voor
de prestatie van meerdradige programma’s, maar ze maken het tevens
ook complex om deze prestatie te analyseren. Daarom introduceren we
in dit proefschrift drie nieuwe methodes, genaamd criticality stacks, bot-
tle graphs en speedup stacks, die het eenvoudig maken om de prestatie te
analyseren van meerdradige programma’s. De methodes tonen op een
visuele manier aan software en hardware ontwikkelaars wat er gebeurt
tijdens de uitvoering van een parallel programma.

Onze eerste methode, criticality stacks, is bruikbaar voor het analy-
seren van onevenwicht tussen draden. Om deze stacks te construeren
stellen we een nieuwe criticaliteitsmetriek voor, die onafhankelijk is
van het type synchronisatie. De metriek wordt berekend aan de hand
van de tijd dat een draad actief is, en het aantal andere draden dat
tegelijk uitvoert. Gebruik makend van deze metriek splitsen criticality
stacks de uitvoeringstijd van een applicatie op in een deel voor iedere
draad. Hoe groter dit deel is voor een draad, hoe kritischer deze draad
is voor de applicatie. Om deze metriek te berekenen tijdens de uitvoe-
ring van een programma stellen we een kleine hardwarecomponent
voor. Deze component bevindt zich niet op het kritisch pad van de pro-
cessor en verbruikt een kleine hoeveelheid aan extra vermogen. In dit
werk gebruiken we criticality stacks voor het analyseren van oneven-
wicht tussen draden voor een verzameling van benchmarks, het sturen
van optimalisatie van software, het dynamisch optimaliseren van de
prestatie en het reduceren van het energieverbruik van parallelle appli-
caties.

De tweede methode, bottle graphs, stelt iedere draad van een meer-
dradig programma voor als een rechthoek in een grafiek. De hoogte
van de rechthoek wordt berekend door middel van onze criticaliteits-
metriek, de breedte stelt het parallellisme van een draad voor (hoeveel
andere draden er tegelijk met die draad actief zijn). De oppervlakte van
de rechthoek is gelijk aan de totale uitvoeringstijd van de draad. De
rechthoeken worden dan op elkaar gestapeld in een grafiek en gesor-
teerd naar gelang hun breedte, met de smalste rechthoeken bovenaan.
Dit betekent dat draden met een beperkt parallellisme bovenaan in
de grafiek zitten, als het ware in de hals van de fles waardoor we ze
beschouwen als “bottlenecks” voor de applicatie. Hoewel bottle graphs
geconstrueerd kunnen worden met de hardwarecomponent die we ont-

ix

wierpen voor criticality stacks, hebben we een tweede profileringstech-
niek uitgewerkt volledig in software. Hierdoor kunnen we bottle graphs
construeren van ongewijzigde programma’s die uitvoeren op heden-
daagse processors (en niet op een simulator). In dit werk gebruiken
we bottle graphs voor het analyseren van de prestatie van Java pro-
gramma’s uitvoerend op Jikes RVM. We analyseren de prestatie van
zowel applicatiedraden (die afkomstig zijn van de programma’s), als
servicedraden (die afkomstig zijn van de virtuele machine).

Onze derde methode, speedup stacks, toont de bereikte speedup (ver-
snelling t.o.v. sequentiële uitvoering) van een applicatie en de verschil-
lende componenten die speedup beperken in een gestapelde grafiek.
De totale hoogte van de stapel is de maximaal bereikbare speedup; de
onderste component in de stapel toont de bereikte speedup. De an-
dere elementen in de stapel tonen de componenten die de speedup
beperken en hun relatieve impact op de speedup. De intuı̈tie achter
het concept van een speedup stack is dat door het reduceren van de
invloed van een bepaalde component, de speedup van een applicatie
proportioneel toeneemt met de grootte van die component in de stapel.
In dit werk stellen we twee versies van speedup stacks voor. Onze
eerste versie gebruikt extra hardwareondersteuning om speedup stacks
te construeren tijdens de uitvoering van een programma. In deze ver-
sie bevat de speedup stack de volgende componenten: interferentie in
de gedeelde cache en de geheugenhiërarchie, actief spinning, tijd uit-
gescheduled, en onevenwicht tussen draden. De profileringsmethode
gebruikt een speciaal ontwikkelde tellerarchitectuur voor het opmeten
van positieve en negatieve interferentie op de prestatie van draden. De
extra overhead van deze profileringsmethode is beperkt tot 1,1 KB per
rekenkern, dus ongeveer 18 KB voor een processor met 16 rekenkernen.
In dit proefschrift gebruiken we deze versie van speedup stacks voor
het identificeren van schalingsproblemen, het classificeren van bench-
marks gebaseerd op hun schalingsgedrag, en voor het begrijpen van
de prestatie van een gedeelde cache. Onze tweede versie van speedup
stacks richt zich op Java-programma’s. In deze versie bestaat de stapel
uit andere componenten, namelijk garbage collection, sequentiële de-
len, onevenwicht tussen draden, synchronisatie en interferentie in de
hardware. Voor het opmeten van deze speedup stacks hergebruiken
we de profileringsmethode die we ontwierpen voor het genereren van
bottle graphs, maar we passen deze methode aan om onze speedup
stacks te kunnen construeren. Deze tweede versie van speedup stacks
gebruiken we in dit werk voor het bestuderen van het schalingsgedrag

x SAMENVATTING

van Java-applicaties die uitvoeren op Jikes RVM.
Als besluit geloven we dat deze drie methodes inzichtelijk zijn voor

zowel software- als hardware-ontwikkelaars voor het begrijpen van het
schalingsgedrag, het identificeren van bottlenecks, en het optimalis-
eren van de prestatie van meerdradige programma’s. Dit is geen een-
voudige taak omdat er interacties tussen draden zijn zowel in de hard-
ware, omwille van gedeelde componenten, als in de software door syn-
chronisatie tussen draden.

Summary

For many years the increase in transistor density coming from Moore’s
law combined with Dennard’s scaling made it possible for chip man-
ufacturers to increase single-core performance. During this period the
trend of decreased transistor size resulted in increased clock frequency
and pipeline width of the processor, as exemplified by the Intel Pentium
4 design. However, because of power and cooling constraints related
to it, this trend came to an end and chip manufacturers went in the di-
rection of multi-core processors, where instead of one core doing all the
work, there are multiple cores available on the same chip.

While these multi-core processors contain several cores that are able
to work independently from each other, the different cores also share
resources on the chip, for example, a last-level cache, an on-chip in-
terconnection network, or a memory bus. Sharing these resources in-
creases the utilization of the components, but comes with a drawback
that cores can affect each other’s performance. For example, in case
of a shared cache, one core can evict data of another core leading to
additional misses for the latter.

Also, in order to fully benefit from the available cores, software
writers have to change the way they design their programs. Instead
of having just one thread per program, it is now more beneficial to
have multiple threads in the same application. Typically, those mul-
tiple threads can not work completely independently from each other,
because at some point in their execution they have to share some data or
they have to wait for each other. Therefore, software provides methods
for synchronization. While this synchronization is necessary to achieve
a correct execution of the program, it also has the disadvantage that –
just like resource sharing – threads can affect each other’s performance.

These two types of interactions between threads are determinative
to the performance of a multi-threaded application, but make it also
difficult to analyze the performance of these applications. Therefore we

xii SUMMARY

introduce three new methods in this dissertation, called criticality stacks,
bottle graphs and speedup stacks, to facilitate multi-threaded application
performance analysis. Our methods visually show programmers and
hardware designers what is going on during the execution of parallel
programs.

The first method, criticality stacks, is useful for visual analysis of par-
allel imbalance between threads. They are constructed using a novel,
intuitive criticality metric that is independent of synchronization prim-
itives, and takes into account both a thread’s active running time and
the number of co-executing threads. Using this metric, criticality stacks
break down the total execution time of an application based on each
thread’s criticality. The higher the share of a thread in the stack, the
more critical the thread is, meaning that the thread is more determina-
tive of execution time. For calculating a thread’s criticality value online
during the execution of an application, we present a small hardware
component. This component is off the processor’s critical path and con-
sumes a very small amount of power. We use criticality stacks in this
work for analyzing parallel imbalance in a set of applications, guiding
software source code optimization, dynamically optimizing the perfor-
mance, and reducing the energy consumption of parallel programs.

The second method, bottle graphs, shows each thread of a multi-
threaded application as a box in a stacked bar graph. The height of a
box is a thread’s execution time share (using our criticality metric) and
the width is its parallelism (which is the average number of co-running
threads). As a result, the total area of a box is equal to a thread’s to-
tal running time. We sort boxes according to their width (parallelism)
with the narrowest ones at the top, meaning that the threads in the
neck of the bottle have low parallelism and therefore reveal themselves
as parallel bottlenecks of the application. While we can construct bottle
graphs with the hardware component that we designed for construct-
ing criticality stacks, we designed a second profiling tool that is im-
plemented completely in software. This allows us to construct bottle
graphs for unmodified applications running on native hardware with
minimal overhead. In this work we use bottle graphs to analyze Java
applications running on top of Jikes RVM. We do an analysis of the
behavior of the application threads (coming from the benchmarks), as
well as the additional service threads introduced by the runtime, such
as for memory management.

Our third method, speedup stacks, visualizes the achieved speedup
of an application and the various scaling delimiters as a stacked bar.

xiii

The total height of the stack is equal to the maximum achievable speed-
up over its single-threaded execution (excluding superlinear scaling),
the bottom component in the stack shows the actual speedup, whereas
the components on top of it show the various scaling delimiters and
their relative impact on speedup. The intuition behind it is that by re-
ducing the impact of a speedup delimiter, speedup improves propor-
tional to the height of the component in the stack. In this disseratation
we propose two versions of speedup stacks. The first version uses addi-
tional hardware support for computing a speedup stack during the ex-
ecution of a program, at low overhead. The various speedup delimiters
we include in these speedup stacks are: LLC and memory subsystem
interference, spinning, yielding, imbalance. The profiling tool uses a
dedicated counter architecture to estimate the impact of both negative
and positive interference on the performance on threads. Hardware
overhead of this tool is limited to 1.1 KB per core, or a total of 18 KB for
a 16-core CMP. We use this version of speedup stacks in this work for
identifying scaling bottlenecks, classifying benchmarks based on their
scaling delimiters, and for understanding LLC performance. The sec-
ond version of speedup stacks targets managed language applications,
like Java programs. For this version of speedup stacks we include a
different set of scaling delimiters: garbage collection, sequential parts,
thread imbalance, synchronization between threads, and hardware in-
terference. For constructing these speedup stacks, we extend the pro-
filing tool that we designed for generating bottle graphs. This profil-
ing tool is completely implemented in software. We use these speedup
stacks for analyzing scaling behavior of Java applications running on
Jikes RVM.

We believe the three methods proposed in this dissertation are fun-
damental to both software and hardware designers for understanding
the behavior, identifying scaling bottlenecks, and optimizing the per-
formance of multi-threaded applications. This analysis is not trivial
due to threads that interact with each other in software through syn-
chronization in the code and work balance, and in hardware through
sharing resources.

xiv SUMMARY

Contents

Nederlandse samenvatting vii

English Summary xi

1 Introduction 1
1.1 Motivation . 1
1.2 Key Challenges . 2
1.3 Contributions in This Dissertation 2
1.4 Other Research Activities 8
1.5 Overview of This Dissertation 9

2 Background 11
2.1 Multi-Core Processors . 11

2.1.1 Resource Sharing 12
2.1.2 Sources of Thread Interference 13
2.1.3 Quantifying Thread Interference 15

2.2 Multi-Threaded Applications 18
2.3 Summary . 19

3 Performance Analysis Methods 21
3.1 Introduction . 21
3.2 Criticality Stacks . 22

3.2.1 Constructing Criticality Stacks 23
3.2.2 Example Criticality Stacks 26

3.3 Bottle Graphs . 27
3.3.1 Constructing Bottle Graphs 28
3.3.2 Example Bottle Graphs 30

3.4 Speedup Stacks . 34
3.4.1 Constructing Speedup Stacks 35
3.4.2 Scaling Delimiters 39

xvi CONTENTS

3.4.3 Example Speedup Stacks 41
3.5 Speedup Stacks for Java 42

3.5.1 Scaling Delimiters for Java 43
3.5.2 Example Speedup Stacks for Java 47

3.6 Related Work . 49
3.6.1 Performance Visualization 49
3.6.2 Criticality Analysis 50

3.7 Summary . 50

4 Criticality Stacks: Identifying Critical Threads 53
4.1 Introduction . 53
4.2 Constructing Criticality Stacks 54

4.2.1 Identifying Running Threads 54
4.2.2 Calculating Criticality 55

4.3 Experimental Setup . 57
4.4 Validation and Analysis 59

4.4.1 Validation of Criticality Stacks 59
4.4.2 Comparison to Prior Criticality Metric 61
4.4.3 Varying the Amount of Frequency Scaling 63
4.4.4 Steering Software Optimization 65

4.5 Summary . 67

5 Bottle Graphs: Visualizing Per-Thread Performance 69
5.1 Introduction . 69
5.2 Constructing Bottle Graphs 70
5.3 Experimental Setup . 73
5.4 Jikes RVM and Benchmark Analysis 75

5.4.1 Garbage Collection Performance Analysis 75
5.4.2 Application Performance Analysis 81
5.4.3 Compiler Performance Analysis 82
5.4.4 Solving the Poor Scaling of Pmd 83
5.4.5 Comparing Jikes to OpenJDK 87

5.5 Related Work . 90
5.5.1 Comparison to IBM WAIT 91
5.5.2 Java Parallelism Analysis 92

5.6 Summary . 93

6 Speedup Stacks: Analyzing Application Scaling 95
6.1 Introduction . 95
6.2 Speedup Stacks Measured in Hardware 96

6.2.1 Constructing Speedup Stacks 96

CONTENTS xvii

6.2.2 Experimental Setup 106
6.2.3 Validation . 107
6.2.4 Applications . 115

6.3 Speedup Stacks Measured in Software 120
6.3.1 Constructing Speedup Stacks 121
6.3.2 Experimental Setup 123
6.3.3 Java Application Scaling Analysis 124

6.4 Summary . 130

7 Dynamic Performance Optimization 131
7.1 Introduction . 131
7.2 Improving Multi-Core Scheduling 132
7.3 Improving Multi-Threaded Program Performance 134

7.3.1 Effectiveness of Dynamic Optimization 137
7.3.2 Comparison to Previous Work 138

7.4 Improving Multi-Threaded Program Energy Usage . . . 139
7.5 Related Work . 141
7.6 Summary . 142

8 Conclusions and Future Work 143
8.1 Summary . 143
8.2 Future Work . 146

xviii CONTENTS

List of Figures

2.1 Example of a multi-core processor along with an off-chip
memory component. The dashed line indicates the chip
boundary. 12

2.2 Impact of inter-thread interference on per-thread perfor-
mance for 2, 4 and 8 cores, breaking up interference in
cache versus memory contention. 16

2.3 The impact of prefetching on interference on an eight-
core system (maximum interference is reported across 10
job mixes per benchmark). 17

2.4 Examples of synchronization between threads of a multi-
threaded application. 19

3.1 BFS’s criticality stack and total program speedups from
accelerating the identified critical and non-critical threads. 22

3.2 Criticality calculation example. 24
3.3 Criticality stacks for all benchmarks with 8 threads. . . . 26
3.4 Example of a bottle graph: The lusearch DaCapo bench-

mark with 4 application threads. 28
3.5 Bottle graphs for all single-threaded benchmarks with 2

GC threads. 31
3.6 Bottle graphs for all multi-threaded benchmarks with 2

GC threads and 4 application threads. 32
3.7 Speedup as a function of the number of cores for blacksc-

holes, facesim (both PARSEC) and cholesky (SPLASH-2). 34
3.8 Illustrative speedup stack. 36
3.9 Breaking up per-thread performance for computing speedup

stacks. 37
3.10 Speedup stacks as a function of the number of threads

for blackscholes, facesim and cholesky. 41

xx LIST OF FIGURES

3.11 Example of applications threads in a managed language
environment. 44

3.12 Example of a bottle graph and speedup stack: The luse-
arch DaCapo benchmark with 4 application threads. . . . 48

4.1 Hardware device for online criticality calculation (’A’ is
the active bit per thread). 56

4.2 Criticality stacks for all benchmarks for 8 threads and
corresponding speedups by accelerating one thread. . . . 60

4.3 Comparison between our and a prior metric, and the
maximum achievable speedup by accelerating one thread. 62

4.4 Impact of frequency scaling on achieved speedup. 64
4.5 Impact of frequency scaling on criticality stacks. 65
4.6 Example of using criticality stacks as a guide for software

optimization (BFS benchmark). 66

5.1 Xalan: scaling of GC threads with 4 application threads. . 76
5.2 Xalan: scaling of application threads with 2 GC threads. . 77
5.3 Average garbage collection work (a) and time (b) as a

function of application and GC thread count (multi-threa-
ded applications). 78

5.4 Average collection work and time as a function of GC
thread count (single-threaded applications). 79

5.5 Average number of LLC misses as a function of applica-
tion and GC thread count (multi-threaded applications). 79

5.6 Average number of collections as a function of applica-
tion and GC thread count (multi-threaded applications). 80

5.7 Average application work and time as a function of ap-
plication thread count (multi-threaded applications). . . 81

5.8 Jython: behavior of Organizer thread over different iter-
ations for 4 GC threads. 83

5.9 Pmd: scaling of application threads with 2 GC threads
(default input set). 84

5.10 Pmd: bottle graphs taken every 0.5 seconds with 2 GC
threads and 8 application threads (default input set). . . 85

5.11 Pmd: scaling of application threads with 2 GC threads
(large input set). For the fourth graph, the biggest source
file is removed from the input set. 86

5.12 PseudoJBB: scaling of GC threads on OpenJDK, with 4
application threads. 88

LIST OF FIGURES xxi

5.13 Average OpenJDK garbage collection work (a) and time
(b) as a function of application and GC thread count (multi-
threaded applications). 89

5.14 Average number of futex calls per ms during garbage
collection as a function of GC thread count, with 4 ap-
plication threads (multi-threaded applications). 90

5.15 Output of WAIT for pmd running on OpenJDK with 8
application and 2 GC threads using a 1 second sampling
rate. 91

5.16 Output of WAIT for pmd running on OpenJDK with 8
application and 2 GC threads using a 50 millisecond sam-
pling rate. 92

6.1 The ATD samples a number of sets in the shared cache
to identify inter-thread misses. 97

6.2 The ORA keeps track of the most recently accessed row
per memory bank per core. 100

6.3 Average isolated execution time estimation error per bench-
mark for Equation 6.1 and 6.2 (eight cores, fixed memory
latency, 32 sampled sets), compared to no sampling. . . . 109

6.4 Average isolated execution time estimation error for the
interpolation and extrapolation approaches as a function
of the number of sampled sets; we assume fixed memory
access latency. 109

6.5 Estimated versus measured interference for (a) a dual-
core, (b) a quad-core, and (c) an eight-core system. 111

6.6 Interference and error for estimating isolated execution
time for an 8-core processor; workloads are sorted along
the horizontal axis. 112

6.7 Error analysis per benchmark for an 8-core processor. . . 113
6.8 Actual speedup and estimated speedup for all bench-

marks for 2, 4, 8 and 16 threads. 114
6.9 Tree graph showing main speedup delimiter components

for each benchmark for 16 threads. 117
6.10 Speedup stacks for a selection of benchmarks with 16

threads. 118
6.11 Speedup numbers for ferret as a function of the number

of cores. The number of threads equals the number of
cores (left bars) or equals 16 (right bars). 118

6.12 Negative, positive and net LLC interference components. 119

xxii LIST OF FIGURES

6.13 Negative, positive and net interference components for
cholesky as a function of LLC size. 120

6.14 Speedup stacks for all applications with a stop-the-world
garbage collector (2×minimum heap size). 124

6.15 Data from hardware performance counters for all appli-
cations using a stop-the-world garbage collector. (Data
normalized to one application thread.) 125

6.16 Speedup stacks for all applications with a concurrent garbage
collector (2×minimum heap size). 126

6.17 lusearch: scaling of application threads with concurrent
garbage collector (2×minimum heap size). 127

6.18 Speedup stacks for all applications with a concurrent garbage
collector (10×minimum heap size). 128

6.19 Data from hardware performance counters for all appli-
cations using a concurrent garbage collector with a large
heap. 129

7.1 Fairness results for progress-aware and progress-agnostic
scheduling for (a) 4-program mixes on 2 cores, and (b) 8-
program mixes on 4 cores. 133

7.2 Results for the dynamic frequency scaling policy. 137
7.3 Comparison of energy consumed when running all threads

at 2.5 GHz and only the most critical at 2.5 GHz using
our dynamic scheme, compared to running all threads at
2 GHz. 140

List of Tables

1.1 Overview of contributions in this dissertation. 7

4.1 Simulated multi-core processor configurations for criti-
cality stacks. 58

4.2 Considered benchmarks for criticality stacks. 58

5.1 Considered benchmarks for bottle graphs and kernel mod-
ule overhead. ST=single-threaded, MT=multi-threaded. . 74

6.1 Considered benchmarks for speedup stacks. 106
6.2 Simulated multi-core processor configurations for speedup

stacks. 107
6.3 Considered benchmarks for speedup stacks measured in

software. 123

xxiv LIST OF TABLES

List of Abbreviations

ATD Auxiliary Tag Directory

CMP Chip-Multiprocessor

CPI Cycles Per Instructions

DTLB Data Translation Lookaside Buffer

GC Garbage Collection

HPC High-Performance Computing

IPC Instructions Per Cycle

JVM Java Virtual Machine

L1 Level 1

L2 Level 2

L3 Level 3

LLC Last-Level Cache

MLP Memory-Level Parallelism

MPI Message Passing Interface

MSHR Miss Status Holding Register

OS Operating System

PARSEC Princeton Application Repository for Shared-Memory Com-
puters

RVM Research Virtual Machine

xxvi LIST OF ABBREVIATIONS

SMP Shared-Memory Processor

SMT Simultaneous Multi-Threading

SPLASH Stanford Parallel Applications for Shared-Memory

WAIT Whole-system Analysis of Idle Time

Chapter 1

Introduction

1.1 Motivation

While multi-core processors improve overall chip throughput and uti-
lization, sharing hardware resources among the cores in caches, the
on-chip interconnection network, and memory bus, leads to an unpre-
dictable performance of the individual threads running on a multi-core
processor. This is because co-executing threads interfere with each
other in the shared hardware resources. This interference between
threads can either have a negative impact on the performance of an
application, meaning that the execution time of the threads becomes
longer during multi-core execution compared to an isolated execution
of the threads (which is without competing for hardware resources), or
it can have a positive impact on performance, meaning that the execu-
tion time of threads becomes shorter during multi-core execution.

The advent of multi-core processors also poses new challenges to
software designers, because they have to find ways to make use of those
multiple available cores. These days, most programmers do this by
parallelizing their software, which means that, instead of having one
thread doing all the work, the work is now divided between several
threads that are each doing a part of the total work. While this idea
is simple, the implementation of this concept is often complicated, be-
cause the different threads typically have to share data, which means
there has to be synchronization between the threads.

2 Introduction

Just like resource sharing, this synchronization between threads
leads to threads that affect each other’s performance, resulting in a
poor scaling of an application. This means that the execution time
of a multi-threaded application is not proportional to the number of
threads or available cores in the system. Therefore, it is vital for both
programmers and processor designers to understand multi-threaded
application behavior in order to optimize performance and to design
future hardware.

1.2 Key Challenges

Analyzing multi-threaded programs and identifying scaling bottle-
necks is very challenging, but it is necessary to obtain good parallel
performance. The reasons why it is a complicated task, is that threads
interact with each other because of resource sharing in the underlying
hardware and due to synchronization between the threads. This means
that, if we want to analyze the performance of this type of applications,
we have to measure and quantify the impact of these interactions across
various layers in the computer system stack, including both hardware
and software. Apart from measuring, it is also challenging to represent
this data into graphs that can be easily interpreted by software devel-
opers without having to know the exact details about the underlying
hardware platform.

Besides analyzing, it’s also challenging to optimize the performance
of multi-threaded applications. We will see later in this work that ac-
celerating a particular thread of an application at a certain point in the
execution leads to a performance gain, while accelerating other threads
does not change performance, but wastes energy. The challenge here
is to identify which threads need to be accelerated at which moment
during the execution.

1.3 Contributions in This Dissertation

This dissertation presents new methods for analyzing and optimizing
the performance of multi-threaded applications running on modern
multi-core processors.

1.3 Contributions in This Dissertation 3

Contribution #1: Per-Thread Cycle Accounting in Multi-Core
Processors

This work proposes a hardware-efficient per-thread cycle accounting
architecture for multi-core processors. The counter architecture tracks
per-thread progress in a multi-core processor, detects how inter-thread
interference affects per-thread performance, and predicts the execution
time for each thread if run in isolation. The counter architecture cap-
tures the effect of interference misses due to cache sharing as well as
increased memory access latency due to resource and memory band-
width sharing in the memory subsystem. The proposed method ac-
counts for 74.3% of the interference cycles, and estimates per-thread
progress within 14.2% on average across a large set of multi-program
workloads. Hardware cost is limited to 7.44 KB for an 8-core proces-
sor — a reduction by almost 10× compared to prior work while be-
ing 63.8% more accurate. Chapter 6 details on the implementation of
this counter architecture. Making system software progress-aware im-
proves fairness by 22.5% on average over progress-agnostic scheduling,
this will be discussed in Chapter 7.

This work has been published in ACM Transactions on Architecture
and Code Optimization (TACO) and has been presented at the 2013 In-
ternational Conference on High-Performance and Embedded Architec-
tures and Compilers (HiPEAC):

K. Du Bois, S. Eyerman, and L. Eeckhout. Per-thread Cycle Ac-
counting in Multicore Processors. ACM Transactions on Architec-
ture and Code Optimization (TACO), 9(4):1–22, Jan. 2013

Contribution #2: Speedup Stacks

Multi-threaded workloads typically show sublinear speedup on multi-
core hardware, i.e., the achieved speedup is not proportional to the
number of cores and threads. Sublinear scaling may have multiple
causes, such as poorly scalable synchronization leading to spinning
and/or yielding, and interference in shared resources such as the last-
level cache (abbreviated as LLC) as well as the main memory subsys-
tem.

In this work, we propose the speedup stack, which quantifies the
impact of the various scaling delimiters on multi-threaded application
speedup in a single stack. We describe a mechanism for computing

4 Introduction

speedup stacks on a multi-core processor, and we find speedup stacks
to be accurate within 5.1% on average for sixteen-threaded applica-
tions. We present several use cases: we discuss how speedup stacks
can be used to identify scaling bottlenecks, classify benchmarks, opti-
mize performance, and understand LLC performance. We introduce
speedup stacks in Chapter 3 and discuss them further in Chapter 6.

Speedup stacks have been presented at the 2012 IEEE International
Symposium on Performance Analysis of Systems and Software (IS-
PASS):

S. Eyerman, K. Du Bois, and L. Eeckhout. Speedup Stacks: Iden-
tifying Scaling Bottlenecks in Multi-Threaded Applications. In
Proceedings of the International Symposium on Performance Analysis
of Software and Systems (ISPASS), pages 145–155, Apr. 2012

Contribution #3: Criticality Stacks

Due to synchronization, certain threads make others wait, because they
hold a lock or have yet to reach a barrier. We call these critical threads,
i.e., threads whose performance is determinative of program perfor-
mance as a whole. Identifying these threads can reveal numerous opti-
mization opportunities, for the software developer and for hardware.

In this work, we propose a new metric for assessing thread crit-
icality, which combines both how much time a thread is performing
useful work and how many co-running threads are waiting. We show
how thread criticality can be calculated online with modest hardware
additions and at low overhead. We use our metric to create criticality
stacks that break down total execution time into each thread’s critical-
ity component, allowing for easy visual analysis of parallel imbalance.
We introduce criticality stacks in Chapter 3.

To validate our criticality metric, and demonstrate it is better than
previous metrics, we scale up the frequency of the most critical thread
and show it achieves the largest performance improvement. We then
demonstrate the broad applicability of criticality stacks by using them
to perform three types of optimizations: (1) program analysis to remove
parallel bottlenecks, (2) dynamically identifying the most critical thread
and accelerating it using frequency scaling to improve performance,
and (3) showing that accelerating only the most critical thread allows
for targeted energy reduction. We discuss this in Chapter 4 and 7.

1.3 Contributions in This Dissertation 5

This work has been presented at the 2013 International Symposium
on Computer Architecture (ISCA):

K. Du Bois, S. Eyerman, J. B. Sartor, and L. Eeckhout. Criticality
Stacks: Identifying Critical Threads in Parallel Programs Using
Synchronization Behavior. In Proceedings of the International Sym-
posium on Computer Architecture (ISCA), pages 511–522, June 2013

Contribution #4: Bottle Graphs

In our fourth contribution, we present bottle graphs, a powerful anal-
ysis tool that visualizes multi-threaded program performance, in re-
gards to both per-thread parallelism and execution time. Each thread
is represented as a box, with its height equal to the share of that thread
in the total program execution time, its width equal to its parallelism,
and its area equal to to the thread’s total execution time. The boxes of
all threads are stacked upon each other, leading to a stack with height
equal to the total program execution time. Bottle graphs show exactly
how scalable each thread is, and thus guide optimization towards those
threads that have a smaller parallel component (narrower), and a larger
share of the total execution time (taller), i.e., towards the ‘neck’ of the
bottle.

Using light-weight OS modules, we calculate bottle graphs for un-
modified multi-threaded programs running on real processors with an
average overhead of 0.68%. To demonstrate their utility, we do an ex-
tensive analysis of 12 Java benchmarks running on top of Jikes RVM,
which introduces many virtual machine service threads. We not only
reveal and explain scalability limitations of several well-known Java
benchmarks; we also analyze the reasons why the garbage collector
itself does not scale, and in fact performs optimally with two collec-
tor threads for all benchmarks, regardless of the number of application
threads. Finally, we compare the scalability of Jikes versus the Open-
JDK JVM. We demonstrate how useful and intuitive bottle graphs are
as a tool to analyze scalability and help optimize multi-threaded ap-
plications. We introduce bottle graphs in Chapter 3 and discuss them
further in Chapter 5.

Bottle graphs have been presented at the 2013 ACM SIGPLAN In-
ternational Conference on Object Oriented Programming, Systems Lan-
guages and Applications (OOPSLA):

6 Introduction

K. Du Bois, J. B. Sartor, S. Eyerman, and L. Eeckhout. Bottle
Graphs: Visualizing Scalability Bottlenecks in Multi-threaded Ap-
plications. In Proceedings of the ACM SIGPLAN International Con-
ference on Object Oriented Programming, Systems Languages and Ap-
plications (OOPSLA), pages 355–372, Oct. 2013

Contribution #5: Extension on Bottle Graphs and Speedup
Stacks

In our fifth contribution, we provide an extension to our previous bot-
tle graphs and speedup stacks papers. We use bottle graphs for an-
alyzing per-thread performance of Java applications running on Jikes
RVM. Because it is hard to analyze how the applications themselves
scale using bottle graphs, we extend our previously proposed speedup
stacks to make them suitable for managed language programs like Java
applications. We include the following scaling delimiters to more ac-
curately analyze the scalability of the service threads of managed lan-
guage programs: garbage collection, sequential parts of the application,
thread imbalance, synchronization between threads and hardware in-
terference. For constructing these new speedup stacks, we extend our
previously proposed light-weight OS modules that we used for gener-
ating bottle graphs. We thus generate speedup stacks for unmodified
Java applications running on native hardware at very low overhead.
The speedup stacks lead to a better understanding of the causes and
contributions of limited speedup of multi-threaded Java programs. We
discuss these speedup stacks in Chapter 3 and 6.

This work is submitted to ACM Transactions on Programming Lan-
guages and Systems (TOPLAS):

K. Du Bois, S. Eyerman, J. B. Sartor, and L. Eeckhout. Analyzing
Scaling Behavior of Managed Runtime Applications. ACM Trans-
actions on Programming Languages and Systems (TOPLAS), 2014.
Under review

How the Contributions Tie Together

Table 1.1 gives an overview of the different contributions in this dis-
sertation. The first contribution, the per-thread cycle accounting archi-
tecture, uses a dedicated hardware component for measuring the im-
pact of interference between threads, due to hardware resource sharing.

1.3 Contributions in This Dissertation 7

Per-Thread Speedup Criticality Bottle
Cycle Stacks Stacks Graphs

Accounting

Implemented with:
- hardware contr. #1 contr. #2 contr. #3 —
- software — contr. #5 — contr. #4
support

Used for:
- native contr. #1 contr. #2 contr. #3 —
- managed language — contr. #5 — contr. #4
applications

Visualization tool 8 4 4 4

Table 1.1: Overview of contributions in this dissertation.

We evaluate our counter architecture on multi-programmed workload
mixes, consisting of SPEC CPU2006 benchmarks.

In this dissertation we have two versions of speedup stacks. The
first version, found in contribution #2, uses an extended version of the
cycle accounting architecture from the first contribution for generating
speedup stacks. We use this version of speedup stacks for evaluating
the performance of applications from the PARSEC, SPLASH-2 and Ro-
dinia benchmark suites. Our second version of speedup stacks, from
contribution #5, is constructed using a software implementation. For
this second version, we extend our original speedup stacks to be able to
analyze Java applications. We use these speedup stacks for analyzing
the performance of multi-threaded Java benchmarks that come from
the DaCapo suite, running on Jikes RVM.

In contribution #3, we propose criticality stacks, and a correspond-
ing profiling tool that uses hardware support to generate those stacks.
We consider a set of benchmarks from the PARSEC, SPLASH-2 and
Rodinia suites for our study with criticality stacks. Contribution #4
presents bottle graphs, which we generate using a profiling tool imple-
mented in software. We use bottle graphs for performance analysis of
Java applications (both single- and multi-threaded applications) run-
ning on Jikes RVM.

8 Introduction

Speedup stacks, criticality stacks and bottle graphs all provide a vi-
sual representation that facilitates an intuitive analysis of the perfor-
mance of multi-threaded applications.

1.4 Other Research Activities

Besides the contributions mentioned above, we also performed re-
search on evaluating the energy efficiency of computer systems. These
results are not discussed in this dissertation, but we refer the interested
reader to the respective publication.

Evaluating Computer System Energy Efficiency

Energy efficiency is a key design concern in contemporary processor
and system design, in the embedded domain as well as in the enter-
prise domain. The focus on energy efficiency has led to a number of
power benchmarking methods recently. For example, EEMBC released
EnergyBench, and SPEC released SPECpower to quantify a system’s
energy efficiency; also academics have proposed power benchmarks,
such as JouleSort. A major limitation for each of these proposals is that
they are tied to a specific benchmark, and hence, they provide limited
insight with respect to why one system is more energy-efficient than
another.

In this contribution we propose SWEEP, Synthetic Workloads for
Energy Efficiency and Performance evaluation, a framework for gener-
ating synthetic workloads with specific behavioral characteristics. We
employ SWEEP to generate a wide range of synthetic workloads while
varying the instruction mix, ILP, memory access patterns, and I/O-
intensiveness; and we use SWEEP to evaluate the energy efficiency
of commercial computer systems across the workload space and learn
about how the energy efficiency of a computer system is tied to work-
load characteristics.

This work also presents the Energy-Delay Diagram (EDD), a novel
method for visualizing energy efficiency. The EDD clearly illustrates
the energy versus performance trade-off, and provides more intuitive
insight than the traditionally used EDP and ED2P metrics.

We refer the interested reader to the following paper that was pre-
sented at the 2011 International Conference on High-Performance and

1.5 Overview of This Dissertation 9

Embedded Architectures and Compilers (HiPEAC):

K. Du Bois, T. Schaeps, S. Polfliet, F. Ryckbosch, and L. Eeckhout.
SWEEP: Evaluating Computer System Energy Efficiency Using
Synthetic Workloads. In Proceedings of the International Confer-
ence on High Performance and Embedded Architectures and Compilers
(HiPEAC), pages 159–166, Jan. 2011

1.5 Overview of This Dissertation

This dissertation is organized as follows. In Chapter 2, we provide
background on resource sharing between threads in a multi-core pro-
cessor and discuss synchronization in multi-threaded applications. In
Chapter 3, we introduce our three new methods for analyzing the per-
formance and identifying scaling bottlenecks of multi-threaded appli-
cations. We further discuss criticality stacks, bottle graphs and speedup
stacks in Chapter 4, 5, and 6 respectively. These chapters explain how
the new methods are constructed, the experimental setup we used,
and results about performance analysis of applications. We show how
application performance can be optimized in Chapter 7. Finally we
present our conclusions and talk about future work in Chapter 8.

10 Introduction

Chapter 2

Background

In this chapter we provide a background about contemporary multi-core pro-
cessors, how threads interfere with each other in the shared hardware resources,
and discuss synchronization in multi-threaded applications.

2.1 Multi-Core Processors

Moore’s law says that the number of transistors on a single chip dou-
bles every two years [48]. As a result of this increase in transistor
density, chip manufacturers today are able to put multiple cores on a
single chip. Those designs are called multi-core processors or chip-
multiprocessors (CMPs) [50]. Examples of contemporary multi-core
processors are the Intel Core i7, AMD Opteron, IBM POWER8, etc.
These general-purpose processors employ a limited number of cores,
typically in the range of 4 to 8 cores, but given the continuous transis-
tor density improvements, it is expected that this number will increase
in the coming years, as exemplified by Intel’s Xeon Phi with 62 cores on
a single chip.

Figure 2.1 shows a high-level overview of a modern multi-core pro-
cessor, together with an off-chip memory component. In this example
the processor contains 4 cores. The cores are connected to their pri-
vate L1 caches, which are typically separate for instructions and data.
Besides a private L1, each core also has a private L2 cache in this exam-
ple. The cores are connected to a shared last-level cache, which is the
L3 cache, by making use of an interconnection network. In case a core
wants to access data that cannot be found in one of the caches, the core

12 Background

Memory Controller

DRAM

Bank 0

DRAM

Bank 1

DRAM

Bank 2

DRAM

Bank 3

DRAM

Bank 4

Core 0

L1 – I

Cache

L1 – D

Cache

L2 Cache

L3 Cache

Core 1

L1 – I

Cache

L1 – D

Cache

L2 Cache

Core 2

L1 – I

Cache

L1 – D

Cache

L2 Cache

Core 3

L1 – I

Cache

L1 – D

Cache

L2 Cache

Figure 2.1: Example of a multi-core processor along with an off-chip memory
component. The dashed line indicates the chip boundary.

sends a request to the memory controller, which fetches the data from
main memory. Main memory is normally placed off-chip and is con-
nected to the chip using a memory bus. Main memory itself exists of
several memory banks, which can handle memory accesses in parallel,
thereby enabling memory-level parallelism (MLP).

2.1.1 Resource Sharing

As illustrated in Figure 2.1, multi-core processors share resources
among the cores, such as caches, on-chip interconnection network,
memory controllers, off-chip bandwidth, memory banks, etc. Resource
sharing increases hardware utilization, adds flexibility for a processor
to adapt to varying workload demands (e.g., a thread with a large
working set can allocate a large fraction of the shared cache), and can
improve performance (e.g., fast communication between cores through
the on-chip interconnection network and shared cache).

However, resource sharing also comes with a significant drawback:
co-executing hardware threads may affect each other’s performance.

2.1 Multi-Core Processors 13

For example, a thread allocating a large fraction of the shared cache
may introduce additional interference misses for other threads [45, 64];
likewise, memory accesses by a thread may close open pages in mem-
ory, thereby increasing memory access time for other threads.

These inter-thread interferences may or may not have an effect on
per-thread performance depending on whether memory accesses can
be hidden by doing other useful work. As a result, hardware resource
sharing may affect the performance of a multi-threaded application in
unpredictable ways and may possibly lead to undesirable properties
such as an unbalanced performance across co-executing threads of a
parallel workload, thread starvation, etc. Besides that, the impact of re-
source sharing on application performance is proportional to the num-
ber of co-running threads in the application. As a result, the parallel
speedup of applications executing on multi-core processors does not
scale linearly in the number of threads, but is limited by the impact of
resource sharing on per-thread performance.

Therefore, when analyzing the scaling behavior of multi-threaded
applications, it is vital to accurately quantify this impact on the perfor-
mance of an application.

2.1.2 Sources of Thread Interference

Co-executing threads on a multi-core processor interfere with each
other in each of the shared resources, which leads to different inter-
ference effects. We will now discuss how this interference affects the
performance of threads. For now, we assume a single thread per core,
hence we use the terms ‘thread’ and ‘core’ interchangeably.

Last-level cache

Sharing the last-level cache (the L3 cache in Figure 2.1) between threads
leads to extra interference misses due to threads evicting each other’s
data. We refer to these interference misses as inter-thread misses. In
contrast, we define intra-thread misses as misses that also occur during
isolated execution, i.e., when the thread runs alone on the processor.
Inter-thread misses do not occur during isolated execution and hence,
their performance impact is potentially detrimental to per-thread per-
formance: these memory references would be serviced by the LLC in
isolated execution but turn into long-latency memory accesses during

14 Background

multi-core execution.
In case of a multi-threaded application, sharing the last-level cache

can also have a positive impact on performance. This happens when a
thread loads data into the cache that later can be used by other threads.
We define an inter-thread hit as a hit that would be a miss during isolated
execution but becomes a hit during multi-core execution.

Interconnection network

The on-chip interconnection network connects the cores to the shared
cache (and to each other). A request of one core can be delayed due to a
request by another core. Conflicts in the interconnection network thus
prolong both the LLC hit and miss latency compared to isolated execu-
tion. Prolonging the LLC hit time due to conflicts in the interconnection
network is unlikely to significantly affect per-thread performance, be-
cause the LLC hit latency (even with the additional conflict latency)
is small enough so that it is effectively hidden on superscalar processor
cores through out-of-order execution in a balanced design [25]. For LLC
misses, the additional conflict latency may have a significant effect (i.e.,
the additional penalty can not be hidden) because the processor cannot
make progress while handling the LLC miss because of its long latency.

Memory bus

As with the interconnection network, a memory request issued by a
core can hold the bus between the LLC and main memory, possibly
delaying requests by other cores. This causes memory accesses to take
longer, which may have a significant impact on performance.

Memory bank effects

While main memory typically consists of a number of memory banks
that can handle memory accesses in parallel, each bank can handle only
one access at a time. This implies that while a bank is busy processing
an access of a core, no other requests to that bank from other cores can
be serviced. This increases the memory access time for the other cores.

An additional effect occurs in case of an open-page policy. Consider
an example in which a thread accesses the same page twice and there
are no intervening memory accesses to another page in the same bank,

2.1 Multi-Core Processors 15

i.e., the page is loaded in the row buffer and both accesses are serviced
from the row buffer. Now, another thread may interfere and may initi-
ate a memory access to that same bank (but a different page) between
the two memory requests by the first thread. This memory access will
cause the row buffer to be written back to the memory bank, and a new
page to be loaded in the row buffer. The second memory access by the
first thread will now see a row miss (instead of a row hit) and will need
to load the page again into the row buffer. In other words, this second
memory access will see a longer latency during multi-core execution
than it would see during isolated execution.

Prefetcher

A hardware prefetcher tries to fetch data from a higher memory level
into a lower memory level before a core sends a request for accessing
the data. This way, hardware tries to anticipate future accesses to both
instructions and data, and thereby improve the hit rate of a memory
level. Typically there is a prefetcher between the last-level cache and
main memory.

Prefetch requests in a memory system usually have a lower priority
than read or write requests. Therefore, interference in this component
happens when prefetch requests that would be timely in isolated ex-
ecution are delayed during multi-core execution because of requests
from the other cores, and as a result now become a miss for the core.
Secondly, despite the lower priority of prefetch requests, they may still
congest the memory subsystem because they occupy the memory bus,
pollute caches, etc.

2.1.3 Quantifying Thread Interference

In this section we show that interference between threads in shared
resources has a significant impact on performance. We do this by run-
ning experiments using the gem5 simulator [6], and simulating proces-
sors with 1, 2, 4 and 8 cores running multiple single-threaded SPEC
CPU2006 workloads (more information about our simulated configu-
rations can be found in Table 6.2 on page 107). We then quantify the
impact of this interference on per-thread performance, and we identify
the contribution of different sources of interference.

We define interference as the relative increase in execution time be-

16 Background

astar

bwaves

bzip2

cactusADM

gcc

gemsfdtd

gobmk

h264ref

hmmer

lbm

libquantum

mcf

omnetpp

perlbench

povray

sjeng

soplex

xalancbmk

zeusmp

0%20
%

40
%

60
%

80
%

10
0%

12
0%

14
0%

2 cores
4 cores
8 cores

2 cores
4 cores
8 cores

2 cores
4 cores
8 cores

2 cores
4 cores
8 cores

2 cores
4 cores
8 cores

2 cores
4 cores
8 cores

2 cores
4 cores
8 cores

2 cores
4 cores
8 cores

2 cores
4 cores
8 cores

2 cores
4 cores
8 cores

2 cores
4 cores
8 cores

2 cores
4 cores
8 cores

2 cores
4 cores
8 cores

2 cores
4 cores
8 cores

2 cores
4 cores
8 cores

2 cores
4 cores
8 cores

2 cores
4 cores
8 cores

2 cores
4 cores
8 cores

2 cores
4 cores
8 cores

Interference

m
em

or
y

co
nt

en
tio

n
ca

ch
e

co
nt

en
tio

n

19
2%

Figure 2.2: Impact of inter-thread interference on per-thread performance for
2, 4 and 8 cores, breaking up interference in cache versus memory contention
(average interference is reported across a set of job mixes per benchmark and
assuming hardware prefetching).

2.1 Multi-Core Processors 17

0%

50%

100%

150%

200%

250%

300%

350%

400%
a
s
ta

r

b
w

a
v
e

s

b
z
ip

2

c
a
c
tu

s
A

D
M

g
c
c

g
e
m

s
fd

td

g
o

b
m

k

h
2
6

4
re

f

h
m

m
e
r

lb
m

lib
q
u

a
n
tu

m

m
c
f

o
m

n
e
tp

p

p
e
rl

b
e
n

c
h

p
o

v
ra

y

s
je

n
g

s
o
p

le
x

x
a
la

n
c
b
m

k

z
e
u

s
m

p

M
a
x
 i
n

te
rf

e
re

n
c
e

No prefetcher

With prefetcher

Figure 2.3: The impact of prefetching on interference on an eight-core system
(maximum interference is reported across 10 job mixes per benchmark).

tween multi-core and isolated execution:

Interference =
Tmulti-core − Tisolated

Tisolated
. (2.1)

Interference thus quantifies the increase in execution time on a multi-
core processor due to interference relative to isolated single-core execu-
tion. Through detailed simulation we find that interference is signifi-
cant, and that it increases with the number of cores: 9.3% on average for
2 cores, 19.5% for 4 cores, and 55.4% for 8 cores. The reason why inter-
ference increases with core count is that an increasing number of cores
put increasingly more pressure on the shared resources, and hence, per-
thread performance is affected more significantly.

To understand the relative contributions of the different sources
of interference, Figure 2.2 makes a distinction between the interfer-
ence due to inter-thread misses in the shared cache versus resource
and bandwidth sharing in the memory subsystem (memory bus, mem-
ory banks and open row policy). Some benchmarks seem to suffer
more from cache sharing, whereas other benchmarks suffer more from
sharing the memory subsystem. These interference numbers illustrate
that the shared resources have substantial impact on per-thread perfor-
mance, and by consequence, estimating interference is non-trivial (i.e.,
the null predictor would be highly inaccurate).

Figure 2.3 quantifies the impact of hardware prefetching on inter-

18 Background

ference. We model a stride prefetching scheme that prefetches the next
four cache blocks if a stride is detected. Now the maximum interference
level observed increases from 2.3× without prefetching to up to 3.8×
with prefetching. The reason is that hardware prefetching puts even
more pressure on the memory system’s shared resources, which in its
turn affects per-thread progress. In particular, a core that issues many
prefetch requests may congest the memory subsystem and thereby de-
grade other cores’ performance.

2.2 Multi-Threaded Applications

In order to take advantage of multi-core processors, software has to
provide enough parallel work to make use of the available resources
in order to continue the trend of ever-improving performance. Multi-
threaded programs that try to use these resources, inherently introduce
synchronization to ensure correct execution, for example because they
share data among the threads.

Figure 2.4 shows three common examples of synchronization. In
Figure 2.4(a) we show a barrier. A barrier is a synchronization prim-
itive that imposes ordering and denotes a point in the execution be-
yond which a thread is only allowed to go after all other threads have
reached that point. The result of a barrier is that the execution of a
thread is halted until all threads have reached the barrier. A barrier can
be shared across all threads, or between a subset of threads.

Figure 2.4(b) illustrates the use of critical sections. Critical sections
are typically implemented using locks to guarantee atomicity when
modifying shared data. Critical sections do not impose a particular
ordering of execution, but they prevent threads from reading and mod-
ifying the same data concurrently. An alternative to using locks for
guaranteeing atomicity in critical sections is transactional memory.

Figure 2.4(c) shows the use of producer-consumer synchronization.
In this case threads can only proceed with their calculation after the
needed data is produced by other threads. (In the example T2 and T3
have to wait until T0 and T1 finished their calculation.)

When threads are waiting due to synchronization, they can either
be in a spinning or yielding state. Spinning means a thread is contin-
uously checking the state of a synchronization variable inside a loop,
which is very compute-intensive. Therefore, there is a second state,

2.3 Summary 19

(a) Barrier (b) Critical sections (c) Producer-consumer

Time

0

2

4

6

8

10

12

T0 T1 T2 T3

Barrier

Running

Waiting

0

2

4

6

8

10

12

T0 T1 T2 T3

Running

Waiting

Lock
Time Time

0

2

4

6

8

10

12

T0 T1 T2 T3

Running

Waiting

Figure 2.4: Examples of synchronization between threads of a multi-threaded
application.

called yielding in this work, which means that the operating system
schedules out the thread. In this state the thread does no longer oc-
cupy the core. However, this approach has the disadvantage of having
a larger performance penalty compared to spinning (because the oper-
ating system has to schedule the threads in and out).

While synchronization is necessary, it also results in threads wait-
ing for each other, limiting performance and scalability, and wasting
energy. This means that threads in a multi-threaded application have
an impact on each other’s performance, just like they do due to resource
sharing in the underlying hardware of a multi-core processor.

2.3 Summary

In this chapter, we identified two reasons why threads have an impact
on each other’s execution, and consequently limit parallel speedup of a
multi-threaded application. First, they share resources in the hardware
of a multi-core processor. This leads to interference among co-executing
threads because of contention effects in the shared resources, such as
caches, off-chip bandwidth, memory banks, etc. We quantified that this
interference is significant and increases with the number of cores.

Secondly, while synchronization is necessary for achieving correct
execution of a multi-threaded application, it also causes threads to wait

20 Background

for each other. This waiting of threads results in certain threads making
faster progress than others, leading to an imbalance between the dif-
ferent threads, and some threads that are more critical to performance
than others.

We conclude this chapter by saying that apart from the level of the
hardware, threads also affect each other’s performance on the level of
the application. This implies that if we want to analyze the perfor-
mance and scalability of a multi-threaded application, we have to take
into account both levels of interference (both in hardware and in soft-
ware).

Chapter 3

Performance Analysis
Methods

In this chapter we introduce three new performance analysis methods for eval-
uating the performance and scalability of multi-threaded applications.

3.1 Introduction

Analyzing the performance and scalability of a multi-threaded appli-
cation is not trivial. As we discussed in the previous chapter, threads
interact with each other due to synchronization and resource sharing
in the hardware. These complicated interactions make it difficult to an-
alyze performance. However, one of the key needs to efficient parallel
programming is to have the appropriate tools to analyze parallel per-
formance. In particular, a software developer needs analysis tools to
identify the performance scaling bottlenecks, not only on current hard-
ware but also on future hardware with many more cores than are avail-
able today; likewise, computer architects need analysis tools to under-
stand the behavioral characteristics of workloads to design and opti-
mize future hardware.

Therefore, we propose three new methods for analyzing parallel
program performance in this chapter. The first method, called criticality
stacks, is useful for understanding parallel (im)balance between threads
of a multi-threaded application. The second method, bottle graphs, visu-
alizes parallel performance bottlenecks by quantifying both execution
time and parallelism for each thread. Finally, we present speedup stacks,

22 Performance Analysis Methods

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Thread 0 Other
threads

S
p
e

e
d
u

p
Figure 3.1: BFS’s criticality stack and total program speedups from accelerat-
ing the identified critical and non-critical threads.

which is a tool for providing insights into an application’s scaling be-
havior on multi-core hardware.

In the remainder of this chapter, we discuss those three new meth-
ods, explain how they are constructed, and show examples. Criticality
stacks are discussed in Section 3.2, bottle graphs in Section 3.3, and
speedup stacks in Section 3.4 and 3.5. Finally, we discuss related work
in Section 3.6.

3.2 Criticality Stacks

Our first method for multi-threaded program analysis is the criticality
stack. Criticality stacks show how critical each thread is to the perfor-
mance of a multi-threaded application. For building criticality stacks
we come up with a novel metric to measure thread criticality in parallel
programs using synchronization behavior. This new criticality metric
measures how much time a thread is performing useful work and how
many threads are concurrently waiting. The metric gathers information
for program execution intervals delineated by synchronization behav-
ior. A thread has a larger criticality component when more threads wait
concurrently on it, and thus it is more determinative of program run-
ning time.

Combining different threads’ components into a criticality stack al-
lows for easy comparison of parallel (im)balance. The criticality stack
is a stacked bar graph that divides the program’s total execution time

3.2 Criticality Stacks 23

(100%) into each thread’s criticality component. If all threads have ap-
proximately the same criticality, then no thread is critical, and no per-
formance gain is to be expected by speeding up a single thread. If,
however, certain threads have larger criticality than other threads, they
reveal themselves as parallel bottlenecks.

We later validate criticality stacks by experimentally showing that
speeding up the most critical thread (if one exists) results in significant
performance speedups; accelerating identified non-critical threads on
the other hand does not affect performance. Figure 3.1 illustrates this
for the BFS benchmark: the criticality stack at the left shows that thread
0 is much more critical than all other threads. The graph at the right
shows the program speedup when each of the threads is accelerated
individually, running at twice the clock frequency. We present results
for thread 0 and the maximum of all other threads (as they all result in
no program speedup).

3.2.1 Constructing Criticality Stacks

A thread’s criticality depends on both if it is doing useful work1, and if
other threads are waiting for it. We say a thread is critical if its progress
at a certain point determines the progress of the whole program. One
example is when all threads but one have reached a barrier. Because
all other threads are waiting, the progress of the one thread that is still
executing equals the progress of the whole program, and therefore this
thread is critical.

In general, identifying the most critical thread in parallel programs
is non-trivial. Figure 3.2 shows an example program with 4 threads that
has both barrier (horizontal line across all threads) and critical section
(darker vertical bar) synchronization. Thread 3 has the largest running
time (t0 + t1 + t2 + t3 + t4 + t5 + t6=17) and therefore performs most
useful work; thread 0 on the other hand waits the longest for acquiring
the critical section and keeps all other threads waiting at the barrier. It
is not obvious which thread is most critical to overall performance.

To comprehensively compute thread criticality, we propose our crit-
icality metric that takes into account both running time and number of
waiting threads. Execution time is divided into a number of intervals.

1When a thread is spinning or busy waiting, we assume that it is not performing
useful work. In the remainder of this work, we will denote a thread that is performing
useful work as ‘running’, ‘active’, or ‘executing’, excluding spinning.

24 Performance Analysis Methods

critical

section

barrier

0

5

10

15

20

t0

t1

t2

t3

t4

t5

t6

t7

t0 /4 t0 /4 t0 /4 t0 /4

t1 /3 t1 /3 t1 /3

t2 /2 t2 /2

t3 /3 t3 /3 t3 /3

t4 /2 t4 /2

t5 /3 t5 /3 t5 /3

t6 /4 t6 /4 t6 /4t6 /4

t7

+ + + +
C0=6.5 C1=5.0 C2=5.0 C3=5.5

time

thread 0 thread 1 thread 2 thread 3

Figure 3.2: Criticality calculation example.

A new interval begins whenever any thread changes state, from active
to inactive or vice versa, as a result of synchronization behavior. Each
active thread’s criticality number gets a portion of interval time t. In
other words, time t is divided by the number of threads doing useful
work, and this is added to each thread’s criticality sum (see Figure 3.2).
This metric essentially weights time, adding more to active threads for
which many threads wait, and less to active threads when no threads

3.2 Criticality Stacks 25

are waiting.
We formalize the criticality metric in the following way. Suppose

that for a time interval t, r out of n threads are running. For the r
threads that are running we add t

r to their respective criticality counter.
For the other n − r threads, we add nothing. In each interval, the set
of running threads is fixed. Assume there are N such intervals over the
whole program (or a phase of the program), ti is the duration of interval
i, ri is the number of running threads in that interval and Ri is the set
containing the thread IDs of the running threads (therefore |Ri| = ri).
Then the total criticality of thread j equals

Cj =

N−1∑
i=0

{
ti
ri
, if j ∈ Ri

0, if j /∈ Ri

(3.1)

Figure 3.2 shows an example of how the criticality metric is calcu-
lated. Thread 0 has a total criticality of t0/4 + t6/4 + t7=6.5. Threads
1, 2, and 3 all have lower criticality sums at 5, 5, and 5.5, respectively.
Therefore, thread 0 is determined to be the most critical thread in this
example. This might seem counter-intuitive because it has the smallest
total running time (t0+t6+t7=11) compared to all other threads (thread
1 = 16, thread 2 = 16, and thread 3 = 17). Accelerating thread 3 would
reduce the execution time of the critical section, and as a result, threads
0, 1 and 2 would enter their critical sections sooner, however, thread 0
would still reach the barrier much later than the other threads, result-
ing in only a small speedup. Speeding up thread 0 on the other hand
results in a much larger speedup, because it is guaranteed to reduce
the barrier waiting time of all other threads, so thread 0 is indeed more
critical as detected by the criticality metric. By taking into account the
number of active threads, our metric clearly illustrates differences in
criticality between threads.

An important characteristic of this metric is that the sum of all
threads’ criticalities equals the total execution time. Formally, if T is
the total execution time of the parallel program (or a phase), then

n−1∑
j=0

Cj = T. (3.2)

This is intuitive, as for every interval r times ti
r is accounted, which

gives a total of ti over all threads, and
∑N−1

i=0 ti = T . This property
allows us to divide each criticality sum by T to obtain each thread’s

26 Performance Analysis Methods

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

C
h
o
le

s
k
y

F
F

T

F
M

M

L
u
 c

o
n
t.

L
u
 n

o
n
-c

o
n
t.

O
c
e
a

n
 c

o
n
t.

O
c
e
a

n
 n

o
n
-c

o
n
t.

C
a
n
n

e
a
l

F
a
c
e
s
im

F
lu

id
a
n
im

a
te

S
tr

e
a

m
c
lu

s
te

r

B
F

S

S
ra

d

L
u
d

_
o
m

p

N
e
e
d

le

Thread 0 Thread 1 Thread 2 Thread 3

Thread 4 Thread 5 Thread 6 Thread 7

Figure 3.3: Criticality stacks for all benchmarks with 8 threads.

normalized criticality component. We represent these components in a
stacked bar, yielding the criticality stack, which breaks up a program’s
total execution time into each thread’s criticality percentage.

3.2.2 Example Criticality Stacks

Figure 3.3 shows the criticality stacks for a set of benchmarks when
executed with 8 threads on an eight-core processor, with 100% of the
execution time broken up into each thread’s criticality percentage. (See
Section 4.2 for an explanation about how we measure criticality stacks,
and Section 4.3 for our experimental setup.) For some benchmarks, all
criticality components are approximately equal-sized (Cholesky, FFT,
Lu cont., Ocean cont., Ocean non-cont., Canneal, and Srad). There is
no critical thread in these cases, meaning there is almost perfect parallel
balance and thus speeding up any single thread will yield no perfor-
mance gain. For the other benchmarks, one thread has a significantly
larger fraction of criticality compared to the others, meaning that those
benchmarks suffer from parallel imbalance: thread 2 for FMM, Lu non-

3.3 Bottle Graphs 27

cont., and Streamcluster; thread 0 for Facesim, BFS, Lud-omp, and
Needle; and thread 5 for Fluidanimate. This is the most critical thread,
and it is expected that speeding it up will result in a considerable per-
formance gain, while speeding up other threads will have no signifi-
cant performance impact. We will validate that this is indeed the case
in Section 4.4.

3.3 Bottle Graphs

Bottle graphs extend upon criticality stacks by showing parallelism
next to thread criticality, and its impact on performance. Just like crit-
icality stacks, bottle graphs are stacked bar graphs. The height along
the y-axis of a bottle graph is the total application execution time, see
Figure 3.4 for an example. The stacked bar represents each thread as a
box: the height is the thread’s share of the total program execution time
(and corresponds to thread criticality as described in the previous sec-
tion); the width is the number of parallel threads that this thread runs
concurrently with, including itself; and the box area is the thread’s total
running time. The center of the x-axis is zero, and thus parallelism is
symmetric, reported on both the left and right sides of the zero-axis. We
stack threads’ boxes, sorting threads by their parallelism, with widest
boxes (threads with higher parallelism) shown at the bottom and nar-
rower boxes at the top of the total application bar graph — yielding a
bottle-shaped graph, hence the name bottle graph.

Bottle graphs provide a new way to analyze multi-threaded appli-
cation performance along the axes of execution time and parallelism.
Bottle graphs visualize how scalable real applications are, and which
threads have a larger total running time (total box area), which threads
have limited parallelism (narrow boxes), and which threads contribute
significantly to execution time (tall boxes). Threads that represent scal-
ability bottlenecks show up as narrow and tall boxes around the ‘neck’
of the bottle graph. Bottle graphs thus quickly point software writers
and optimizers to the threads with the greatest optimization potential.

The example bottle graph in Figure 3.4 represents a multi-threaded
Java program, namely the DaCapo lusearch benchmark running with
Jikes RVM on an 8-core Intel processor. This program takes 3.28 sec-
onds to execute. There are 7 threads with visible bottle graph boxes,
each having a different execution time share and different parallelism.
The bottom four boxes represent application threads with a parallelism

28 Performance Analysis Methods

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

5 4 3 2 1 0 1 2 3 4 5

R
u
n
ti
m

e
 (

in
 s

e
c
o
n
d
s
)

Parallelism

GarbageCollector
MainThread

ApplicationThread0

ApplicationThread1
ApplicationThread2
ApplicationThread3

Figure 3.4: Example of a bottle graph: The lusearch DaCapo benchmark with
4 application threads, a main thread that performs initialization, and garbage
collection threads running on Jikes JVM.

of approximately 4, and there is a main thread that performs bench-
mark initialization that has limited parallelism. There are two garbage
collection (GC) threads, but the one with limited execution time share
is a GC initialization thread, while the other GC thread that performs
stop-the-world collection has a parallelism of only 1, because it runs
alone.

Bottle graphs are an insightful way of visualizing multi-threaded
program performance. Looking at the width of the boxes shows how
well a program is parallelized. Threads that have low parallelism and
have a large share in the total execution time appear as a large ‘neck’ on
the bottle, which shows that they are a performance bottleneck. Bottle
graphs thus naturally point to the most fruitful directions for effectively
optimizing a multi-threaded program.

3.3.1 Constructing Bottle Graphs

For constructing bottle graphs we need to quantify the two dimensions
of each thread’s box in the graph, the height and the width, represent-
ing the thread’s share in the total execution time and parallelism, re-
spectively.

3.3 Bottle Graphs 29

Quantifying a Thread’s Execution Time Share

Attributing shares of the total execution time to each of the threads of
a multi-threaded program is not trivial. One cannot simply take the
individual execution times of each of the threads, because their sum is
larger than the program’s execution time due to the fact that threads
run in parallel. Individual execution times also do not account for
variations in parallelism: threads that have low parallelism contribute
more to the total execution time than threads with high parallelism.
To account for this effect, we define the share each thread has in the to-
tal execution time (or the height of the boxes) as its individual execution
time divided by the number of threads that are running concurrently
(including itself). So, if n threads run concurrently, they each get ac-
counted one nth of their execution time. This is the same definition as
the criticality metric for criticality stacks (see Section 3.2).

For completeness we repeat the definition of the criticality metric.
Assume ti is the duration of interval i, ri is the number of running
threads in that interval, andRi is the set containing the thread IDs of the
running threads (therefore |Ri| = ri). Then the total share (or criticality
value) of thread j equals

Cj =
∑
∀i:j∈Ri

ti
ri
. (3.3)

The execution time share of a thread is the height of its box in the
bottle graph. Therefore, the sum of all box heights, or the height of the
total graph, is the total program execution time. Unlike we did with
criticality stacks, we do not normalize this number to 100% for bottle
graphs.

Quantifying a Thread’s Parallelism

The other dimension of the graph – the width of the boxes – represents
the amount of parallelism of that thread, or the number of threads that are
co-running with that thread, including itself. A thread that runs alone
has a parallelism of one, while threads that run concurrently with n− 1
other threads have a parallelism of n. Due to the fact that the amount
of parallelism changes over time, this number can also be a rational
number.

The calculation of the execution time share already incorporates the
amount of parallelism by dividing the execution time by the number

30 Performance Analysis Methods

of concurrent threads. We therefore define parallelism as the time a
thread is active (its individual running time) divided by its execution
time share. Formally, the parallelism of thread j is calculated as

Pj =

∑
∀i:j∈Ri

ti

Cj
=

∑
∀i:j∈Ri

ti∑
∀i:j∈Ri

ti
ri

, (3.4)

where
∑
∀i:j∈Ri

ti is the sum of all interval times where thread j is ac-
tive, which is its individual running time.

Equation 3.4 in fact calculates the weighted harmonic mean of the
number of concurrent threads, i.e., the harmonic mean of ri weighted
by the interval times ti. It is therefore truly the average number of con-
current threads for that specific thread. We choose harmonic mean be-
cause metrics that are inversely proportional to time (e.g., IPC or paral-
lelism) should be averaged using the harmonic mean while those pro-
portional to time (e.g., CPI) should be averaged using the arithmetic
mean [35].

Another interesting result from this definition of parallelism is that
the execution time share multiplied by the parallelism –Cj×Pj – equals
the individual running time of the thread, or in bottle graph terms: the
height multiplied by the width, i.e., the area of the box, equals the running
time of a thread. If we consider the running time of a thread as a measure
of the amount of work a thread performs, then we can interpret the area of
a box in the bottle graph as that thread’s work. Due to parallelism (the
width of the box), a thread’s impact on execution time (the height of the
box) is reduced.

This bottle graph design enhances their intuitiveness – a lot of in-
formation can be seen in one visualization – and quickly facilitates tar-
geted optimization. Reducing the amount of work (area) of a thread
that has a narrow box will result in a higher total program execution
time (height) reduction compared to reducing the work for a wide box.
The impact of a thread on program execution time can also be reduced
by increasing its parallelism, which increases the width of the box and
therefore decreases its height, if the area (amount of work) remains the
same.

3.3.2 Example Bottle Graphs

In this work we evaluate the performance of Java applications with bot-
tle graphs running on top of the Jikes RVM. The reason for choosing

3.3 Bottle Graphs 31

(a) antlr (b) bloat

 0

 0.5

 1

 1.5

 2

5 4 3 2 1 0 1 2 3 4 5

R
u
n
ti
m

e
 (

in
 s

e
c
o
n
d
s
)

Parallelism

MainThread
GarbageCollector

Organizer

 0

 1

 2

 3

 4

 5

5 4 3 2 1 0 1 2 3 4 5
R

u
n
ti
m

e
 (

in
 s

e
c
o
n
d
s
)

Parallelism

MainThread
GarbageCollector

Organizer

(c) eclipse (d) fop

 0

 5

 10

 15

 20

 25

5 4 3 2 1 0 1 2 3 4 5

R
u
n
ti
m

e
 (

in
 s

e
c
o
n
d
s
)

Parallelism

JavaIndexing
MainThread

GarbageCollector

 0

 0.5

 1

 1.5

 2

5 4 3 2 1 0 1 2 3 4 5

R
u
n
ti
m

e
 (

in
 s

e
c
o
n
d
s
)

Parallelism

MainThread
GarbageCollector

Organizer

(e) jython (f) luindex

 0

 1

 2

 3

 4

 5

5 4 3 2 1 0 1 2 3 4 5

R
u
n
ti
m

e
 (

in
 s

e
c
o
n
d
s
)

Parallelism

MainThread
GarbageCollector

Organizer

 0

 0.5

 1

 1.5

 2

5 4 3 2 1 0 1 2 3 4 5

R
u
n
ti
m

e
 (

in
 s

e
c
o
n
d
s
)

Parallelism

LuceneMergeThread
MainThread

GarbageCollector

Figure 3.5: Bottle graphs for all single-threaded benchmarks with 2 GC
threads.

32 Performance Analysis Methods

(a) avrora (b) lusearch

 0

 1

 2

 3

 4

 5

 6

 7

 8

5 4 3 2 1 0 1 2 3 4 5

R
u
n
ti
m

e
 (

in
 s

e
c
o
n
d
s
)

Parallelism

GarbageCollector
node-5
node-4
node-2

node-3
node-1
node-0

Organizer

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

5 4 3 2 1 0 1 2 3 4 5

R
u
n
ti
m

e
 (

in
 s

e
c
o
n
d
s
)

Parallelism

MainThread
GarbageCollector

Query3

Query2
Query0
Query1

(c) pmd (d) pseudoJBB

 0

 0.5

 1

 1.5

 2

5 4 3 2 1 0 1 2 3 4 5

R
u
n
ti
m

e
 (

in
 s

e
c
o
n
d
s
)

Parallelism

MainThread
GarbageCollector

PmdThread1
PmdThread2

PmdThread4
PmdThread3

Organizer

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

5 4 3 2 1 0 1 2 3 4 5

R
u
n
ti
m

e
 (

in
 s

e
c
o
n
d
s
)

Parallelism

MainThread
GarbageCollector

Thread-1

Thread-2
Thread-3
Thread-4

(e) sunflow (f) xalan

 0

 1

 2

 3

 4

 5

 6

5 4 3 2 1 0 1 2 3 4 5

R
u
n
ti
m

e
 (

in
 s

e
c
o
n
d
s
)

Parallelism

GarbageCollector
Thread-1
Thread-2

Thread-3
Thread-4

 0

 0.5

 1

 1.5

 2

 2.5

 3

5 4 3 2 1 0 1 2 3 4 5

R
u
n
ti
m

e
 (

in
 s

e
c
o
n
d
s
)

Parallelism

GarbageCollector
Thread-1
Thread-2

Thread-3
Thread-4

Organizer

Figure 3.6: Bottle graphs for all multi-threaded benchmarks with 2 GC threads
and 4 application threads.

3.3 Bottle Graphs 33

this type of benchmarks is that Java applications are inherently paral-
lel, because, apart from application threads, they also introduce service
threads from the JVM. Those two types of threads behave differently
and can interact with other, which makes this type of applications in-
teresting for analysis.

Figures 3.5 and 3.6 show bottle graphs for single-threaded and
multi-threaded Java benchmarks, respectively (only the threads that
have a visible component in the bottle graph are shown). We discuss
our profiling tool for generating bottle graphs later in Section 5.2 and
the experimental setup in Section 5.3. All graphs have two garbage
collector threads, and for the multi-threaded applications, we use
four application threads. In general, turquoise boxes represent Jikes’
MainThread which calls the application’s main method. GC thread
boxes are always presented in brown (including the GC controller
thread, which explains the third GC box that appears in some graphs),
while the dynamic compiler (called Organizer) is always presented in
dark green. Application thread colors vary per graph. We found that
all other JVM threads have negligible impact on execution time, and
thus are not visible in the bottle graphs.

These graphs show the intuitiveness and insightfulness of bottle
graphs. Single-threaded benchmarks can be easily identified as hav-
ing a single large component with a parallelism of one, as can be seen
from Figure 3.5. The graph of eclipse clearly shows that it behaves as a
single-threaded application, as the JavaIndexing thread dominates per-
formance, although it spawns multiple threads. Apart from the appli-
cation and GC threads, antlr also has a visible Organizer thread, which
is the only other JVM thread that was visible in all of our graphs. This
thread has a parallelism of two, meaning that the JVM compiler always
runs with one other thread, the MainThread in this case. Because it has
a small running time, it does not have much impact on the parallelism
of the main thread.

When we look at the multi-threaded benchmarks in Figure 3.6, we
see that for lusearch, pseudoJBB, sunflow and xalan, the application
threads have a parallelism of four, meaning that these benchmarks scale
well to four threads. PseudoJBB has a rather large sequential compo-
nent (in the MainThread), compared to the others. PseudoJBB does
more initialization before it spawns the application threads, one per
warehouse, to perform the work. Avrora is different in that it spawns
six threads instead of four. This benchmark simulates a network of mi-

34 Performance Analysis Methods

Figure 3.7: Speedup as a function of the number of cores for blackscholes,
facesim (both PARSEC) and cholesky (SPLASH-2).

crocontrollers, and every microcontroller is simulated by one thread.
Therefore, the number of threads spawned by avrora depends on the
input, and the default input has six microcontrollers.

The bottle graph reveals that the parallelism of avrora’s application
threads is limited to 2.4, although there are six threads and 16 available
hardware contexts. Avrora uses fine-grained synchronization to accu-
rately model the communication between the microcontrollers, which
reduces the exploited parallelism. This problem could potentially be
solved by simulating close-by microcontrollers in one thread, instead
of one thread per microcontroller, which will reduce the synchroniza-
tion between the threads. Pmd is another interesting case: three of the
four threads have a parallelism of more than three, but one thread has
much lower parallelism and a much larger share of the execution time
(PmdThread1). Pmd has an imbalance problem between its application
threads.

3.4 Speedup Stacks

While criticality stacks and bottle graphs are great tools for analyzing
the performance of individual threads of a multi-threaded program,
both tools do not reveal how the application itself scales. A common
way for understanding scaling behavior of an application is by looking
at speedup curves, which report speedup as a function of the number
of cores, as exemplified in Figure 3.7. Although a speedup curve gives

3.4 Speedup Stacks 35

a high-level view on application scaling behavior, it does not provide
any insight with respect to why an application does or does not scale.
There are many possible causes for poor scaling behavior, such as syn-
chronization, as well as interference in both shared on-chip resources
(e.g., last-level cache) and off-chip resources (e.g., main memory). Un-
fortunately, a speedup curve provides no clue whatsoever why an ap-
plication exhibits poor scaling behavior.

Therefore, we propose our third tool, speedup stacks, which is a
novel representation that provides insight into an application’s scaling
behavior on multi-core hardware. The height of the speedup stack
is defined as N , with N the number of cores or threads. The differ-
ent components in a speedup stack define the actual speedup plus a
number of performance delimiters: last-level cache (LLC) and memory
interference components represent both positive and negative interfer-
ence in the LLC and main memory; the spinning component denotes
time spent spinning on lock and barrier variables; the yield component
denotes performance deficiency due to yielding on barriers and highly
contended lock variables; additional components are due to cache
coherence, work imbalance and parallelization overhead. Figure 3.8
shows an example of a speedup stack. The intuition is that the scaling
delimiters, such as negative LLC and memory interference, spinning
and yielding, and their relative contributions, are immediately clear
from the speedup stack. Optimizing the largest scaling delimiters is
likely to yield the largest speedup, hence, a speedup stack is an intu-
itive and useful tool for both software and hardware optimizations.

3.4.1 Constructing Speedup Stacks

For explaining the key concept of a speedup stack, we refer to Fig-
ure 3.9. Because we want to compute a speedup stack from a single
multi-threaded execution, we have to estimate many components. To
simplify the discussion we focus on the parallelizable part of a pro-
gram. Amdahl’s law already explains the impact of the sequential part
on parallel performance, hence, we do not consider it further in the re-
mainder of this section. If of interest, including the sequential part in
the speedup stack can easily be done (see Section 3.5.1).

We define Ts as the execution time of (the parallelizable part of) a
program under single-threaded execution. The execution time of the
same program during multi-threaded execution will (most likely) be

36 Performance Analysis Methods

N

0

imbalance

spinning

yielding

parallelization overhead

net negative interference

positive interference

actual speedupnegative interference

base speedup

sp
ee

du
p

cache coherency

max theoretical speedup

Figure 3.8: Illustrative speedup stack.

shorter, say Tp. We now break up the execution time of a thread during
multi-threaded execution in various cycle components; note that the to-
tal execution time is identical for all threads under this break-up. The
idealized multi-threaded execution time, assuming perfect paralleliza-
tion, equals Ts/N with N the number of threads or cores. Note we
use the terms ‘thread’ and ‘core’ interchangeably as we assume chip-
multiprocessors, however, the concept of a speedup stack can also be
applied to shared-memory multiprocessors (SMP) as well as simulta-
neous multi-threading (SMT) and other forms of multi-threading.

Obviously, the idealized multi-threaded execution time Ts/N is not
achieved in practice, hence multi-threaded execution time is typically
longer, for a number of reasons. Parallelizing an application incurs
overhead in the form of additional instructions being executed to com-
municate data between threads, recompute data, etc. This is referred
to as parallelization overhead in the speedup stack. Other overhead
factors include spinning, yielding and imbalance (threads waiting for
other threads to finish their execution). Finally, there are interference
effects in the memory hierarchy, both positive and negative in both the
LLC and memory subsystem, as well as performance penalties due to
cache coherence. Positive interference obviously offsets negative in-
terference. In a rare case, positive interference could lead to superlin-
ear speedups in case negative interference as well as the other over-
head factors are small. Interference in a chip-multiprocessor is limited

3.4 Speedup Stacks 37

single-threaded execution time Ts

idealized execution
time Ts/N

(a) Single-threaded execution

(b) Multi-threaded execution

positive interference

parallelization overhead negative interference
spinning

yielding
imbalance

per-thread execution time Tp

per-thread execution time breakup:

cache coherency

Figure 3.9: Breaking up per-thread performance for computing speedup
stacks.

to parts of the memory hierarchy; multi-threading architectures (e.g.,
SMT) also incur interference in the processor core, and hence an ad-
ditional core interference component would need to be considered for
these architectures.

Having broken up multi-threaded execution time into different cy-
cle components for each thread, we revert to speedup, which is defined
as single-threaded execution time divided by multi-threaded execution
time:

S =
Ts
Tp
. (3.5)

The way we build up a speedup stack is by profiling a multi-threaded
execution, computing the aforementioned cycle components for each
thread, and estimating single-threaded execution time from them. The
way we estimate single-threaded execution time is essentially the re-
verse process of what we just explained considering Figure 3.9. We es-
timate the various cycle components during multi-threaded execution,
and we subtract these cycle components from the measured execution
time. This yields the fraction single-threaded execution time T̂i for each
thread. Summing these fractions T̂i then provides an estimate for the

38 Performance Analysis Methods

total single-threaded execution time T̂s:

T̂s =
N∑
i

T̂i =
N∑
i

Tp −∑
j

Oi,j + Pi

 , (3.6)

withOi,j overhead component j (negative interference, spinning, yield-
ing, imbalance, cache coherence, parallelization overhead) for thread i,
and Pi positive interference for thread i.

Given the estimated single-threaded execution time, we can now
estimate the achieved speedup Ŝ:

Ŝ =
T̂s
Tp

=

∑N
i T̂i
Tp

=

∑N
i

(
Tp −

∑
j Oi,j + Pi

)
Tp

. (3.7)

We now reformulate the above formula to:

Ŝ = N −
N∑
i

∑
j Oi,j

Tp
+

∑N
i Pi

Tp
. (3.8)

This formula immediately leads to the speedup stack by showing the
different terms in the above formula in a stacked bar. The height of the
bar equals the maximum achievable speedup, namely N . The various
terms denote the aggregate overhead components across all threads,
along with the aggregate positive interference component.

In summary, the speedup stack consists of the base speedup plus a
number of components, see also Figure 3.8. Base speedup is defined as

Ŝbase = N −
N∑
i

∑
j Oi,j

Tp
, (3.9)

and denotes the achieved speedup not taking into account positive in-
terference. The actual speedup then is the base speedup plus the pos-
itive interference component. The other components highlight over-
head components due to negative interference, cache coherence, par-
allelization overhead, spinning, yielding and imbalance. Note that the
net negative interference is computed as the negative interference com-
ponent minus the positive interference component.

An intuitive interpretation of a speedup stack is that it shows the
reasons for sublinear scaling and hints towards the expected perfor-
mance benefit from reducing a specific scaling bottleneck, i.e., the

3.4 Speedup Stacks 39

speedup gain if this component is reduced to zero. This can guide pro-
grammers and architects to tackle those effects that have the largest im-
pact on multi-threaded multi-core performance. Also, because speedup
stacks already incorporate positive interference, they can be easily ex-
tended to show superlinear scaling of an application.

3.4.2 Scaling Delimiters

In this section, we describe the five major speedup delimiters of multi-
threaded workloads on multi-core hardware: resource sharing, syn-
chronization, cache coherence, load imbalance and parallelization over-
head. In case an application spawns more threads than there are hard-
ware thread contexts, scheduling also has an effect on performance —
this case is left out in this work though.

Resource Sharing

In Chapter 2 we already discussed the impact of resource sharing on
the performance of threads running on a multi-core processor. In case
of a multi-threaded application, resource sharing among the cores can
either have a positive or a negative impact. A negative impact happens
for example when sharing a cache among the cores, and threads evict
data of other threads from the cache, which means that the latter will
experience more misses than in isolated execution. On the other hand,
positive impact happens when one thread brings data into the cache
that is later used by the other threads.

Synchronization

Just like resource sharing in the hardware, we described in Chapter 2
that threads interact with each other due to synchronization between
the threads. The most commonly used synchronization primitives are
locks and barriers. While this synchronization is necessary for a correct
execution, it also puts a limit on the achieved speedup of an application
because it can cause threads to wait, thereby prolonging multi-threaded
execution time.

40 Performance Analysis Methods

Cache Coherence

Cache coherence ensures that private caches (e.g., the L1 caches in a
CMP) are consistent with respect to shared data. Cache coherence in-
troduces extra traffic on the bus or interconnection network, and causes
additional misses when local cache lines that are invalidated through
upgrades by other cores, are re-referenced later. Unnecessary cache co-
herence traffic may result from false sharing.

Load Imbalance

Load imbalance means that one or a few threads need (substantially)
more time to execute than the other threads, which puts a limit on the
achievable speedup, as the execution time of a multi-threaded applica-
tion is determined by the slowest thread. Load imbalance can be caused
by an uneven division of the work among the threads, but it can also
be a result of the impact of resource sharing, cache coherence or syn-
chronization. A thread that has an equal amount of work compared to
the other threads, but is delayed more through resource sharing, cache
coherence or synchronization can become the slowest thread, limiting
an application’s overall performance.

Synchronization effects through barriers could also lead to load im-
balance: an application should be developed such that all threads reach
the common barrier at the same time; if not, load imbalance may cause
some threads to wait for other threads to reach the barrier. In this work,
we classify work imbalance at barriers as a synchronization effect.

Parallelization Overhead

Parallelizing a program typically incurs some overhead. Threads need
to be spawned, locks need to be checked, acquired and released, local
calculations possibly need to be done multiple times if it is too costly to
communicate their results via shared variables, etc. Because these extra
instructions incur computation time, they contribute to the sublinear
speedup effect.

Although parallelization overhead is very hard to measure dur-
ing multi-threaded execution (because it results into additional in-
structions being executed and can only be quantified with a second
single-threaded execution of the application), it is most visible to the
programmer. A software developer has a good understanding of the

3.4 Speedup Stacks 41

0

2

4

6

8

10

12

14

16

2
 t
h
re

a
d
s

4
 t
h
re

a
d
s

8
 t
h
re

a
d
s

1
6
 t
h
re

a
d
s

2
 t
h
re

a
d
s

4
 t
h
re

a
d
s

8
 t
h
re

a
d
s

1
6
 t
h
re

a
d
s

2
 t
h
re

a
d
s

4
 t
h
re

a
d
s

8
 t
h
re

a
d
s

1
6
 t
h
re

a
d
s

blackscholes facesim cholesky

s
p
e
e
d
u
p

base speedup positive LLC interference net negative LLC interference

negative memory interference spinning yielding

Figure 3.10: Speedup stacks as a function of the number of threads for blacksc-
holes, facesim and cholesky.

amount of parallelization overhead. For speedup stacks, we do not
measure the impact of parallelization overhead though (because we
only do a multi-threaded execution and estimate single-threaded be-
havior from this). This implies that the estimated speedup is higher
than the actual speedup in most cases.

3.4.3 Example Speedup Stacks

Figure 3.10 shows speedup stacks for the blackscholes, facesim and
cholesky benchmarks for 2 up to 16 threads/cores (how we construct
those stacks will be explained later in Section 6.2.1, and the experimen-
tal setup in Section 6.2.2); note that Figure 3.7 earlier in this chapter
showed speedup curves for the same set of benchmarks. The blue bot-
tom component represents the base speedup, i.e., the speedup with-
out positive interference effects, or the number of threads minus all
negative interference components. The red component on top of it (if
present) represents the positive LLC interference component, hence the
actual speedup is the sum of the blue and red components. The green
component is the net negative interference LLC sharing component,
i.e., the negative LLC sharing component minus the positive LLC shar-
ing component. In other words, the negative LLC interference com-

42 Performance Analysis Methods

ponent equals the sum of the red and green components. If all nega-
tive cache sharing could be removed, then the speedup would increase
with an amount proportional to the negative cache sharing component,
which is the sum of the red and green components. The other compo-
nents represent interference in the memory subsystem, spinning and
yielding. The speedup stacks in Figure 3.10 do not show an imbalance
component: as we measure the stacks over the entire parallel fraction
of the program (i.e., between the divergence and convergence of the
threads), the imbalance component is zero or nearly so, hence it is not
visible.

As was apparent from the speedup curves in Figure 3.7, blacksc-
holes shows almost perfect scaling; there are no significant scaling bot-
tlenecks as clearly observed from the speedup stacks in Figure 3.10.
Figure 3.7 also showed that speedup scales poorly with the num-
ber of threads and cores for facesim and cholesky. Although their
speedup curves look similar and both benchmarks achieve compara-
ble speedups, the speedup stacks shown in Figure 3.10 reveal that the
reason for the limited speedups differs across the two benchmarks. For
facesim, the main scaling delimiters are yielding, negative LLC interfer-
ence and interference in the memory subsystem. In contrast, spinning
is the major scaling bottleneck for cholesky, followed by yielding and
memory interference.

These examples clearly show the value of speedup stacks, as they
reveal the major scaling bottlenecks, which vary across programs, even
if the actual speedups are comparable. Moreover, identifying these
scaling bottlenecks without speedup stacks would be challenging.
Guided by the speedup stacks, programmers can try to reduce syn-
chronization overhead if spinning or yielding is large, for example by
using finer grained locks and smaller critical sections. If negative inter-
ference in the LLC or main memory is a major component for several
important applications according to the speedup stacks, processor de-
signers can put more resources towards avoiding negative interference,
for example through novel cache partitioning algorithms.

3.5 Speedup Stacks for Java

Speedup stacks, as we just proposed them, can be used for performance
analysis of managed language applications like Java programs. How-
ever, managed runtime applications are different from native multi-

3.5 Speedup Stacks for Java 43

threaded applications in the way that they exist of a combination of
application and service threads that interact with each other during the
execution of a program. This results in application threads that are
waiting for various reasons. Figure 3.11 illustrates this: in the begin-
ning the application threads wait because there is a sequential part in
the application; during the execution the threads may need to wait due
to synchronization; garbage collector may kick in; imbalance may oc-
cur among threads towards the end of the program execution. In our
original speedup stacks, the waiting of threads (due to sequential code,
synchronization, garbage collection, or imbalance) would be bumped
together into a large yielding component.

However, since it is possible to know the reason why a thread is
waiting, we can include this in our speedup stacks. This way the stacks
reveal the interactions between service and application threads that are
determinative to the execution time of a managed language program. It
also leads to a new set of application scaling delimiters to include in the
stack, namely garbage collection, sequential parts, thread imbalance,
synchronization between threads, and hardware interference.

The way we build up these extended speedup stacks is similar to
before. We start from Formula 3.8, but because we do not precisely
quantify the impact of positive interference in these stacks, the formula
becomes:

S = N −
N∑
i

∑
j Oi,j

Tp
(3.10)

with Oi,j as the scaling delimiter j for thread i. To build a speedup
stack, we first run the single-threaded version of the application to have
a baseline. We then profile a multi-threaded execution of the applica-
tion, computing the different overhead components (scaling delimiters)
for each thread.

3.5.1 Scaling Delimiters for Java

In the next sections we discuss the different overhead components that
Oi,j is comprised of, and how they are integrated in Formula 3.10. We
consider garbage collection, sequential parts of the application, syn-
chronization, thread imbalance, and additional overheads as compo-
nents in our speedup stacks.

44 Performance Analysis Methods

0

5

10

15

20

25

30

35

40

Thread 0 Thread 1 Thread 2 Thread 3

End

Time

Garbage collector

Sequential part

Application thread
running

Application thread
waiting due to:

Critical section

Synchronization

Imbalance

Figure 3.11: Example of applications threads in a managed language environ-
ment.

Garbage Collection

Garbage collection (GC) is an integral component of many managed
languages. Programmers benefit from the managed runtime environ-
ment automatically managing and collecting memory for them. How-
ever, this benefit comes at a cost; garbage collection does necessitate
some space and time overhead. Previous work estimates that garbage
collection takes on average 10% of an application’s execution time [12].
This estimation assumes a high-performing stop-the-world genera-
tional garbage collector, meaning that the application is stopped while
garbage collection traces the heap and reclaims memory. Concurrent
collectors trace and reclaim memory concurrently with the application;
however, they commonly require that the application stops in order for

3.5 Speedup Stacks for Java 45

the GC to identify a consistent set of roots to trace from (including stack
variables, statics and globals), and to finally reclaim memory back to
the free list. Therefore, GC pauses the application, and thus affects its
scalability and performance, and consequently should be included in a
speedup stack.

Because the actual speedup of the multi-threaded application over
the single-threaded version already takes garbage collection time into
account, our overhead component need to consider only the scalability
of garbage collection. We thus compare the amount of time spent on GC
in the multi-threaded execution, multiplied by the number of threads,
to the time for GC in the single-threaded execution. Integrating garbage
collection into Formula 3.10 leads to:

S = N −
N × TGC,MT − TGC,ST

Tp
−

N∑
i

∑
j O

r
i,j

Tp
(3.11)

where TGC,ST and TGC,MT is the time needed to do garbage col-
lection under single-threaded and multi-threaded execution (which is
the same for all threads), respectively, and Or

i,j are the remaining over-
head components j for thread i. We subtract TGC,ST from the garbage
collection overhead, because the single-threaded execution also has a
garbage collection component, and the speedup is measured over the
whole program, including garbage collection.

It is clear to see that if the stop-the-world phase of garbage collec-
tion is perfectly scalable (i.e, TGC,MT =

TGC,ST

N), this overhead compo-
nent of speedup stacks would reduce to zero. Thus this performance
delimiter suggests the effect of limited GC scalability on achieved pro-
gram speedup.

Sequential Parts of the Application

The speedup of a program is limited by the amount of sequential ex-
ecution in the application [2]. In a Java application, these sequential
parts happen because of initialization of the JVM and data, perform-
ing initial compilation, spawning of application threads, etc. Integrat-
ing these sequential parts into the formula for speedup stacks is simi-
lar to how garbage collection is included, because during the time that
garbage collection threads pause the application, the application itself
can not make progress. Most of these sequential parts that happen dur-

46 Performance Analysis Methods

ing multi-threaded execution, also exist during single-threaded execu-
tion. Therefore we include these sequential parts in the following way
into the formula:

S = N −
N × TGC,MT − TGC,ST

Tp
− (N − 1)× Tseq

Tp
−

N∑
i

∑
j O

r
i,j

Tp
.(3.12)

In this Formula Tseq is the time needed for the sequential parts, we
have the factor N − 1 because Tseq is the same under single-threaded
and multi-threaded execution (as opposed to garbage collection).

Synchronization

As we discussed in Chapter 2, threads of a multi-threaded application
synchronize with each other in order to achieve correct execution. This
synchronization leads to waiting time for threads because they want to
acquire a lock held by another thread, wait until another thread reaches
a certain point in the execution, etc. Integrating this waiting time for
threads due to synchronization in Formula 3.12 leads to (similar to the
yielding component in our original speedup stacks):

S = N −
N × TGC,MT − TGC,ST

Tp
− (N − 1)× Tseq

Tp

−
∑N

i Synci
Tp

−
N∑
i

∑
j O

r
i,j

Tp
. (3.13)

where Synci is the waiting time due to synchronization for applica-
tion thread i. Thus, if all threads’ waiting time due to synchronization
with other threads would go to zero, this speedup stack component
would disappear, thus resulting in a higher achieved speedup.

Thread Imbalance

Thread imbalance is the same as what we previously called load im-
balance in our original speedup stacks. This imbalance happens when
application threads do not finish their execution at the same point in
time. Incorporating thread imbalance leads to the following formula:

3.5 Speedup Stacks for Java 47

S = N −
N × TGC,MT − TGC,ST

Tp
− (N − 1)× Tseq

Tp

−
∑N

i Synci
Tp

−
∑N

i Imbalancei
Tp

−
N∑
i

∑
j O

r
i,j

Tp
. (3.14)

In this formula Imbalancei is the waiting time for application thread
i due to imbalance.

Remaining overhead components

The speedup S when using formula 3.14 has an additional component
Or

i,j . The remaining overhead is due to other factors that limit scal-
ability and performance when moving from single to multi-threaded
applications on modern hardware. For example parallelizing a pro-
gram typically incurs overhead due to additional instructions being ex-
ecuted. Secondly, hardware resource sharing between threads trans-
lates into larger running time of threads. Therefore, we include a final
component that we call hardware interference in our speedup stacks that
estimates Or

i,j , accounting for these extra overheads and showing their
impact on speedup.

3.5.2 Example Speedup Stacks for Java

Figure 3.12(b) shows an example of a speedup stack for Java, to-
gether with the corresponding bottle graph for this application in
Figure 3.12(a). In Section 6.3.1 we will discuss how we construct
those speedup stacks and our experimental setup will be discussed
in Section 6.3.2. In this example we show the lusearch DaCapo bench-
mark with four application threads running on top of Jikes RVM. We
use an eight-core processor with hyper-threading enabled, meaning
that parallelism and speedup is not limited by the number of avail-
able hardware threads. The bottle graph for this application reveals
that the application threads scale very well, their parallelism is almost
equal to four and their time share (height of the boxes) is very similar.
This means there is a balanced execution of the application threads.
However, if we look at the speedup stack, we see that the application
achieves a limited speedup of two, while four is the ideal speedup in
this case. This is counterintuitive because the bottle graph suggests

48 Performance Analysis Methods

(a) Bottle graph

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

5 4 3 2 1 0 1 2 3 4 5

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

Parallelism

GarbageCollector
MainThread

ApplicationThread0

ApplicationThread1
ApplicationThread2
ApplicationThread3

(b) Speedup stack

0

0.5

1

1.5

2

2.5

3

3.5

4

S
p

e
e
d

u
p

Measured Hardware Interference

Synchronization Thread Imbalance

Sequential Parts Garbage Collector

Figure 3.12: Example of a bottle graph and speedup stack: The lusearch Da-
Capo benchmark with 4 application threads, a main thread that performs ini-
tialization, and garbage collection threads running on Jikes JVM.

3.6 Related Work 49

that the application scales well, apart from the garbage collector. This
large box in the bottle graph for the garbage collector with limited
parallelism, results in a significant part of the speedup that is lost for
the application, as the speedup stack shows. Apart from the garbage
collector, interference in the hardware also has a significant impact on
speedup. This is not clear from the bottle graph, because this compo-
nent translates into a longer execution time of threads. This example
makes clear how speedup stacks are complementary to bottle graphs
for understanding the performance of managed language applications.

3.6 Related Work

In this section, we describe related work in performance visualization
and criticality analysis for multi-threaded applications.

3.6.1 Performance Visualization

Software developers heavily rely on tools for guiding where to op-
timize code. Commercial offerings, such as Intel VTune Amplifier
XE [32], Sun Studio Performance Analyzer [33], and PGPROF from
the Portland Group [58] use hardware performance counters and sam-
pling to derive where time is spent, and point the software developer to
places in the source code to focus optimization. Additional features of-
fered include suggestions for potential tuning opportunities, collecting
lock and wait behavior, visualization of running and waiting threads
over time, etc. The key feature of these tools is that they provide fairly
detailed analysis at fine granularity in small functions and individual
lines of code. Recent work focused on minimizing the overhead even
further, enabling the analysis of very small code regions, such as critical
sections [15]. Other related work [37] proposes a simple and intuitive
representation, called Parallel Block Vectors (PBV), which map serial
and parallel phases to static code. Other research proposes the Kremlin
tool, which analyzes sequential programs to recommend sections of
code that would get the most speedup from parallelization [28]. All of
these approaches strive at providing fine-grained performance insight.
Unfortunately, none of these approaches provide a simple and intuitive
visualization and understanding of gross performance scalability bot-
tlenecks in multi-threaded applications, which is needed by software
developers to guide optimization.

50 Performance Analysis Methods

CPI stacks [21] are frequently used for identifying performance bot-
tlenecks in single-threaded applications. Eyerman et al. [24] propose
a cycle accounting architecture for constructing CPI stacks on out-
of-order processors which is challenging to do given overlap effects
among miss events and useful computation. CPI stacks are widely used
for guiding software and hardware optimization for single-threaded
applications but are less useful for multi-threaded applications be-
cause they do not incorporate synchronization between threads. One
could argue that the speedup stack in the multi-threaded application
domain is what the CPI stack is for single-threaded applications.

3.6.2 Criticality Analysis

Understanding program criticality is challenging because of various
interaction and overlap effects across concurrent events, be it instruc-
tions or threads. Fields et al. [27] and Tune et al. [61] proposed offline
techniques to analyze instruction criticality and slack based on data
and resource dependencies in sequential programs. Li et al. [42] ex-
tended this offline approach to shared-memory programs. Hollings-
worth [31] proposed an online mechanism to compute the critical path
of a message-passing parallel program. Saidi et al. [55] use critical path
analysis to detect bottlenecks in networking applications. Bhattachar-
jee and Martonosi [4] detect thread criticality in barrier-synchronized
parallel programs by correlating criticality to cache misses. More re-
cently, Cheng and Stenström [14] propose an offline analysis to de-
tect critical sections on the critical path. None of this prior work ad-
dressed thread criticality in parallel, shared-memory programs with
general synchronization primitives (including critical section, barrier
and pipelined synchronization) as criticality stacks do.

3.7 Summary

In this chapter we introduced three new methods for analyzing perfor-
mance and scalability of multi-threaded applications. Criticality stacks
use a novel criticality metric and break down execution time into shares
for each thread, facilitating detailed analysis of parallel imbalance. Bot-
tle graphs represent each thread as a box, showing its execution time
share (height) and parallelism (width), revealing exactly how scalable
each thread is. Speedup stacks visualize achieved speedup of an appli-

3.7 Summary 51

cation and the various scaling delimiters as a stacked bar. We presented
two versions of speedup stacks, one that incorporates the impact of
resource sharing on performance in a very detailed manner and a sec-
ond version that is targeted towards managed runtime applications like
Java programs. This second version provides less detailed information
on the impact of resource sharing but provides new insights into how
the interaction between application and virtual machine service threads
affect program performance.

In the next three chapters we further discuss criticality stacks
(Chapter 4), bottle graphs (Chapter 5) and speedup stacks (Chapter 6).

52 Performance Analysis Methods

Chapter 4

Criticality Stacks:
Identifying Critical Threads

In this chapter we analyze multi-threaded programs using criticality stacks,
which is our performance analysis method for finding parallel imbalance be-
tween threads of a multi-threaded application.

4.1 Introduction

While synchronization between threads is necessary, it also results in
threads waiting for each other, as discussed in Chapter 2. This wait-
ing of threads leads to an imbalance between threads, because not all
threads make an equal progress. Therefore, some threads can be more
critical to performance than others. For detecting this parallel imbal-
ance and identifying the critical threads of an application, we use criti-
cality stacks. Criticality stacks are build using our novel criticality met-
ric that measures thread criticality in a parallel program using synchro-
nization behavior.

In this chapter, we first present a hardware implementation for dy-
namically measuring thread criticality at a low overhead. For obtaining
confidence in the accuracy of our criticality metric, we then validate
the metric by experimentally speeding up threads. This experiment
shows that accelerating threads that are identified as critical, results in a
significant speedup for the application, while accelerating non-critical
threads results in an unchanged performance of the application. We
also compare our metric against closely related work that tries to ad-

54 Criticality Stacks: Identifying Critical Threads

dress load imbalance caused by barriers [4]. We reimplement their tech-
nique that predicts thread criticality based on cache misses, and find
that our criticality metric more accurately identifies the thread most
critical to running time. Finally, we demonstrate how criticality stacks
can help programmers for addressing performance problems.

4.2 Constructing Criticality Stacks

For constructing criticality stacks we need to dynamically measure
thread criticality. This requires to determine at every moment in time
how many threads are performing useful work. We now first detail
how to identify which threads are active, which also delineates time
intervals. We then describe our dedicated hardware implementation
for calculating thread criticality in an efficient manner using very little
extra energy and without interfering with the running program.

4.2.1 Identifying Running Threads

There are two main causes why a thread is not performing useful work:
either it is scheduled out by the operating system, or it is spinning
(using a waiting loop, constantly checking the synchronization vari-
able). The operating system can easily communicate when it schedules
threads in and out. Spinning is more difficult to detect, since the thread
is executing instructions, albeit useless ones.

Either software or hardware can detect spinning. Software solu-
tions involve adding extra instructions that denote spinning threads.
These extra instructions are typically inserted in threading libraries
(e.g., Pthreads) so that programmers do not have to explicitly add
them. Hardware solutions use tables in the processor to keep track of
backward branches [43], which possibly belong to a spinning loop, or
repetitive loads [60], which are possibly loading a condition variable.
Spinning is detected if specific conditions are met, i.e., no architectural
state changes since the last branch or an update from another core to
the repetitive load’s address.

Both approaches have their advantages and disadvantages. A hard-
ware solution can detect all types of spinning, including user-level
spinning. On the other hand, a hardware solution detects spinning
later (e.g., only after a certain threshold is reached), which can have
an impact on the effectiveness of the technique that needs spinning

4.2 Constructing Criticality Stacks 55

information, and there is a chance to have false positives (e.g., a non-
captured architectural state change) or false negatives (e.g., when the
number of spinning iterations is under a certain threshold).

Software solutions on the other hand use semantic information
from the program itself, and will only detect true spinning loops. Of
course, user-level spinning that is not instrumented cannot be de-
tected. However, if correctly instrumented, software accurately detects
the start of the spinning, and can immediately indicate the end of the
spinning.

For this study we use a software solution, since software detects
spinning in a more timely manner and is easier to implement. The
benchmarks we evaluate only use threading libraries to perform syn-
chronization (Pthreads and OpenMP). We instrument all Pthread and
OpenMP primitives that involve spinning (locks, barriers and condi-
tion variables). When the program enters and exits a spinning loop,
we insert a call-down to notify hardware that the thread becomes in-
active or active, respectively. The next section explains how hardware
performs an online calculation of criticality based on these call-downs.

4.2.2 Calculating Criticality

To calculate the criticality metric as defined in Chapter 3, we need to
know for each time interval which threads are performing useful work.
To that end, we propose a small hardware component that keeps track
of the running threads and the criticality of each thread. There is one
criticality counter per thread (64 bit) and an ‘active’ bit that indicates
whether the thread is running or not (see Figure 4.1). Each thread’s crit-
icality active bit is set or reset through the thread (de)activate calls that
are sent from software. The cores or hardware contexts receive the calls
from software, and send a signal to update the criticality state. These
signals coming from the cores can either be transmitted over dedicated
lines (a single line is sufficient for setting one bit), or through the ex-
isting interconnection network. In both cases, they do not incur much
overhead, because the signal is only one bit and is sent relatively infre-
quently (we discuss frequency later in this section).

In addition to the per-thread counters and active bits, there is a
counter that holds the number of active threads and a timer (see the
bottom of Figure 4.1). The active thread counter is simply incremented
when an activate call is received, and is decremented when a thread de-

56 Criticality Stacks: Identifying Critical Threads

criticality A criticality A criticality A criticality A

timer

thread 0 thread 1 thread 2 thread 3

active threads counter

÷

+
0

+
0

+
0

+
0

Figure 4.1: Hardware device for online criticality calculation (’A’ is the active
bit per thread).

activates. The timer keeps track of absolute time (hence it is indepen-
dent of a core’s frequency) since the previous synchronization event
and is reset whenever an activate or deactivate call is received. Ini-
tially when a software call is received, the timer holds the duration of
the past interval. Thus, before updating state, we add the result of the
timer divided by the active thread counter to each thread’s criticality
counter for which the active bit is set. Then, the active bits and counter
are updated and the timer is reset, indicating the start of a new time
interval.

While conceptually we need a counter per thread, we can imple-
ment one counter per core or hardware context in reality (even when
there are more threads than hardware contexts). Only while threads
are running do their criticality counters need to be updated (inactive
threads do not receive criticality anyway); thus, keeping one hardware
counter plus active bit per core or hardware context allows running
threads to update their criticality state. Upon a context switch, the op-
erating system saves the criticality state for the thread being scheduled
out, and initializes the core or context’s criticality state to that of the
thread becoming active. Thus, our implementation works with more
threads than cores.

The advantage of using a dedicated hardware component is that
it has negligible impact on the performance of a running application.
The application just sends the (asynchronous) activate/deactivate calls
and can continue its execution without waiting for an answer. In terms
of hardware overhead, we need 65 bits per thread (a 64-bit timer plus
the ‘active’ bit). For sixteen threads, this amounts to a total of 1,108

4.3 Experimental Setup 57

bits. Additionally, we need one integer divider (the interval duration is
usually much larger than the number of threads, so the fraction after the
decimal point can easily be ignored), and one 64-bit adder per thread.
(Note the divider and adders can be low-performance, low-power units
because they are off the processor’s critical path.) In other words, the
hardware overhead for computing criticality stacks is limited.

To calculate the power overhead, we recorded the number of up-
dates per 10 ms time slice. For 16 threads, there are 1,920 updates per
time slice on average, with a maximum of 31,776 updates. On every up-
date, we need to perform an integer division and at most 16 additions
(assuming 16 threads). According to Wattch [10], an integer division
consumes approximately 0.65 nJ and an addition consumes 0.2 nJ in
a 100 nm chip technology; energy consumption is likely to be (much)
lower in more recent chip technologies, hence these estimates are con-
servative. This implies a maximum of 3.85 nJ per update, and by taking
into account the number of updates per unit of time, this leads to an
average 7.39 µW power consumption, and 0.12 mW at most, which is
very small compared to the power consumed by modern-day high-end
processors (around 100+ W).

4.3 Experimental Setup

We conduct full-system simulations using gem5 [6]. Table 4.1 shows
the configurations of the simulated multi-core processors. We consider
eight- and sixteen-core processors, running eight- and sixteen-threaded
versions of the parallel benchmarks, respectively. Each core is a four-
wide superscalar out-of-order core, with private L1 and L2 caches, and
a last-level L3 cache that is shared among cores. The OS that we run
is Linux version 2.6.27; a thread is pinned onto a core to improve data
locality and reduce the impact of context switching.

We consider benchmarks from the SPLASH-2 [63], PARSEC [5] and
Rodinia [13] benchmark suites, see Table 4.2. We evaluate those bench-
marks from the suites that correctly execute on our simulator for both
eight and sixteen threads, and for which thread-to-core pinning could
be done reliably (i.e., there is a unique thread-to-core mapping). The
benchmarks were compiled using gcc 4.3.2 and glibc 2.6.1. Our exper-
imental results are gathered from the parallel part of the benchmarks.
Profiling starts in the main thread just before threads are spawned and
ends just after the threads join (however, there is the possibility of se-

58 Criticality Stacks: Identifying Critical Threads

no. of cores 8, 16
core type 4-wide out-of-order
base frequency 2 GHz
L1 D-cache 64 KB, private, 2 cycles
L1 I-cache 64 KB, private, 2 cycles
L2 cache 512 KB, private, 10 cycles
L3 cache 8 MB, shared, 10 ns
memory bus 32 GB/s
memory access 100 ns

Table 4.1: Simulated multi-core processor configurations for criticality stacks.

Suite Benchmark Input
SPLASH-2 Cholesky tk29.O

FFT 4,194,304 points
FMM 32,768 particles
Lu cont. 1024×1024 matrix
Lu non-cont. 1024×1024 matrix
Ocean cont. 1026×1026 ocean
Ocean non-cont. 1026×1026 ocean

PARSEC Canneal Simmedium
Facesim Simmedium
Fluidanimate Simmedium
Streamcluster Simmedium

Rodinia BFS 1,000,000 nodes
Srad 2048×2048 matrix
Lud omp 512×512 matrix
Needle 4096×4096 matrix

Table 4.2: Considered benchmarks for criticality stacks.

quential parts of code within this region). This approach factors out the
impact of the trivial case of speeding up the sequential initialization
and postprocessing parts of the program, and allows us to use critical-
ity information to analyze the challenging parallel part of the program.

While our evaluation is limited to these programs, which have
both critical sections and barriers, criticality stacks could also be use-
ful for analyzing heterogeneous applications. The criticality stack for
pipelined parallel programs can reveal the thread or pipeline stage that
most dominates running time. Similarly, our criticality metric could
reveal imbalances in a task stealing context as well. In addition, the
criticality metric can be calculated for setups with more threads than
cores.

4.4 Validation and Analysis 59

4.4 Validation and Analysis

We now present criticality stacks for our parallel applications. We com-
puted criticality for each thread of our benchmarks with 8 and 16 thread
configurations, and present stacks that summarize thread criticality.
We validate our criticality metric in the next section using frequency
scaling of individual threads. We then compare our speedups to those
achieved by scaling a thread identified to be critical by previous work
that is based on cache misses. Finally, we show the variance when scal-
ing over a range of frequencies.

4.4.1 Validation of Criticality Stacks

Figure 4.2(a) shows the criticality stacks for the benchmarks when ex-
ecuted with 8 threads on 8 cores.We already discussed these criticality
stacks in the previous chapter in Section 3.2.2. We now evaluate the
validity of criticality stacks by checking that accelerating the most crit-
ical thread (if one exists) results in program speedups. Each simula-
tion speeds up one thread by raising the core’s frequency from 2 GHz
to 4 GHz1, and we present speedup results versus a baseline of all
threads at 2 GHz in Figure 3.3(b) for 8 threads. For each benchmark we
present the speedup obtained by accelerating each of the three threads
that have the largest components in the criticality stack. For the other
threads, the speedup was equal to or lower than the speedup of the
third largest component.

Figure 4.2(b) shows that for the benchmarks that have equal-sized
components in the criticality stack (see Figure 4.2(a)), there is no single
thread that when accelerated results in a significant program speedup,
which is in line with expectations. For the other benchmarks, speeding
up the thread that has a significantly larger criticality than the other
threads results in a considerable speedup for the whole program (e.g.,
Lu non-cont. and BFS have speedups over 20% and over 30%, respec-
tively). Moreover, speeding up the thread with the largest component
results in the largest speedup, while speeding up threads with smaller,
roughly-equal components yields little or no speedup. One interesting
phenomenon is Streamcluster, which has a few other threads besides
thread 2 that have slightly larger criticality percentages, and thus each

1This frequency raise is not intended to resemble a practical situation, it serves only
as a way to validate the criticality stacks.

60 Criticality Stacks: Identifying Critical Threads

(a) Criticality stacks

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

C
h
o
le

s
k
y

F
F

T

F
M

M

L
u
 c

o
n
t.

L
u
 n

o
n
-c

o
n
t.

O
c
e
a

n
 c

o
n
t.

O
c
e
a

n
 n

o
n
-c

o
n
t.

C
a
n
n

e
a
l

F
a
c
e
s
im

F
lu

id
a
n
im

a
te

S
tr

e
a

m
c
lu

s
te

r

B
F

S

S
ra

d

L
u
d

_
o
m

p

N
e
e
d

le

Thread 0 Thread 1 Thread 2 Thread 3

Thread 4 Thread 5 Thread 6 Thread 7

(b) Speedups

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

C
h

o
le

s
k
y

F
F

T

F
M

M

L
u

 c
o
n

t.

L
u

 n
o

n
-c

o
n

t.

O
c
e
a

n
 c

o
n

t.

O
c
e

a
n

 n
o

n
-c

o
n

t.

C
a

n
n

e
a

l

F
a

c
e

s
im

F
lu

id
a

n
im

a
te

S
tr

e
a

m
c
lu

s
te

r

B
F

S

S
ra

d

L
u
d

_
o
m

p

N
e

e
d

le

S
p

e
e

d
u

p

Largest component Second largest component

Third largest component

Figure 4.2: Criticality stacks for all benchmarks for 8 threads and correspond-
ing speedups by accelerating one thread.

4.4 Validation and Analysis 61

of the three threads show some speedup after being scaled up. This
validates that criticality stacks provide useful and accurate information
that can be used to guide optimizations.

FMM is an exception to the rule because the criticality stack reveals
that thread 2 is more critical than the others, but there is no speedup
when this thread is accelerated. In fact, speeding up any single thread
for this program never yields a significant speedup. Looking at the
criticality stack after speeding up thread 2 revealed that that thread’s
component was reduced, but thread 7’s component had grown signif-
icantly. FMM is an anomaly; for other benchmarks, speeding up the
most critical thread resulted in a criticality stack with more equal-sized
components. The criticality of the second thread for FMM is hidden,
or overlapped, by the criticality of the first thread. Accelerating one
thread just makes the other become more critical.

4.4.2 Comparison to Prior Criticality Metric

We compare the performance improvement of speeding up one thread
that is identified as most critical for various ways of identifying the
critical thread in Figure 4.3. We limit ourselves to accelerating one
thread here because most of our benchmarks have only one most crit-
ical thread, but if more were detected, more threads could be acceler-
ated. We present speedup results for the benchmarks that have a critical
thread, i.e., speeding up a single thread results in a speedup of at least
3%. We present the results using a theoretical technique that takes the
maximum speedup gained when accelerating each thread individually.
We compare this with our criticality metric and with previous work that
uses cache misses to define criticality [4]. The cache miss metric takes a
weighted average of the number of L1, L2 and L3 cache misses2, with
the relative latency as a weighting factor.

Our newly proposed criticality metric achieves the same speedup
as the maximum achievable speedup in all cases but one. For the
16-threaded version of Lu non-cont., there are two criticality stack
components that are significantly larger than the others (thread 0 and
thread 2). The maximum speedup is achieved by accelerating the sec-
ond largest component (thread 2). A detailed analysis reveals that in
the beginning of the program, thread 0 is executing alone for a while,
spawning threads and distributing data, resulting in a large critical-

2We adapted the original formula in [4] to three levels of cache for our configuration.

62 Criticality Stacks: Identifying Critical Threads

(a) 8 threads

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

L
u

 n
o
n
-c

o
n

t.

F
a

c
e

s
im

F
lu

id
a
n

im
a

te

S
tr

e
a

m
c
lu

s
te

r

B
F

S

L
u

d
_

o
m

p

N
e

e
d

le

S
p

e
e

d
u

p

Maximum

Criticality metric

Cache misses metric

(b) 16 threads

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

L
u

 n
o
n
-c

o
n

t.

F
a

c
e

s
im

F
lu

id
a
n

im
a

te

S
tr

e
a

m
c
lu

s
te

r

B
F

S

L
u

d
_

o
m

p

N
e

e
d

le

S
p

e
e

d
u

p

Maximum

Criticality metric

Cache misses metric

Figure 4.3: Comparison between our and a prior metric, and the maximum
achievable speedup by accelerating one thread.

ity component. However, this process is very memory-intensive and
results in many cache misses. Since the access time to memory is con-
stant, raising the frequency of that core does not yield a significant
speedup. After initialization, thread 2 becomes more critical, but its
criticality does not exceed the accumulated criticality of thread 0. Al-
though it is not the largest component, accelerating thread 2 yields the
largest overall speedup.

Figure 4.3 reveals that using cache misses to identify critical threads

4.4 Validation and Analysis 63

is less accurate at identifying critical threads and does not lead to any
performance gains for three benchmarks in the 8-thread configuration,
and for two benchmarks with 16 threads, while our criticality met-
ric always improves performance. The cache miss metric has been
proven effective in barrier-synchronized parallel programs, while our
new metric covers all types of synchronization. We conclude that our
newly proposed metric is most effective at finding the thread most crit-
ical to performance.

4.4.3 Varying the Amount of Frequency Scaling

In the previous experiments, we raised the frequency of one thread
from 2 GHz to 4 GHz. Now we explore more realistic frequencies be-
tween 2 GHz and 4 GHz, at increments of 0.25 GHz. We use our metric
to find the most critical thread to speed up, and evaluate the impact of
frequency scaling on the total program speedup, which reveals inter-
esting insights about the applications. Figure 4.4 shows the resulting
speedups for three representative benchmarks, and Figure 4.5 shows
the criticality stacks for a subset of these frequencies.

These three benchmarks show different behavior as we scale fre-
quency up. For Fluidanimate, Figure 4.4(a) shows that program speedup
increases from 2 to 2.25 GHz, but remains constant when the frequency
is raised further. This is a typical case of inter-thread synchronization
criticality. Once the thread that other threads are waiting for is sped
up enough such that the other threads do not have to wait anymore,
no further speedup can be attained despite a faster core. This is also
reflected in the change between the two criticality stacks on the left
of Figure 4.5: after speeding up the most critical thread (thread 5), its
criticality component shrinks, making the thread non-critical, and thus
no further speedup can be obtained.

For BFS in Figure 4.4(b), the performance continues to improve as
the frequency increases. BFS includes an inherently sequential part
where only one thread is running, which continues to see performance
improvements when sped up to higher and higher frequencies. When
looking at the three criticality stacks for BFS on the right side of Fig-
ure 4.5, we see that after accelerating the most critical thread, this
thread’s component decreases, but remains the largest component.

In Figure 4.4(c), Lud omp displays a mix of the behavior of the two
previous cases: in the beginning the speedup raises considerably, while

64 Criticality Stacks: Identifying Critical Threads

(a) Fluidanimate

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

2
 G

H
z

2
.2

5
 G

h
z

2
.5

 G
H

z

2
.7

5
 G

H
z

3
 G

H
z

3
.2

5
 G

H
z

3
.5

 G
H

z

3
.7

5
 G

H
z

4
 G

H
z

S
p

e
e

d
u

p

8 threads 16 threads

(b) BFS

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

2
 G

H
z

2
.2

5
 G

h
z

2
.5

 G
H

z

2
.7

5
 G

H
z

3
 G

H
z

3
.2

5
 G

H
z

3
.5

 G
H

z

3
.7

5
 G

H
z

4
 G

H
z

S
p

e
e
d

u
p

8 threads 16 threads

(c) Lud omp

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

2
 G

H
z

2
.2

5
 G

h
z

2
.5

 G
H

z

2
.7

5
 G

H
z

3
 G

H
z

3
.2

5
 G

H
z

3
.5

 G
H

z

3
.7

5
 G

H
z

4
 G

H
z

S
p
e
e

d
u
p

8 threads 16 threads

Figure 4.4: Impact of frequency scaling on achieved speedup.

4.4 Validation and Analysis 65

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2 GHz 2.5 GHz 2 GHz 3 GHz 4 GHz

Fluidanimate BFS

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

Figure 4.5: Impact of frequency scaling on criticality stacks.

after a certain frequency (2.5 GHz), speedup goes up at a slower pace.
This benchmark’s critical thread shows both inter-thread synchroniza-
tion criticality and sequential criticality. For applications such as this,
setting the frequency of the critical thread to the place where speedup
slows, yields the best performance and energy consumption balance.

4.4.4 Steering Software Optimization

Having validated criticality stacks, we now consider a use case where
we use criticality stacks to steer software optimization. When looking
at the right side of Figure 4.5 we see that BFS suffers from excessive
critical imbalance, even when the most critical thread is sped up to a
high frequency. We investigated this benchmark further to determine
whether, as predicted, there is some sequential part of the program that
slows down progress. The main work of BFS, which does breadth-first
search of a tree data structure, is performed in a do-while loop. Inside
the loop are two for loops that loop over all of the nodes in the tree.
Only the first is parallelized. The first loop visits the edges of each node,
potentially updating data.

The second, unparallelized loop goes over each node of the tree,
checking if it was updated. If there were updates, it sets the do-while

66 Criticality Stacks: Identifying Critical Threads

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Original Optimized Original Optimized

8 threads 16 threads

Thread 15

Thread 14

Thread 13

Thread 12

Thread 11

Thread 10

Thread 9

Thread 8

Thread 7

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

Thread 0

Figure 4.6: Example of using criticality stacks as a guide for software opti-
mization (BFS benchmark).

flag to loop again, otherwise the do-while loop can terminate. We
surmise that the most critical thread identified with our stacks, thread
0, is responsible for performing the second for-loop, which runs se-
quentially.

We analyzed the second loop, determined it has no dependencies
between iterations, and optimized it by parallelizing the loop. After
this small program change, Figure 4.6 presents the comparison be-
tween the unoptimized and optimized BFS criticality stacks, for both
8 and 16 threads. While Figure 4.5 shows that scaling to even large
frequencies did not remove the criticality bottleneck, with software
analysis and editing, we achieve balanced criticality stacks, as seen on
the right in Figure 4.6. After this code change, BFS achieves a 1.67×
and 2.16× speedup for 8 and 16 cores, respectively. These improve-
ments are significantly better than the 31% and 45% speedups that are
achieved through frequency scaling alone to 4 GHz (in Figure 4.4(b)).
This use case illustrates that criticality stacks are a useful tool to assist
software programmers in analyzing and fixing parallel imbalance.

4.5 Summary 67

4.5 Summary

After having introduced criticality stacks in the previous chapter, we
validated them and used them to analyze parallel performance in this
chapter. We describe a simple hardware design that takes a very small
amount of power, while being off the processor’s critical path, to com-
pute criticality stacks during the execution of an application. We vali-
date the accuracy and utility of criticality stacks by demonstrating that
our low-overhead online calculation approach indeed finds the thread
most critical to performance, improving over a previously proposed
metric based on cache misses. We also showed how criticality stacks
can be used to optimize software code. After optimizing the code of
one benchmark based on criticality imbalance, we achieve an average
speedup of 1.9×. In Chapter 7, we show how criticality stacks can be
used to dynamically optimize performance of multi-threaded applica-
tions.

68 Criticality Stacks: Identifying Critical Threads

Chapter 5

Bottle Graphs: Visualizing
Per-Thread Performance

In this chapter we discuss our second performance analysis method, bottle
graphs. Bottle graphs visually show per-thread scaling behavior of a paral-
lel program.

5.1 Introduction

In the previous chapter we discussed criticality stacks, which display
per-thread contributions to total running time. Criticality stacks mainly
focus on synchronization, and do not incorporate a notion of thread
parallelism. Moreover, constructing criticality stacks requires hard-
ware modifications and, while it points out thread imbalances, it does
not suggest how much gain could be achieved by making a particu-
lar thread better able to co-execute with other threads. Therefore, we
developed a second performance analysis method, bottle graphs.

Having introduced bottle graphs in Chapter 3, we now further dis-
cuss them in this chapter. We show how bottle graphs of real applica-
tions running on real hardware can be constructed through operating
system support, by using light-weight Linux kernel modules. Using
kernel modules, our bottle measurements incur very little overhead
(0.68% on average), require no recompilation of the kernel, and re-
quire no modifications to applications or hardware. To demonstrate
the power of bottle graphs as an analysis and optimization tool, we
perform an experimental study of 12 single- and multi-threaded bench-

70 Bottle Graphs: Visualizing Per-Thread Performance

marks written in Java, both from the DaCapo suite and pseudoJBB from
SPEC, and running on top of Jikes RVM. We vary the number of appli-
cation threads, number of garbage collection threads, analyze perfor-
mance differences between benchmark iterations, and study the scala-
bility of JVM service threads in conjunction with application threads.

5.2 Constructing Bottle Graphs

Just like criticality stacks, bottle graphs need to calculate a criticality
value for each thread. Although we can construct bottle graphs with
the hardware component that we designed for generating criticality
stacks (see Section 4.2.2), we now propose a new method that is im-
plemented in software, and measures the values in order to construct a
bottle graph of an application running on an actual processor. The tool
needs to detect:

1. The number of active threads, to calculate the ri values.

2. The IDs of the active threads, to know which threads should be
accounted time shares.

3. Events that cause a thread to activate and deactivate, to delimit
intervals.

4. A timer that can measure the duration of intervals, to get the ti
numbers.

The operating system (OS) is a natural place to construct our tool, as
it already keeps track of thread creation, destruction, and scheduling,
and has fine-grained timing capabilities. We build a tool to gather the
necessary information to construct bottle graphs using kernel modules
with Linux versions 2.6 and 3.0. The kernel modules are loaded using a
script that requires root privileges. Communication with the modules
(e.g., for communicating the name of the process that should be moni-
tored) is done using writes and reads in the /proc directory. We use ker-
nel modules to intercept system calls that perform thread creation and
destruction, that schedule threads in and out, and that do synchroniza-
tion with futex (a Linux system call which implements thread yielding).
Our tool keeps track of the IDs of active threads and the timestamp of
interval boundaries. Our modules also keep track of two counters per

5.2 Constructing Bottle Graphs 71

thread: one to accumulate the running time of the thread (i.e., the total
time it is active) and the other to accumulate the execution time share
(i.e., the running time divided by the number of concurrent threads).

A kernel module is triggered upon a (de)activation call, and up-
dates state and thread counters in the following way. The module ob-
tains the current timestamp, and by subtracting the previous times-
tamp from it, determines the execution time of the interval that just
ended. It adds that time to the running time counter of all threads that
were running in the past interval. It also divides that interval’s time
by the number of active threads, and adds the result to the time share
counters of the active threads. Subsequently, the module changes the
set of running threads according to the information attached to the call
(thread activation or deactivation, and thread ID), and adapts the num-
ber of active threads. It also records the current timestamp as the begin-
ning of the next interval. When the OS receives a signal from software,
the two counters for each thread are written out, and this information
is read by a script that generates the bottle graphs.

There are several advantages of using kernel modules to measure
bottle graph components:

1. The program under study does not need to be changed; the tool
works with unmodified program binaries.

2. The modules can be loaded dynamically; there is no need to re-
compile the kernel.

3. We can make use of a nanosecond resolution timer, which enables
capturing very short active or inactive periods. We used ktime get
and verified in /proc/timer list that it has nanoscale resolution.

4. In contrast to sampling, our kernel modules continuously mon-
itor all threads’ states accurately, and aggregate metric calcula-
tions online without loss of information.

5. The extra overhead is limited, because the calculations are simple
and need to be done only on thread creation and scheduling op-
erations. On average, we measure an average 0.68% increase in
program execution time compared to disabling the kernel mod-
ules, with a maximum of 1.11%, see Table 5.1 for per-benchmark
overhead numbers.

72 Bottle Graphs: Visualizing Per-Thread Performance

Discussion of design decisions. In the design of our tool and ex-
periments, we have made some methodological decisions, which do
not limit the expressiveness of bottle graphs. We keep track of only
synchronization events caused by futex, and thus our tool does not
take into account busy waiting in spin loops, or interference between
threads in shared hardware resources (e.g., in the shared cache and in
the memory bus and banks). Threading libraries are designed to avoid
long active spinning loops and yield threads if the expected waiting
time is more than a few cycles, so we expect this to have no visible
impact on the bottle graphs. Interference in hardware resources is a
low-level effect that is less related to the characterization of the amount
of parallelism in a multi-threaded program. When a thread performs
I/O behavior, the OS schedules out that thread. Thus, we choose not to
track I/O system calls in our kernel modules because most I/O behav-
ior is already accounted for as inactive. Furthermore, we provide suffi-
cient hardware contexts in our hardware setup, i.e., at least as many as
the maximum number of runnable threads. We thus ensure that threads
are only scheduled in and out due to synchronization events, and fac-
tor out the impact of scheduling due to time sharing a hardware con-
text. If the number of hardware contexts were less than the number
of runnable threads, the bottle graph’s measured parallelism would be
determined more by the machine than by the application characteris-
tics.

In the majority of our results, we read out our cumulative thread
statistics, including running time and execution time share, at the end
of the program run. We then construct bottle graphs that summarize
the behavior of the entire application execution on a per-thread basis.
However, our tool can be given a signal at any time to output, and op-
tionally reset, thread counters, so that bottle graphs can be constructed
throughout the program run. Thus, bottle graphs can be used to ex-
plore phase behavior of threads within a program run (as we do in Sec-
tion 5.4.4), or to analyze particular sections of code for scalability bot-
tlenecks. Furthermore, while our OS modules keep track of counters
per-thread, in the case of thread pools, the bottle graph scripts could
be modified to group separate threads into one component, if desired.
Both execution time share and parallelism are defined such that it is
mathematically sound to aggregate thread components.

5.3 Experimental Setup 73

5.3 Experimental Setup

We perform experiments on unmodified applications running on real
hardware to demonstrate the usefulness of bottle graphs. While bot-
tle graphs can be used to analyze any multi-threaded program, in this
work we chose to analyze Java applications. Not only are managed lan-
guages like Java widely used in the community, but they also provide
the added complexity of runtime service threads that manage memory
and do dynamic compilation alongside the application. Thus, we can
analyze both application and service thread performance and scalabil-
ity using our visualization tool.

We evaluate Java benchmarks, see Table 5.1, from the DaCapo
benchmark suite [9] and one from the SPEC 2005 benchmark suite,
pseudoJBB, which is modified from its original version to do a fixed
amount of work instead of run for a fixed amount of time [57]. There
are 6 single-threaded (ST) and 6 multi-threaded (MT) benchmarks.1

Although bottle graphs are designed for multi-threaded applications,
it is interesting to analyze the interaction between a single-threaded
application and the Java virtual machine (JVM) threads. We use the
default input set, unless mentioned otherwise.

For our experiments, we vary the number of application threads
(2, 4 and 8 for the multi-threaded applications) and garbage collector
threads (1, 2, 4 and 8). We experiment with different heap sizes (as mul-
tiples from the minimum size that each benchmark can run in), but we
present results with two times the minimum to keep the heap size fairly
small in order to exercise the garbage collector frequently so as to eval-
uate its time and parallelism components. We run the benchmarks for
15 iterations, and collect bottle graphs for every iteration individually,
but present main results for the 13th iteration to show stable behavior.

We performed our experiments on an Intel Xeon E5-2650L server,
consisting of 2 sockets, each with 8 cores, running a 64-bit 3.2.37 Linux
kernel. Each socket has a 20 MB LLC, shared by the 8 cores. For our
setup, we found that the number of concurrent threads rarely exceeds
8, with a maximum of 9 (due to a dynamic compilation thread). There-
fore, we only use one socket in our experiments with HyperThread-
ing enabled, which leads to 16 available hardware contexts. This setup

1Although eclipse spawns multiple threads, we found that the JavaIndexing thread
is the only running thread for most of the time, so we categorize it as a single-threaded
application.

74 Bottle Graphs: Visualizing Per-Thread Performance

Benchmark Suite Version ST/MT Overhead
antlr DaCapo 2006 ST 0.40%
bloat DaCapo 2006 ST 0.64%
eclipse DaCapo 2006 ST 0.70%
fop DaCapo 2006 ST 0.20%
jython DaCapo 2009 ST 0.80%
luindex DaCapo 2009 ST 1.00%
avrora DaCapo 2009 MT 1.11%
lusearch DaCapo 2009 MT 0.32%
pmd DaCapo 2009 MT 0.44%
pseudoJBB SPEC 2005 MT 0.90%
sunflow DaCapo 2009 MT 0.03%
xalan DaCapo 2009 MT 0.91%

Table 5.1: Considered benchmarks for bottle graphs and kernel module over-
head. ST=single-threaded, MT=multi-threaded.

avoids data traversing socket boundaries, which could have an impact
on performance that is hardware related. The availability of 16 hard-
ware contexts does not trigger the OS to schedule out threads other
than for synchronization or I/O.

We run all of our benchmarks on Jikes Research Virtual Machine
version 3.12 [44]. We use the default best-performing garbage collector
(GC) on Jikes, the stop-the-world parallel generational Immix collec-
tor [8]. In addition to evaluating the Jikes RVM, we also compare with
the OpenJDK JVM version 1.6 [51]. We use their throughput-oriented
parallel collector (also stop-the-world) in both the young and old gen-
erations. It should be noted that OpenJDK’s compacting old generation
has a different layout than Jikes’ old generation, and thus will have a
different impact on both the application and collector performance.

Because we use a stop-the-world collector, we can divide the execu-
tion of a benchmark into application and collection phases. Application
and GC threads never run concurrently; therefore, the application and
GC thread components in the bottle graph can be analyzed in isolation.
For example, the total height of all application thread boxes is the total
application running time, and the same holds for the GC threads. Also,
because the collector never runs concurrently with other threads, the
parallelism of the GC boxes is the parallelism of the collector itself.

5.4 Jikes RVM and Benchmark Analysis 75

5.4 Jikes RVM and Benchmark Analysis

In this section we will study the behavior of Java applications using bot-
tle graphs. By varying the number of application threads, GC threads,
heap size, and collecting results over many iterations, we have gen-
erated over 2,000 bottle graphs. We describe the main findings from
this study in this section, together with a few bottle graphs that show
interesting behavior. We refer the interested reader to the additional
supporting material for all bottle graphs generated during this study,
available at http://users.elis.ugent.be/˜kdubois/bottle_
graphs_oopsla2013.

We first define some terminology that will be used to describe the
bottle graphs we gathered for Java. Application work is the sum of all ac-
tive execution times of all application threads (excluding JVM threads),
i.e., the total area of all application thread boxes.2 Likewise, we de-
fine application time as the sum of all execution time shares of all ap-
plication threads, i.e., the total height of the application thread boxes.
Along the same lines, we define garbage collection work as the sum of all
GC threads’ active execution times, i.e., the total area of all GC thread
boxes, and garbage collection time as the sum of all GC threads’ execution
time shares, i.e., the total height of the GC thread boxes.

We already showed and discussed bottle graphs for all our appli-
cations in Chapter 3, Section 3.3.2. We will now discuss collector and
application performance and their impact on each other in Section 5.4.1
and 5.4.2. In Section 5.4.3, we also analyze the impact of the optimiz-
ing compiler by comparing the first and later iterations. We analyze
why there is multi-threaded imbalance in one well-known benchmark,
pmd, in Section 5.4.4. Finally we compare the performance of Jikes with
OpenJDK in Section 5.4.5.

5.4.1 Garbage Collection Performance Analysis

We now explore what bottle graphs reveal about garbage collection
performance, while varying the numbers of application and collection
threads. We analyze in depth the variation in the amount of garbage

2We classify the MainThread as part of the application. The MainThread does some
initialization and then calls the main method of the application. For single-threaded
applications, all of the work is done in this MainThread. For multi-threaded applica-
tions, it does some initialization and then spawns the application threads.

http://users.elis.ugent.be/~kdubois/bottle_graphs_oopsla2013
http://users.elis.ugent.be/~kdubois/bottle_graphs_oopsla2013

76 Bottle Graphs: Visualizing Per-Thread Performance

(a) 1 GC thread (b) 2 GC threads

 0

 0.5

 1

 1.5

 2

 2.5

 3

5 4 3 2 1 0 1 2 3 4 5

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

Parallelism

GarbageCollector
Thread-1
Thread-2

Thread-3
Thread-4

Organizer

 0

 0.5

 1

 1.5

 2

 2.5

 3

5 4 3 2 1 0 1 2 3 4 5

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

Parallelism

GarbageCollector
Thread-1
Thread-2

Thread-3
Thread-4

Organizer

(c) 4 GC threads (d) 8 GC threads

 0

 0.5

 1

 1.5

 2

 2.5

 3

5 4 3 2 1 0 1 2 3 4 5

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

Parallelism

GarbageCollector
Thread-1
Thread-2

Thread-3
Thread-4

Organizer

 0

 0.5

 1

 1.5

 2

 2.5

 3

5 4 3 2 1 0 1 2 3 4 5

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

Parallelism

GarbageCollector
Thread-1
Thread-2

Thread-3
Thread-4

Organizer

Figure 5.1: Xalan: scaling of GC threads with 4 application threads.

collection time (sum of GC box heights) and work (sum of GC box ar-
eas). Figures 5.1 and 5.2 show bottle graphs for xalan with increasing
number of GC threads (Figure 5.1) and increasing number of applica-
tion threads (Figure 5.2). We include only the xalan results here because
this benchmark has representative behavior with respect to collection.
Figure 5.3 shows the average collection work (a) and time (b) for all
multi-threaded benchmarks, as a function of the number of GC threads
and the number of application threads.3 The values are normalized
to the configuration with 2 application threads and 1 GC thread. Fig-
ure 5.4 shows the same data for the single-threaded benchmarks, obvi-

3We exclude the numbers for avrora and pseudoJBB for Fig-
ures 5.3, 5.5, 5.6, 5.7, 5.13, and 5.14. For these benchmarks, it is impossible to
vary the number of application threads independently from the problem size.

5.4 Jikes RVM and Benchmark Analysis 77

(a) 2 Application threads (b) 4 Application threads

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

3 2 1 0 1 2 3

R
u
n
ti
m

e
 (

in
 s

e
c
o
n
d
s
)

Parallelism

GarbageCollector
Thread-1

Thread-2
Organizer

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

5 4 3 2 1 0 1 2 3 4 5
R

u
n

ti
m

e
 (

in
 s

e
c
o

n
d

s
)

Parallelism

GarbageCollector
Thread-1
Thread-2

Thread-3
Thread-4

Organizer

(c) 8 Application threads

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9

R
u
n
ti
m

e
 (

in
 s

e
c
o
n
d
s
)

Parallelism

GarbageCollector
Thread-1
Thread-2
Thread-3

Thread-4
Thread-5
Thread-6
Thread-7

Thread-8
Organizer

Figure 5.2: Xalan: scaling of application threads with 2 GC threads.

ously without the dimension of the number of application threads.
We make the following observations:

Collection work increases with an increasing number of collection
threads. When the number of GC threads increases, the total col-
lection work increases, i.e., the sum of the running times of all GC
threads increases, see Figures 5.3 (a) and 5.4. For xalan, total collection
work—which equals the total area of all GC thread boxes—increases
by 73% from 1 to 8 GC threads (see Figure 5.1). For all multi-threaded
benchmarks, there is an increase of 120% (averaged over all application

78 Bottle Graphs: Visualizing Per-Thread Performance

(a) Garbage collection work

2

4

8

1
1.25

1.5
1.75

2
2.25

2.5
2.75

3

3.25

3.5

1
2

4
8

app threads

co
ll

e
ct

io
n

 w
o

rk

GC threads

(b) Garbage collection time

2

4

8

0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

1
2

4
8

app threads

co
ll

e
ct

io
n

 t
im

e

GC threads

Figure 5.3: Average garbage collection work (a) and time (b) as a function of
application and GC thread count (multi-threaded applications). Numbers are
normalized to the 2 application and 1 GC thread configuration. Collection work
increases with increasing GC thread count and increasing application thread count,
and 2 GC threads results in minimum collection time for all application thread counts.

thread counts), and 198% for the single-threaded benchmarks.
There are a number of reasons for this behavior. First, more threads

incur more synchronization overhead, i.e., extra code to perform syn-
chronization due to GC threads accessing shared data. Figure 5.14 in
Section 5.4.5 (Jikes line) shows that the number of futex calls signifi-
cantly increases as the number of GC threads increases. Second, be-
cause garbage collection is a very data-intensive process and the last-
level cache (LLC) is shared by all cores, more GC threads will lead to
more interference misses in the LLC, leading to a larger running time.
Figure 5.5 shows the number of LLC cache misses as a function of

5.4 Jikes RVM and Benchmark Analysis 79

0

0.5

1

1.5

2

2.5

3

3.5

1 2 4 8

co
ll

e
ct

io
n

 w
o

rk
/t

im
e

no. of GC threads

collection work

collection time

Figure 5.4: Average collection work and time as a function of GC thread count
(single-threaded applications). Numbers are normalized to the 1 GC thread
configuration. Collection work increases with increasing GC thread count and col-
lection time is minimal with 2 GC threads.

2

4

8

1

1.5

2

2.5

3

3.5

4

1
2

4
8

app threads

n
o

.
o

f
LL

C
 m

is
se

s

GC threads

Figure 5.5: Average number of LLC misses as a function of application and
GC thread count (multi-threaded applications). Numbers are normalized to
the 2 application and 1 GC thread configuration.

the number of GC threads and the number of application threads for
all multi-threaded applications, normalized to the 2 application, 1 GC
thread configuration. The number of LLC cache misses increases signif-
icantly when the number of GC threads increases (more than 2.5 times
for 8 GC threads compared to 1 GC thread), which raises the total exe-
cution time of the GC threads.

Collection work increases with an increasing number of application
threads. There is an increase in the amount of time garbage collection

80 Bottle Graphs: Visualizing Per-Thread Performance

2

4

8

1

1.1

1.2

1.3

1.4

1
2

4
8

app threads

n
o

.
o

f
co

ll
e

ct
io

n
s

GC threads

Figure 5.6: Average number of collections as a function of application and GC
thread count (multi-threaded applications). Numbers are normalized to the 2
application and 1 GC thread configuration.

threads are actively running (or their total work), as we go to larger
application thread counts. For xalan, collection work increases by 60%
if the number of application threads is increased from 2 to 8 (see Fig-
ure 5.2). For all multi-threaded benchmarks, we see an average increase
of 47% (over all GC thread counts), in Figure 5.3 (a). To explain this
behavior, we refer to Figure 5.6, which shows the average number of
collections that occurred during the execution of the multi-threaded
benchmarks,4 again as a function of the number of GC and applica-
tion threads. When increasing the number of GC threads, the number
of collections does not increase. However, the number of application
threads has a clear impact on the number of collections: the more ap-
plication threads, the more collections. The intuition behind this obser-
vation is that more threads generate more live data in a fixed amount of
time (because Jikes has thread-local allocation where every thread gets
its own chunk of memory to allocate into), so the heap fills up faster
compared to having fewer application threads. The more collections,
the more collection work that needs to be done.

2 GC threads are optimal regardless of the number of application
threads. Figures 5.3 (b) and 5.4 show that garbage collection time is
minimal for two GC threads in Jikes, even for lower and higher appli-

4We exclude pmd from this graph, because due to its imbalance, only one thread is
running during a significant portion of its execution time. Since this portion increases
with the number of application threads, the number of collections decreases, while we
see an increase for all other benchmarks.

5.4 Jikes RVM and Benchmark Analysis 81

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

2 4 8

a
p

p
 w

o
rk

/t
im

e

no. of app threads

app work

app time

Figure 5.7: Average application work and time as a function of application
thread count (multi-threaded applications). Numbers are normalized to the
2 application thread configuration. Application time decreases with increasing
application thread count, but the decrease is limited because application work increases
with more application threads.

cation thread counts. Although the amount of work increases when the
number of GC threads is increased from 1 to 2, collector parallelism is
also increased (from 1 to 1.5), leading to a lower net collection time.
When the number of GC threads is further increased to 4 and 8, par-
allelism increases only slightly (to 1.7 and 1.8, respectively), and does
not compensate for the extra amount of work, leading to a net increase
in collection time. Although we present results here for only two times
the minimum heap size, we found two GC threads to be optimal for
other heap sizes as well.

5.4.2 Application Performance Analysis

We analyze changes in the application time and work as we vary the
number of application threads, which seem to suffer less from limited
parallelism than the garbage collector. Figure 5.7 shows the applica-
tion execution time (excluding garbage collection time) and work as a
function of the number of application threads (for the multi-threaded
applications), keeping the GC threads at two. Numbers are normalized
to those for two application threads.

Application time decreases with an increasing number of applica-
tion threads, but the decrease is limited because application work

82 Bottle Graphs: Visualizing Per-Thread Performance

increases due to the overheads of parallelism. When the application
thread count is increased, application time does decrease, but not pro-
portionally to the number of threads. Compared to two application
threads, execution time decreases with a factor of 1.4 for four applica-
tion threads and 1.9 for 8 threads. Part of the reason this decrease is
not higher is the limited parallelism (average application parallelism
equals 1.9, 3.1 and 4.7, for 2, 4 and 8 application threads, respectively).
However, this does not fully cover the smaller application speedup:
from 2 to 8 application threads, parallelism is increased by a factor of
2.5, while execution time is reduced by a factor of only 1.9. This differ-
ence is explained by the fact that application work also increases with
the number of application threads, see Figure 5.7. This increase is due
to synchronization overhead (the number of futex calls for the applica-
tion increases from 1.5 to 4.7 calls per ms when the number of appli-
cation threads increases from 2 to 8) and an increasing number of LLC
misses due to more interference (see also Figure 5.5). Increasing the
number of application threads leads to more application work and in-
creased parallelism, resulting in a net reduced execution time, but due
to the extra overhead, the execution time reduction is smaller than the
thread count increase.

5.4.3 Compiler Performance Analysis

Lastly, while generating our bottle graphs across many benchmark iter-
ations, we noticed the difference between startup and steady state be-
havior discussed in detail in Java methodology research [9]. Figure 5.8
shows the bottle graphs of one single-threaded benchmark, jython, dur-
ing the first, 9th and 11th iterations. During the first iteration, we see
a large overall execution time, and a large (one second) time share for
the Organizer thread. This JVM service thread performs dynamic com-
pilation concurrently with the application (it has a parallelism of two),
and thus is very active in the first iteration, but is much more minimal
in iteration nine. Iteration nine has a reduced execution time because
the Java source code is now optimized and the benchmark is running
more at steady-state. However, the bottle graph for iteration 11 shows
an increased Organizer thread component. This behavior is specific to
this benchmark; other applications see the Organizer box disappear in
all higher iterations. Jython is different in that it dynamically interprets
python source code into bytecode, and then runs it. Jython actually
runs a benchmark within itself, and Jikes continues to optimize the gen-

5.4 Jikes RVM and Benchmark Analysis 83

(a) First iteration (b) 9th iteration

 0

 2

 4

 6

 8

 10

 12

4 3 2 1 0 1 2 3 4

R
u
n
ti
m

e
 (

in
 s

e
c
o
n
d
s
)

Parallelism

MainThread
GarbageCollector

Organizer

 0

 2

 4

 6

 8

 10

 12

4 3 2 1 0 1 2 3 4

R
u
n
ti
m

e
 (

in
 s

e
c
o
n
d
s
)

Parallelism

MainThread
GarbageCollector

Organizer

(c) 11th iteration

 0

 2

 4

 6

 8

 10

 12

4 3 2 1 0 1 2 3 4

R
u
n
ti
m

e
 (

in
 s

e
c
o
n
d
s
)

Parallelism

MainThread
GarbageCollector

Organizer

Figure 5.8: Jython: behavior of Organizer thread over different iterations for 4
GC threads.

erated bytecode with the optimizing compiler at various iterations, be-
cause the compiler is probabilistic and is triggered unpredictably. Thus,
bottle graphs are also useful for seeing program and JVM variations be-
tween iterations.

5.4.4 Solving the Poor Scaling of Pmd

We have analyzed the performance of both Java applications and Jikes
RVM’s service threads using bottle graphs. As shown in Figure 3.6,
Chapter 3, pmd has one thread that has significantly limited paral-
lelism. We now analyze this bottleneck and propose suggestions on

84 Bottle Graphs: Visualizing Per-Thread Performance

(a) 2 Application threads (b) 4 Application threads

 0

 0.5

 1

 1.5

 2

3 2 1 0 1 2 3

R
u
n
ti
m

e
 (

in
 s

e
c
o
n
d
s
)

Parallelism

MainThread
GarbageCollector

PmdThread2

PmdThread1
Organizer

 0

 0.5

 1

 1.5

 2

4 3 2 1 0 1 2 3 4

R
u
n
ti
m

e
 (

in
 s

e
c
o
n
d
s
)

Parallelism

MainThread
GarbageCollector

PmdThread1
PmdThread2

PmdThread4
PmdThread3

Organizer

(c) 8 Application threads

 0

 0.5

 1

 1.5

 2

5 4 3 2 1 0 1 2 3 4 5

R
u
n
ti
m

e
 (

in
 s

e
c
o
n
d
s
)

Parallelism

MainThread
GarbageCollector

PmdThread3
Organizer

PmdThread2
PmdThread1
PmdThread4
PmdThread6

PmdThread5
PmdThread7
PmdThread8

Figure 5.9: Pmd: scaling of application threads with 2 GC threads (default
input set).

how to fix pmd’s scalability problem.
Figure 5.9 shows the bottle graphs for pmd for 2, 4 and 8 applica-

tion threads, while keeping the collection threads at two and using the
default input set. With two application threads, the left graph shows
these threads have approximately the same height and width (a par-
allelism close to two). However, for 4 and 8 threads, pmd clearly has
an imbalance issue: there is one thread that has less parallelism and
a larger execution time share than the other threads. To understand
the cause, we gathered bottle graphs at several time intervals (every
0.5 seconds) within the 13th iteration of the benchmark, running with
2 GC and 8 application threads, shown in Figure 5.10. We see that after

5.4 Jikes RVM and Benchmark Analysis 85

(a) First time interval (b) Second time interval

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

6 5 4 3 2 1 0 1 2 3 4 5 6

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

Parallelism

MainThread
GarbageCollector

Organizer
PmdThread3

PmdThread2
PmdThread8
PmdThread4
PmdThread6

PmdThread7
PmdThread1
PmdThread5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

6 5 4 3 2 1 0 1 2 3 4 5 6

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

Parallelism

GarbageCollector
PmdThread7
PmdThread1

PmdThread2
PmdThread3
PmdThread4

PmdThread8
PmdThread5
PmdThread6

(c) Third time interval (d) Fourth time interval

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

6 5 4 3 2 1 0 1 2 3 4 5 6

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

Parallelism

PmdThread7 GarbageCollector

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

6 5 4 3 2 1 0 1 2 3 4 5 6

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

Parallelism

MainThread PmdThread7 GarbageCollector

Figure 5.10: Pmd: bottle graphs taken every 0.5 seconds with 2 GC threads
and 8 application threads (default input set).

the first 0.5 seconds, although there is some variation, the application
threads are still fairly balanced in regards to parallelism. Starting from
the second time interval, one application thread has limited parallelism
and a larger share of execution time (PmdThread7). After one second
of execution, that same thread continues to run alone while all other
application threads have finished their work.

Pmd is a (Java) source code analyzer, and finds unused variables,
empty catch blocks, unnecessary object creation, etc. It takes as input a
list of source code files to be processed. The default DaCapo input for
pmd is a part of the source code files of pmd itself. There is also a large
input set, which analyzes all of the pmd source code files. Internally,
pmd is parallelized using a work stealing approach. All files are put in
a queue, and the threads pick the next unprocessed file from the queue
when they finish processing a file. Compared to static work partition-

86 Bottle Graphs: Visualizing Per-Thread Performance

(a) 2 Application threads (b) 4 Application threads

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

3 2 1 0 1 2 3

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

Parallelism

GarbageCollector
MainThread

PmdThread1

PmdThread2
Organizer

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

5 4 3 2 1 0 1 2 3 4 5

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

Parallelism

MainThread
GarbageCollector

PmdThread3
PmdThread2

PmdThread1
PmdThread4

Organizer

(c) 8 Application threads (d) 8 Application threads
w/o biggest file

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

5 4 3 2 1 0 1 2 3 4 5

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

Parallelism

MainThread
GarbageCollector

PmdThread6
PmdThread2

PmdThread7
PmdThread4
PmdThread3
PmdThread8

PmdThread1
PmdThread5

Organizer

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

5 4 3 2 1 0 1 2 3 4 5

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

Parallelism

GarbageCollector
MainThread

PmdThread4
PmdThread8

PmdThread5
PmdThread6
PmdThread1
PmdThread2

PmdThread3
PmdThread7

Organizer

Figure 5.11: Pmd: scaling of application threads with 2 GC threads (large
input set). For the fourth graph, the biggest source file is removed from the
input set.

ing, work stealing normally improves balance, because one thread can
process a large job, while another thread processes many small jobs.
Imbalance can only occur when one or a few jobs have such a large
process time that there are not enough other small jobs to be run in par-
allel. This is exactly the case for the default input set of pmd. There are
220 files, with an average size of 3.8 KB. However, there is one file that
is 240 KB, which is around 63 times larger than the average. Therefore,
the thread that picks that file will always have a larger execution time
than the other threads, and there are not enough other files to keep the
other threads concurrently busy.

This problem is partly solved when using the large input set, which

5.4 Jikes RVM and Benchmark Analysis 87

also has the same big file, but there are 570 files in total, so more files can
be processed concurrently with the big file. Figures 5.11(a)–(c) show the
bottle graphs for the large input set with 2, 4 and 8 application threads.
The imbalance problem is solved for 2 and 4 application threads, but is
still present for 8 threads (although less pronounced compared to the
default input set). The more threads there are, the more other jobs are
needed to run concurrently with the large job. Figure 5.11(d) shows the
bottle graph for 8 threads and the large input set excluding that one big
file, which leads to a balanced execution.

We can conclude that users of pmd should make sure that there is no
file that is much larger than the others to prevent an imbalanced, and
therefore inefficient, execution. The balance can also be improved by
making the scheduler in pmd more intelligent. For example, the files
to be processed can be ordered by decreasing file size, such that big
files are processed first and not after a bunch of smaller files. In that
case, there are more small files left for the other threads, and balance is
improved. Another, probably more intrusive, solution is to provide the
ability to split a single file across multiple threads.

Apart from imbalance, there is also a problem of limited parallelism
in pmd. Figure 5.11(d) shows that the parallelism of 8 application
threads is only 3.5. We looked into the code and found a synchronized
map data structure that is shared between threads and guarded by one
lock. Reducing the time the lock is held and/or using fine-grained
locking should improve parallelism, and therefore performance, for
pmd.

5.4.5 Comparing Jikes to OpenJDK

In Section 5.4.1 and 5.4.2 we analyzed the performance of the garbage
collector and the application with Jikes RVM. We made two novel ob-
servations: collector parallelism is limited, leading to an optimal GC
thread count of 2, and the number of GC threads and the number of
application threads have an impact on the amount of collection work.
We present here a similar analysis on the OpenJDK virtual machine,
revealing that OpenJDK’s garbage collector scales better than in Jikes,
benefiting from up to 8 GC threads. However, we find that collection
work still increases with the number of application threads and GC
threads.

Figure 5.12 shows the bottle graphs for pseudoJBB with 4 appli-

88 Bottle Graphs: Visualizing Per-Thread Performance

(a) 1 GC thread (b) 2 GC threads

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

5 4 3 2 1 0 1 2 3 4 5

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

Parallelism

GarbageCollector
MainThread

Thread-1

Thread-2
Thread-3
Thread-4

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

5 4 3 2 1 0 1 2 3 4 5

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

Parallelism

MainThread
GarbageCollector

Thread-1

Thread-2
Thread-3
Thread-4

(c) 4 GC threads (d) 8 GC threads

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

5 4 3 2 1 0 1 2 3 4 5

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

Parallelism

MainThread
GarbageCollector

Thread-1

Thread-2
Thread-3
Thread-4

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

Parallelism

MainThread
Thread-1
Thread-2

Thread-3
Thread-4

GarbageCollector

Figure 5.12: PseudoJBB: scaling of GC threads on OpenJDK, with 4 applica-
tion threads.

cation threads on OpenJDK, with an increasing GC thread count. We
chose pseudoJBB graphs here because they are most illustrative of col-
lector behavior, other benchmarks have similar behavior. It is immedi-
ately clear that GC scales much better for OpenJDK than for Jikes. The
average collection parallelism across all multi-threaded benchmarks is
1, 1.9, 3.3 and 4.5, for 1, 2, 4 and 8 GC threads, respectively. This par-
allelism is substantially larger than the 1.8 parallelism for 8 GC threads
on Jikes.

We further investigate the performance of OpenJDK by viewing its
collection work and time as a function of GC and application thread
count in Figure 5.13. We present average collection work (a) and time
(b) for the multi-threaded benchmarks normalized to the 1 GC and 2

5.4 Jikes RVM and Benchmark Analysis 89

(a) Garbage collection work

2

4

8

1

1.25

1.5

1.75

2

2.25

2.5

2.75

1
2

4
8

app threads

co
ll

e
ct

io
n

 w
o

rk

GC threads

(b) Garbage collection time

2

4

8

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

1
2

4
8

app threads

co
ll

e
ct

io
n

 t
im

e

GC threads

Figure 5.13: Average OpenJDK garbage collection work (a) and time (b) as
a function of application and GC thread count (multi-threaded applications).
Numbers are normalized to the 2 application and 1 GC thread configuration.
Garbage collection on OpenJDK scales better than on Jikes, but collection work also
increases with increasing GC thread count and increasing application thread count.

application thread configuration (contrasted with Figure 5.3 for Jikes).
We confirm that OpenJDK scales better than Jikes by seeing that collec-
tion time decreases with an increasing number of GC threads in Fig-
ure 5.13(b). There is less synchronization during garbage collection in
OpenJDK compared to Jikes, as evident in Figure 5.14 which shows the
number of futex calls per unit of time as a function of the number of
GC threads. Although the number of futex calls also increases with in-
creasing GC thread count, the increase is much smaller for OpenJDK
than for Jikes.

For OpenJDK, we found 4 GC threads to be optimal with either
2 or 4 applications threads, and 8 GC threads optimal for 8 applica-

90 Bottle Graphs: Visualizing Per-Thread Performance

0

50

100

150

200

250

1 2 4 8

n
o

.
o

f
fu

te
x
 c

a
ll

s
p

e
r

m
s

no. of GC threads

Jikes

OpenJDK

Figure 5.14: Average number of futex calls per ms during garbage collection
as a function of GC thread count, with 4 application threads (multi-threaded
applications).

tion threads. Garbage collection on OpenJDK scales better than for
Jikes RVM, but we observe that collector time slightly increases or does
not decrease much between 4 and 8 GC threads, which suggests that
garbage collection scaling on OpenJDK saturates at 4 to 8 GC threads.
This is in line with the findings in [34], where the authors observe a de-
crease in collection time when the number of GC threads is increased
from 1 to 6, but an increase when the number of GC threads is increased
to 12 and more.

Our two other observations for Jikes, namely that collection work
increases with GC thread count and application thread count, still hold
for OpenJDK. Figure 5.13(a) for OpenJDK looks very similar to Fig-
ure 5.3(a) for Jikes. While we have observed in both JVMs a saturation
point in the utility of increasing the parallelism of garbage collection
threads, we still find that inter-thread synchronization has a significant
impact on garbage collection performance.

5.5 Related Work

We now describe related work in Java performance analysis. We detail
one particularly related visualization tool called WAIT in Section 5.5.1.

5.5 Related Work 91

0

1

2

3

4

5

6

7

8

Th
re
ad
s

Time

CPU
Lock

Figure 5.15: Output of WAIT for pmd running on OpenJDK with 8 application
and 2 GC threads using a 1 second sampling rate. The graph shows 3 samples
that monitor application thread status: CPU threads are active, while Lock
threads are inactive.

5.5.1 Comparison to IBM WAIT

IBM WAIT5 [1] is a performance visualization tool for diagnosing per-
formance and scalability bottlenecks in Java programs, particularly
server workloads. It uses a light-weight profiler that collects samples
of information about each thread at regular points in time (config-
urable through a sampling rate parameter). WAIT records information
on each thread’s status (active, waiting or idle), locks (held or waiting
for), and where in the code the thread is executing. This data is used to
construct a graph that visualizes the threads’ status over time (x-axis),
each bar showing a sample point. The bar’s height is the total number
of threads for that sample, and the bar is color-coded by thread status.
Figure 5.15 shows the output of WAIT for pmd running on OpenJDK
with 8 application threads and 2 GC threads during the 13th iteration
using a 1 second sampling rate, where CPU denotes active threads, and
Lock denotes inactive threads. Information about code position and
locks can be retrieved by clicking on the bars in the timeline.

While WAIT is a powerful analysis tool for Java programs, it has
some limitations. First, it can be applied only to Java application
threads, not to parallel programs written in other languages or to
Java virtual machine service threads, both of which can be analyzed
easily with our bottle graphs because we use OS modules. Second,
WAIT is sampling-based, and thus collects a snapshot of information
only at specific program points, with increasing overhead with finer-

5https://wait.ibm.com/

https://wait.ibm.com/

92 Bottle Graphs: Visualizing Per-Thread Performance

0

1

2

3

4
5

6

7

8

Th
re
ad
s

Time

CPU

Lock

Figure 5.16: Output of WAIT for pmd running on OpenJDK with 8 application
and 2 GC threads using a 50 millisecond sampling rate. The graph shows
one bar per sample that monitors application thread status: CPU threads are
active, while Lock threads are inactive.

granularity sampling. To demonstrate this, Figure 5.15 shows results
for pmd using at the lowest default sampling period value of 1 second.
WAIT only collects 3 samples, which suggest that there is only one
active (CPU) thread during the execution. We lowered the sampling
rate to 50 milliseconds by modifying WAIT’s scripts, and produced the
more detailed graph in Figure 5.16 which reveals that the number of
active threads varies over time. However, the overhead of using the
1 second versus 50 millisecond sampling period jumps from 0.87% to
16.62%, an order of magnitude larger than for our tool.

In contrast, bottle graphs contain much more information for lower
overhead. Our OS modules are continually monitoring every thread
status change, and aggregating our execution time share and parallelism
metrics at all times in a multi-threaded program run, on a per-thread ba-
sis. For roughly the same overhead, we contrast Figure 5.10 showing
bottle graphs at various times in a run of pmd with Figure 5.15 show-
ing WAIT’s three thread samples. WAIT’s visual representation makes
it hard to know that one of pmd’s threads is a bottleneck throughout
the run. In the end, pmd’s parallel imbalance due to input imbalance is
difficult to detect without analyzing the source code and input. In con-
clusion, bottle graphs’ visualization of scalability per-thread facilitates
grouping by category (such as for thread pools or garbage collection
threads) in order to analyze the group’s execution time share, paral-
lelism, or work to pinpoint parallelism imbalances.

5.5.2 Java Parallelism Analysis

Analyzing Java performance and parallelism has become an active area
of research recently. Most of these studies use custom-built analyzers

5.6 Summary 93

to measure specific characteristics of interest. For example, Kalibera
et al. [36] analyze concurrency, memory sharing and synchronization
behavior of the DaCapo benchmark suite. They provide concurrency
metrics and analyze the applications in-depth, focusing on inherent ap-
plication characteristics. They do not provide a visual analysis tool to
measure and quantify performance and scalability, and reveal bottle-
necks on real hardware as we do.

Researchers recently analyzed the scalability problems of the gar-
bage collector in the OpenJDK JVM [34]. They also confirm that the to-
tal collection times increase with the number of collector threads, with-
out providing a visualization tool. They did follow-on work to opti-
mize scalability at large thread-counts for the parallel stop-the-world
garbage collection in OpenJDK [29]. Similarly, Chen et al. [11] analyzed
scalability issues in the OpenJDK JVM, and provided explanations at
the hardware level by measuring cache misses, DTLB misses, pipeline
misses, and cache-to-cache transfers. They also explored the sizing of
the young generation and measured the benefits of thread-local alloca-
tion. They did not, however, vary the number of collection threads or
explore the scalability limitations of the parallel collector itself, or how
it interacts with the application, as we do in this work.

5.6 Summary

In this chapter we used bottle graphs to analyze Java applications. Bot-
tle graphs are an intuitive and useful tool for visualizing per-thread
performance of a multi-threaded application. We showed how bottle
graphs can be constructed using light-weight OS modules, allowing us
to generate bottle graphs of unmodified applications running on na-
tive hardware. We then illustrated the usefulness of bottle graphs by
doing an experimental study of 12 Java benchmarks running on top
of Jikes RVM. We studied the scaling of application and JVM service
threads, revealing scalability limitations in several well-known appli-
cations (avrora and pmd), and poor scaling of the garbage collection
threads on Jikes RVM. We compared this poor scaling of the garbage
collector against OpenJDK’s garbage collector, which apparently scales
much better for our thread counts.

94 Bottle Graphs: Visualizing Per-Thread Performance

Chapter 6

Speedup Stacks: Analyzing
Application Scaling

In this chapter we study how the applications as a whole scale by using our
third performance analysis method, speedup stacks.

6.1 Introduction

Speedup stacks are meant for analyzing the scalability of an entire
application, by quantifying the various causes of sub-linear speedup.
This provides insight to programmers on why their multi-threaded
programs’ speedup over its single-threaded version is not actually pro-
portional to the number of cores and threads. In this dissertation we
present two versions of speedup stacks, a first version that uses hard-
ware support for measuring speedup delimiters, and a second version
that uses software support and targets managed language applications.

We first describe a method for computing a speedup stack from a
single multi-threaded execution of an application, by making use of an
additional hardware component. We validate the accuracy of this ap-
proach across a set of SPLASH-2, PARSEC and Rodinia benchmarks.
We also describe several applications for speedup stacks apart from the
obvious application of analyzing performance scaling bottlenecks. We
use speedup stacks to classify benchmarks based on their scaling bot-
tlenecks, we identify optimization opportunities, and we analyze LLC
performance.

We then show how speedup stacks for managed language applica-

96 Speedup Stacks: Analyzing Application Scaling

tions can be generated using a profiling method that is implemented
in software. We use this method for analyzing scaling behavior of Java
applications running on Jikes RVM with both a stop-the-world and con-
current garbage collector.

6.2 Speedup Stacks Measured in Hardware

As explained in the Chapter 3, in order to compute a speedup stack, we
need to break up multi-threaded execution time into its various cycle
components. In this version of speedup stacks we include the following
speedup delimiters for multi-threaded workloads on multi-core hard-
ware: resource sharing (which can either have a positive or a negative
impact on performance), synchronization, cache coherence, load imbal-
ance and parallelization overhead.

6.2.1 Constructing Speedup Stacks

For measuring these scaling delimiters we developed a tool that uses
additional hardware support. The reason for choosing for hardware
support is because it is difficult to measure the impact of resource shar-
ing on performance precisely with a software only solution. Therefore,
we designed a dedicated counter architecture in hardware that mea-
sures the interference between threads running on a multi-core pro-
cessor. The next sections describe this counter architecture and how
it measures both negative and positive interference between threads,
subsequent sections then describe how we measure the other scaling
delimiters needed for this version of speedup stacks.

Resource Sharing

Our counter architecture makes a distinction between two sources of
negative inter-thread interference due to resource sharing: (i) inter-
thread misses in the shared cache (i.e., the per-thread miss rate in-
creases due to conflicts induced by other threads), and (ii) resource and
bandwidth contention in the memory subsystem which causes intra-
thread misses to take longer — we will refer to these additional cycles
as waiting cycles. We first discuss how the counter architecture mea-
sures those two types of negative interference, we then discuss how the
counter architecture accounts for positive interference between threads.

6.2 Speedup Stacks Measured in Hardware 97

core 0 core 1

shared cache

ATD core 1ATD core 0

Figure 6.1: The ATD samples a number of sets in the shared cache to identify
inter-thread misses.

Inter-thread misses. We detect inter-thread misses using a structure
called the Auxiliary Tag Directory (ATD). The inter-thread miss perfor-
mance impact is then estimated through an accounting mechanism.

The Auxiliary Tag Directory (ATD) is a structure private to each
core that keeps track of what the status of the shared cache would be
if it were private to that core, see also Figure 6.1. The ATD was first
proposed by Qureshi and Patt [52] to keep track of the utility of the
various ways in a shared cache to each of the cores; we use the ATD for
a different purpose. The ATD keeps track of the tags and replacement
bits (not the data) due to accesses by the given core. An access to the
shared cache accesses both the shared cache and the private ATD of
that core. Only the shared cache returns data (from the cache itself if
the access results in a hit, or from main memory if it is a miss), but
both the shared cache and the ATD adjust the tag and replacement bits.
An LLC miss is classified as an intra-thread miss if it also misses in
the ATD; in case of a hit in the ATD, the LLC miss is classified as an
inter-thread miss.

Now that we know which misses in the shared cache are inter-
thread versus intra-thread misses, the next question is to determine
what their performance penalty is. We measure the number of inter-
ference cycles (miss penalty) due to inter-thread misses as the number
of cycles an inter-thread miss blocks the head of a full ROB (an insight

98 Speedup Stacks: Analyzing Application Scaling

provided by interval analysis [25]). The mechanism is as follows: as
soon as the ROB is full and an inter-thread miss is at the ROB head,
we start counting interference cycles. This requires being able to detect
that the ROB is full, and a bit per ROB entry to keep track of whether a
load miss is an inter-thread miss.

In spite of the fact that the ATD contains only tag and replacement
bits and no data, the hardware overhead is substantial: more than 6%
of a 2MB shared cache per core, and thus the overhead for a multi-core
processor with a large number of cores quickly becomes substantial and
practically infeasible. We therefore use set sampling [38] to reduce the
hardware overhead. We evaluated different sampling rates and found
that sampling 32 out of 4096 sets yields the best balance between hard-
ware overhead and accuracy. The hardware overhead of the sampled
ATD equals less than 0.05% of the shared cache per core. However, be-
cause of set sampling we are unable to detect all inter-thread misses; we
only know the status (inter-thread versus intra-thread miss) for those
accesses that are sampled in the ATD. We therefore have to estimate the
total number of interference cycles. We considered two approaches.

The first approach, the extrapolation approach, measures the penalty
of the sampled inter-thread misses only, and then extrapolates to all
inter-thread misses by multiplying by the sampling ratio.

inter-thread miss penalty ≈ sampled inter-thread miss penalty

× no. of cache accesses
no. of sampled cache accesses

. (6.1)

The second approach, the interpolation approach, measures the
penalty of all LLC misses (both inter-thread and intra-thread misses),
and estimates the fraction of this penalty due to inter-thread misses by
taking the ratio of the number of sampled inter-thread misses to the
total number of sampled misses:

inter-thread miss penalty ≈ total miss penalty

×no. of sampled inter-thread misses
no. of sampled misses

. (6.2)

We compared the accuracy of both approaches and the conclusion is
that the extrapolation approach is slightly more accurate. The reason is
that the extrapolation approach measures the penalties of the sampled
inter-thread misses, whereas the interpolation approach calculates the

6.2 Speedup Stacks Measured in Hardware 99

penalty for all misses (both inter-thread and intra-thread misses). The
penalty for all misses may not be representative for the inter-thread
misses, hence the extrapolation approach tends to be more accurate.
We will therefore use the extrapolation approach in our measurement
tool.

Waiting cycles for intra-thread misses. Intra-thread misses can have
additional waiting cycles that prolong the latency seen for these misses
due to resource and bandwidth contention in the memory subsys-
tem: memory bus conflicts, bank conflicts and inter-thread row buffer
misses. We now discuss how the counter architecture counts the num-
ber of waiting cycles and how to estimate their impact on overall
performance.

Bus contention. When a memory operation from one core occupies
one of the buses (command, address or data bus) while a memory oper-
ation from another core also wants to access the bus, then the latter in-
curs waiting cycles that would not have occurred in isolated execution.
This is detected by inspecting the bus owner if a memory operation is
ready to be scheduled on the bus and the bus is occupied. If the bus is
owned by another core, then waiting cycles are accounted for.

Bank contention An access that is delayed due to its destination bank
being occupied by an access of another core, is detected similarly, and
the extra waiting cycles is accounted for.

Inter-thread row buffer misses This type of interference occurs when
a row buffer hit in isolated execution becomes a row buffer miss dur-
ing multi-core execution, in case of an open-page memory policy. This
occurs when a memory operation of another core accesses another row
between the two consecutive accesses of one core to the same row. Since
row buffer misses take considerably more time to be serviced than row
buffer hits, this introduces an additional penalty and should be ac-
counted for as waiting cycles.

Inter-thread row buffer misses are detected by maintaining an Open
Row Array (ORA) per core (e.g., in the memory controller), see Fig-
ure 6.2. The ORA keeps track of the ID of the most recently accessed
row per memory bank per core. If a row buffer miss hits in the private
ORA, then the miss is caused by interference, and the extra penalty
(i.e., the difference between the closed and open page access times) is
accounted for as waiting cycles. In case of a closed-page policy, the
ORA is not needed.

100 Speedup Stacks: Analyzing Application Scaling

shared cache

core 0 core 1

memory controller

ORA
core 0

ORA
core 1

bank 0 bank 1 bank 2 bank 3

Figure 6.2: The ORA keeps track of the most recently accessed row per mem-
ory bank per core.

Hardware prefetching A long-latency load miss that also appears in
the hardware prefetch queue (i.e., the prefetch is to be issued and/or
is underway), is accounted waiting cycles if the load blocks commit at
the head of a full ROB. This strategy basically assumes that the prefetch
would be timely in isolated execution — while it is not during multi-
core execution because of contention. Although this is not always the
case, this assumption keeps the accounting architecture simple and
we found it to account for a major fraction of the interference due to
prefetching.

The waiting cycles need to be kept track of for each individual
memory access because there may be multiple outstanding inter-thread
misses (whose latency is potentially hidden). The counter architecture
keeps track of the waiting cycles in the MSHRs: we add a waiting cycle
counter (10 bits) to each MSHR entry, and we add all waiting cycles
pertaining to this memory access to this counter.

To estimate the performance impact of the waiting cycles, we again
use the insights provided by interval analysis [25]: a long-latency load
miss only has impact on overall performance if it blocks the head of

6.2 Speedup Stacks Measured in Hardware 101

the ROB and causes the ROB to fill up. This implies that waiting cycles
need to be accounted as interference cycles only if the long-latency load
miss makes it to the ROB head and fills up the ROB. Based on this in-
sight, we propose the following mechanism: if a miss blocks the head
of the ROB and causes the ROB to fill up, then we add the miss’ waiting
cycles (that are kept track of in the MSHRs) to the per-core interference
cycle counter.

We need to account for waiting cycles for the intra-thread misses
only — the additional penalty incurred by inter-thread misses is ac-
counted for as described before. The number of intra-thread misses
is not readily available though (because of set sampling in the ATD).
Therefore we need to extrapolate on the sampled sets in the ATD. In
line with what we described above, we again consider two approaches.

The extrapolation approach measures the waiting cycles of the sam-
pled intra-thread misses and then extrapolates by multiplying with the
ratio of cache accesses versus the number of sampled accesses:

total waiting cycles ≈ waiting cycles sampled intra-thread misses

× no. of cache accesses
no. of sampled cache accesses

. (6.3)

The interpolation approach takes the number of waiting cycles of all
misses and multiplies that with the estimated fraction of intra-thread
misses. This approximates the number of waiting cycles for all intra-
thread misses.

total waiting cycles ≈ waiting cycles for all misses

×no. of sampled intra-thread misses
no. of sampled misses

. (6.4)

For the same reasons as the ones discussed earlier, we find that ex-
trapolation is more accurate than interpolation. Therefore, we also use
the extrapolation approach to measure the total number of waiting cy-
cles in our measurement tool.

Positive interference. Besides negative interference, threads of a
multi-threaded application also exhibit positive interference as threads
share data, which implies that one thread can load data into the shared
LLC that can possibly be reused by other threads. This means that the
other threads will experience a hit instead of a miss in case of a private

102 Speedup Stacks: Analyzing Application Scaling

LLC. This sharing effect thus has a positive impact on performance and
should be measured by the cycle accounting architecture.

We refer to an LLC hit as an inter-thread hit if the thread accesses data
that was previously brought into the shared LLC by another thread. An
inter-thread hit can be detected by our counting architecture using the
aforementioned ATDs: a hit in the shared LLC that results in a miss in
the private ATD, is classified as an inter-thread hit.

To quantify the impact of inter-thread hits on performance, we need
to estimate the penalty an access would have seen if it were a miss. We
cannot use an extrapolation technique here, because there is no penalty,
hence we cannot measure it. Instead, we use an interpolation approach:
we take the total number of cycles a core is stalled on an LLC load
miss, and divide that by the number of LLC load misses. This yields
the average miss penalty. Because we use sampling in the ATDs we
do not know the exact number of inter-thread hits. To estimate this
number we take the number of sampled inter-thread hits and multiply
it with the sampling factor (total number of LLC accesses divided by
the number of sampled ATD accesses). We then multiply this number
with the average miss penalty to obtain an estimate for the total positive
interference.

Spinning

After resource sharing, spinning is the second scaling delimiter we dis-
cuss. Spinning happens when a thread wants to acquire a lock to enter
a critical section, but the lock is in use by another thread. Similarly,
spinning may happen on a barrier. In that case, the thread enters a spin
loop and constantly checks the lock until it is released. This implies
that the time a thread spends in a spinning loop should be accounted
as interference cycles.

To detect spinning and account for its interference cycles, we imple-
mented and evaluated two spinning detection mechanisms that have
been proposed in literature. Li et al. [43] propose a mechanism where
all backward branches are monitored and considered as possible spin-
ning loop branches. If the processor state is unchanged since the last
occurrence of the same branch, then the loop is considered a spinning
loop. Processor state is tracked using a compact representation to rep-
resent register state changes, and when a (non-silent) store occurs, pro-
cessor state is assumed altered. By keeping a timestamp at the occur-

6.2 Speedup Stacks Measured in Hardware 103

rence of backward branches, and subtracting this timestamp from the
current time (when the same branch is executed and processor state is
unchanged), one can quantify the time spent in spin loops.

A second mechanism, proposed by Tian et al. [60], detects spinning
by monitoring loads, as a spin loop contains at least one load (to check
the lock status). If a load instruction loads the same data more than a
given number of times (determined by a threshold), it is marked as pos-
sibly belonging to a spinning loop. If at some point in time, a marked
load loads different data, then it is checked whether the new data was
written by another core (using cache coherence information). If so, it
was a spinning loop. Again, by keeping a timestamp at the first oc-
currence of a load, the total spinning time can be measured. Tian et
al. implemented this technique in software, but it could also be done
in hardware. Because the Tian et al. mechanism is simpler to imple-
ment (only keeping track of loads, no processor state monitoring), we
consider this method for quantifying spinning overhead.

This discussion assumed lock-based critical sections. In the case
of transactional memory, one could measure the execution time of a
transaction, and when it is rolled back because of a conflict, the time
spent in the transaction is added as a synchronization penalty.

Yielding

Spinning consumes resources despite of the fact that the thread does
not make forward progress. Synchronization libraries are therefore op-
timized to avoid spinning when a long waiting time is to be expected.
Instead of spinning, the threads trying to acquire the lock or barrier are
scheduled out, and are awoken when the synchronization condition is
met. Like that, the operating system can schedule other threads on the
core, or shut down a core if there are no available threads. Since this
is also a form of synchronization penalty, we also measure the time a
thread is scheduled out. This can be done in a straightforward way in
the operating system. In this work, we refer to this effect as yielding.

Cache Coherence

Cache coherence affects multi-threaded performance by invalidating
local cache lines in private caches, which in its turn may induce ad-
ditional L1 cache misses. However, a balanced out-of-order processor

104 Speedup Stacks: Analyzing Application Scaling

core can hide (most) L1 data cache misses very well [25], hence we do
not account for cache coherence misses for speedup stacks. This may
introduce error in case a workload suffers from a large number of L1
data cache misses along with long chains of dependent instructions
which would prevent the out-of-order core from hiding their perfor-
mance impact. However, in case L1 misses do incur a penalty (e.g., in
an in-order architecture), coherence misses can be detected by noticing
that invalidation by the coherence mechanism causes a cache line to
be invalid without being (immediately) replaced by another cache line.
Also, in case of an invalidation, usually only the status bits are adapted,
while the tag remains in the tag array. If a miss occurs, but there is a
hit in the tag array and the status is invalid, we can assume that this is
most likely a coherence miss.

Load Imbalance

The load imbalance component for a thread is computed as follows.
Knowing the execution time of the slowest thread, we add a load im-
balance component to each of the other threads such that the sum of all
the cycle components for each thread equals the execution time of the
slowest thread. This accounts for the load imbalance at the end of the
(parallel part of the) program.

Imbalance at barriers is accounted as synchronization, either through
spinning or yielding, as described earlier in this chapter. The reason
is that it is impossible for the cycle accounting architecture when im-
plemented in hardware to distinguish lock spinning from barrier spin-
ning (or yielding). This problem can be solved though by computing
speedup stacks for each region between consecutive barriers; the im-
balance before each barrier (to be computed alike the load imbalance
at the end of the program as described above) then quantifies barrier
overhead.

Hardware Cost of Profiling Tool

The total hardware cost of the counter architecture for measuring the
impact of resource sharing is limited to 952 bytes per core:

• ATD: 32 (sampled sets) × 8 (associativity) × 27 bit (tag + replace-
ment) = 864 byte;

6.2 Speedup Stacks Measured in Hardware 105

• Marking (inter-thread) misses: 1 bit per ROB entry = 128 bit = 16
byte;

• The intra-thread latency counters in the MSHRs: 32 × 10 bit = 40
byte;

• ORA: 20 bit × 8 (banks) = 20 byte;

• The counters for the total number of accesses, the number of sam-
pled accesses and the number of sampled inter-thread misses: 3
× 20 bit = 8 byte;

• The total interference cycle counter: 32 bit = 4 byte.

This hardware cost scales linearly with the number of cores. Even for
a multi-core processor with a large number of cores, the total hardware
cost is limited compared to the total transistor budget.

Not only is the amount of storage needed small, implementing the
counter architecture should also be feasible in practice. The circuitry is
localized to specific regions of the processor core. In particular, there is
a set of counters in the ROB and MSHRs; there is the ATDs; and there is
the ORAs. The counter architecture is unlikely to affect cycle time. The
counters are read out by system software at regular (but coarse-grain)
intervals, e.g., at the end of each timeslice.

The accounting for spinning overhead using the Tian et al. [60] ap-
proach incurs a load table: assuming a spinning loop contains at most
8 loads, 8 entries are needed in the table, containing the load PC, the
address, the loaded data, a mark bit and a timestamp, which amounts
to 217 bytes per core (assuming 64 bit addresses and data). The total
hardware cost is therefore 1.1KB per core, or 18KB in total for a 16-core
CMP.

The cycle component accounting architecture implemented in hard-
ware provides raw cycle counts that are then processed in software.
For example, for computing positive interference, the cycle account-
ing hardware architecture computes the total number of cycles a core
is stalled on an LLC load miss plus the number of LLC load misses;
system software then computes the average penalty per miss from
these raw event counts and performs the interpolation as previously
explained. This way, hardware complexity is limited and the proposed
accounting architecture is feasible to implement in hardware.

106 Speedup Stacks: Analyzing Application Scaling

Suite Benchmark Input
SPLASH-2 cholesky tk29.O

fft 4M points
lu.cont 1024×1024 matrix
lu.ncont 1024×1024 matrix
radix 1M integers
water-nsquared 2197 molecules
water-spatial 2197 molecules

PARSEC blackscholes simsmall,simmedium
bodytrack simsmall
canneal simsmall,simmedium
dedup simsmall,simmedium
facesim simsmall,simmedium
fluidanimate simmedium
ferret simsmall,simmedium
freqmine simsmall,simmedium
swaptions simsmall,simmedium

Rodinia bfs 1M nodes
heartwall test.avi, 5 frames
lud 512×512 matrix
needle 4096×4096 matrix
srad 2048×2048 matrix

Table 6.1: Considered benchmarks for speedup stacks.

6.2.2 Experimental Setup

This section describes the experimental setup used for generating the
speedup stacks in the subsequent sections. We implemented the cycle
accounting architecture in the gem5 simulator [6]. Further, we simu-
late a set of multi-threaded benchmarks from the SPLASH-2 [63], PAR-
SEC [5] and Rodinia [13] benchmark suites that we were able to run in
our simulation environment (see Table 6.1). All benchmarks were com-
piled using GCC version 4.3.2 with the -O3 optimization level. Results
are gathered from the parallel fraction of the benchmarks only. We sim-
ulated all benchmarks for 1, 2, 4, 8 and 16 threads, and we assume as
many threads as there are cores, unless mentioned otherwise.

The simulated processor is a CMP consisting of four-wide super-
scalar out-of-order cores. L1 caches are private (32KB L1 I-cache and
64KB L1 D-cache), and the shared L2 cache is 2MB in size and is the

6.2 Speedup Stacks Measured in Hardware 107

Core frequency 2GHz
Core pipeline width fetch: 8; dispatch, issue and commit: 4
ROB size 128 entries
Load and store buffer 96 entries each
Branch predictor 64K entry tournament, 4K entry BTB
No. of cores 1, 2, 4, 8, 16
L1 I-cache 32KB, 4-way, 64B line, 1 cycle
L1 D-cache 64KB, 4-way, 64B line, 2 cycles
Shared L2 cache 2MB, 8-way, 64B line, 10 cycles, 32 MSHRs
On-chip bus (L1↔ L2) 2GHz, 32 byte
Memory controller FCFS, 16-entry write buffer
Memory bus 1333MHz, 64 bit
DRAM 667MHz DDR, 8 banks, 4KB row buffer
DRAM timing 9-9-9-7 (tRP-tRCD-CL-CWL)

Table 6.2: Simulated multi-core processor configurations for speedup stacks.

last-level cache (LLC) — the technique proposed in this work can be
trivially extended to architectures with private L2 caches and a shared
L3 LLC. All cores share the memory bus and the memory subsystem
with 8 memory banks. Further details about the simulated processor
configuration are listed in Table 6.2.

6.2.3 Validation

Validating an implementation for computing speedup stacks is chal-
lenging, because it is hard to isolate each of the stack contributors.
We first validate how well our counter architecture estimates interfer-
ence between threads and subsequently we evaluate the accuracy of
the estimated speedup by a speedup stack versus the actual measured
speedup for an application.

Validating the Counter Architecture

To evaluate the accuracy of the counter architecture we consider 19
SPEC CPU2006 benchmarks that properly run in our simulation en-
vironment. We use SimPoint [56] to select 1B-instruction representative
samples from which we create a large number of multi-program work-
loads. The reason for choosing for a multi-program instead of a multi-
threaded workload for the validation of our counter architecture is that

108 Speedup Stacks: Analyzing Application Scaling

in a multi-program workload threads only affect each other’s perfor-
mance due to resource sharing, and not because of synchronization.
Furthermore, positive interference can neutralize negative interference
in a multi-threaded application which makes evaluating the accuracy
of the counter architecture more complicated.

For the evaluation of the accuracy of the counter architecture we
define error as the relative difference between the estimated and the
actual isolated execution times:

Error =
Tisolated,estimated − Tisolated, measured

Tisolated, measured
(6.5)

=

(
Tmulti-core − Testimated interference

)
− Tisolated, measured

Tisolated, measured
.

(6.6)

A positive error implies an overestimation of the predicted isolated
execution time or an underestimation of inter-thread interference; a
negative error implies an underestimation of the predicted isolated ex-
ecution time. We adopt the following simulation approach for com-
puting the error. We first simulate a multi-program workload and stop
the simulation when one of the programs has executed 1B instructions.
We estimate the isolated execution times for each of the programs us-
ing the proposed counter architecture, i.e., Tisolated,estimated. We also
determine the number of instructions executed for each program in
the workload mix — one program has executed 1B instructions, the
other programs have executed less than 1B instructions. For each pro-
gram in the workload mix, we then run a single-threaded simulation
for as many instructions as during multi-core execution, and we deter-
mine the isolated execution time, i.e., Tisolated,measured. This procedure
guarantees that the same amount of work is done during multi-core ex-
ecution as during isolated single-threaded execution for each program
in the workload mix.

We evaluate the accuracy of the counter architecture in two steps.
We first consider an idealized memory system and evaluate the counter
architecture’s accuracy for estimating the impact of inter-thread misses
(additional misses in the shared cache) on overall performance. Sec-
ondly, we evaluate the counter architecture’s overall accuracy while
considering both inter-thread misses as well as waiting cycles on intra-

6.2 Speedup Stacks Measured in Hardware 109

0%

2%

4%

6%

8%

10%

12%

14%
a
s
ta

r

b
w

a
v
e
s

b
z
ip

2

c
a

c
tu

s
A

D
M

g
c
c

g
e

m
s
fd

td

g
o

b
m

k

h
2

6
4

re
f

h
m

m
e
r

lb
m

lib
q
u

a
n

tu
m

m
c
f

o
m

n
e
tp

p

p
e

rl
b

e
n

c
h

p
o

v
ra

y

s
je

n
g

s
o

p
le

x

x
a

la
n

c
b

m
k

z
e

u
s
m

p

a
v
e
ra

g
e

E
rr

o
r

Interpolation

Extrapolation

No sampling

Figure 6.3: Average isolated execution time estimation error per benchmark
for Equation 6.1 and 6.2 (eight cores, fixed memory latency, 32 sampled sets),
compared to no sampling.

0%

1%

2%

3%

4%

5%

6%

4096 2048 1024 512 256 128 64 32 16 8 4 2

E
rr

o
r

Sampled sets

Interpolation - 2 cores

Extrapolation - 2 cores

Interpolation - 4 cores

Extrapolation - 4 cores

Interpolation - 8 cores

Extrapolation - 8 cores

Figure 6.4: Average isolated execution time estimation error for the interpo-
lation and extrapolation approaches as a function of the number of sampled
sets; we assume fixed memory access latency.

thread misses; we consider a realistic memory system including hard-
ware prefetching, memory banks and an open-page policy.

Estimating the impact of inter-thread misses. We first evaluate the
counter architecture’s accuracy for estimating the effect of inter-thread
misses on overall performance. To this end, we consider an idealized
memory system in order to focus on inter-thread misses and eliminate

110 Speedup Stacks: Analyzing Application Scaling

the effect of waiting cycles on intra-thread misses. We assume a fixed
memory access latency (100ns) and assume there are no bank conflicts.
Figure 6.3 shows the isolated execution time error when using the ex-
trapolation and interpolation approaches (Equations 6.1 and 6.2, re-
spectively). The extrapolation approach slightly outperforms the in-
terpolation approach with an average error of 4.05% versus 4.66%, re-
spectively.

Figure 6.4 shows the impact of sampling frequency in the ATD on
accuracy for both approximations. The error of the interpolation ap-
proximation seems to be less sensitive to sampling frequency compared
to the extrapolation approach. The reason is that the interpolation ap-
proach measures the penalty of all misses to infer the penalty for the
inter-thread misses, whereas the extrapolation approach measures the
penalty of the sampled inter-thread misses only and then extrapolates
to all inter-thread misses. At a low sampling frequency, the penalty
for the sampled inter-thread misses is not representative for the other
inter-thread misses, hence accuracy degrades. We find that 32 sampled
sets is a good design point for two, four and eight cores.

Overall accuracy evaluation. In the previous section, we assumed
idealized memory (fixed access latency) in order to evaluate the counter
architecture’s accuracy with respect to estimating the impact of inter-
thread misses. We now consider a realistic memory system with mul-
tiple banks along with an open-page policy; further, we assume hard-
ware prefetching is enabled. This allows for evaluating the account-
ing architecture’s ability to accurately estimate the effect of both inter-
thread misses and waiting cycles. Figure 6.5 shows the measured ver-
sus estimated interference for two, four and eight cores. The counter
architecture achieves an average (absolute) error of 3.75% for 2 cores,
5.57% for 4 cores, and 14.2% for 8 cores. This is fairly accurate given the
level of interference, which equals 9.3% for 2 cores, 19.5% for 4 cores,
and 55.4% for 8 cores — in other words, the accounting architecture
captures 74.3% of the inter-thread interference on average for 8 cores.
Note that although the absolute error increases with increasing core
count, e.g., it increases from 5.57% for 4 cores to 14.2% for 8 cores, the
relative error compared to the level of interference actually decreases
from 28.5% for 4 cores to 25.6% for 8 cores. In other words, absolute er-
ror increases with core count but so does the level of interference, hence
in the end, the relative accuracy of the counter architecture is fairly sta-

6.2 Speedup Stacks Measured in Hardware 111

(a) Two cores

0%

5%

10%

15%

20%

25%

30%

35%
a

s
ta

r

b
w

a
v
e
s

b
z
ip

2

c
a

c
tu

s
A

D
M

g
c
c

g
e

m
s
fd

td

g
o

b
m

k

h
2

6
4

re
f

h
m

m
e
r

lb
m

lib
q

u
a
n

tu
m

m
c
f

o
m

n
e

tp
p

p
e

rl
b

e
n

c
h

p
o

v
ra

y

s
je

n
g

s
o

p
le

x

x
a

la
n

c
b

m
k

z
e

u
s
m

p

In
te

rf
e

re
n

c
e

Estimated

Measured

(b) Four cores

0%

10%

20%

30%

40%

50%

60%

a
s
ta

r

b
w

a
v
e
s

b
z
ip

2

c
a

c
tu

s
A

D
M

g
c
c

g
e

m
s
fd

td

g
o

b
m

k

h
2

6
4

re
f

h
m

m
e
r

lb
m

lib
q

u
a
n

tu
m

m
c
f

o
m

n
e

tp
p

p
e

rl
b

e
n

c
h

p
o

v
ra

y

s
je

n
g

s
o

p
le

x

x
a

la
n

c
b

m
k

z
e

u
s
m

p

In
te

rf
e

re
n

c
e

Estimated

Measured

(c) Eight cores

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

200%

a
s
ta

r

b
w

a
v
e

s

b
z
ip

2

c
a

c
tu

s
A

D
M

g
c
c

g
e
m

s
fd

td

g
o
b
m

k

h
2
6

4
re

f

h
m

m
e
r

lb
m

lib
q
u

a
n
tu

m

m
c
f

o
m

n
e
tp

p

p
e
rl

b
e
n

c
h

p
o
v
ra

y

s
je

n
g

s
o
p

le
x

x
a
la

n
c
b

m
k

z
e
u

s
m

p

In
te

rf
e

re
n
c
e

Estimated

Measured

Figure 6.5: Estimated versus measured interference for (a) a dual-core, (b) a
quad-core, and (c) an eight-core system.

112 Speedup Stacks: Analyzing Application Scaling

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

In
te

rf
e

re
n

c
e

 /
 E

rr
o

r

Cumulative fraction of workloads

Interference

Error

Figure 6.6: Interference and error for estimating isolated execution time for an
8-core processor; workloads are sorted along the horizontal axis.

ble and actually decreases with core count, i.e., the proposed counter
architecture is able to consistently capture the most significant sources
of inter-thread interference. Further, we expect absolute accuracy to im-
prove given microarchitecture enhancements that reduce inter-thread
interference, such as multiple memory controllers, limiting the number
of cores that share a cache, etc.

The results shown so far presented error numbers that are aver-
aged across a number of multi-program workloads, e.g., there are 19
2-program workloads and 10 4-program and 10 8-program workloads
per benchmark. Figure 6.6 shows the same data but does not average
out across a number of multi-program workloads; i.e., there is a data
point for each workload (190 in total). The graph shows a cumulative
distribution for the interference and the error: the horizontal axis shows
the fraction of workloads for which the interference and error are be-
low the corresponding value on the vertical axis. This graph shows the
amount of variation in both the interference and the error. We observe
that interference can be very high for some workloads, up to 3.8×. The
proposed cycle accounting architecture accurately identifies the work-
loads with high interference levels, and the error is substantially lower
compared to the level of interference. In particular, for 80% of the work-
loads, interference is as large as 92%, yet the error is less than 21%; simi-
larly, for 70% of workloads, interference is as large as 59% with an error
below 13.6%. This graph shows once more that the accounting archi-

6.2 Speedup Stacks Measured in Hardware 113

a
s
ta

r

b
w

a
v
e
s

b
z
ip

2

c
a
c
tu

s
A

D
M

g
c
c

g
e
m

s
fd

td

g
o
b
m

k

h
2
6
4
re

f

h
m

m
e

r

lb
m

lib
q
u
a
n

tu
m

m
c
f

o
m

n
e
tp

p

p
e
rl
b
e
n
c
h

p
o
v
ra

y

s
je

n
g

s
o
p
le

x

x
a
la

n
c
b
m

k

z
e
u
s
m

p

a
v
e
ra

g
e

-30%

-20%

-10%

0%

10%

20%

30%

40%

50%

60%

70%

E
rr

o
r

Fixed latency - no
sampling

Fixed latency - sampling

Memory banks and open-
page policy

Memory banks, open-
page policy and
prefetching

Figure 6.7: Error analysis per benchmark for an 8-core processor.

tecture is able to measure a large fraction of the interference in all cases:
a higher interference results in a higher absolute error, but the relative
error remains approximately the same (around 25%).

Error analysis. In order to better understand the different sources of
error, we set up a number of experiments and we quantified how the er-
ror is affected by various sources of interference for the various bench-
marks, see Figure 6.7. For the first bar, we assumed no bank nor row
buffer conflicts (fixed memory access latency), no hardware prefetch-
ing and full (i.e., non-sampled) ATDs. In this case, the accounting
architecture achieves an average absolute error of 4.1% on an 8-core
system. This error follows mainly from second-order effects that are
not captured. For example, intra-thread waiting cycles hidden under-
neath inter-thread misses during multi-core execution are possibly not
hidden in isolated execution; in this case, the accounting architecture
would account for the waiting cycles, although it should not. We chose
not to consider second-order effects in order not to complicate the ac-
counting architecture hardware.

The second bar shows the impact of sampling only 32 sets of the
cache. This has no noticeable effect on accuracy. Adding banks and
considering an open-page policy (third bar) increases the average er-
ror to 11.5%, and adding prefetchers (fourth bar) increases the overall
error to 14.2%. These errors also stem from second-order effects that

114 Speedup Stacks: Analyzing Application Scaling

0

2

4

6

8

10

12

14

16

b
la

c
k
s
c
h

o
le

s
 s

m
a
ll

b
o

d
y
tr

a
c
k
 s

m
a
ll

c
a
n

n
e
a
l
s
m

a
ll

d
e

d
u
p
 s

m
a
ll

fa
c
e
s
im

 s
m

a
ll

fe
rr

e
t
s
m

a
ll

fr
e
q

m
in

e
 s

m
a
ll

s
w

a
p
ti
o
n

s
 s

m
a

ll

b
la

c
k
s
c
h

o
le

s
 m

e
d
iu

m

c
a
n

n
e
a
l
m

e
d
iu

m

d
e

d
u
p
 m

e
d
iu

m

fa
c
e
s
im

 m
e
d
iu

m

fe
rr

e
t
m

e
d

iu
m

fl
u
id

a
n
im

a
te

 m
e
d
iu

m

fr
e
q

m
in

e
 m

e
d
iu

m

s
w

a
p
ti
o
n

s
 m

e
d

iu
m

c
h
o

le
s
k
y ff
t

lu
.c

o
n
t

lu
.n

c
o
n
t

ra
d

ix

w
a

te
r-

n
s
q

u
a
re

d

w
a

te
r-

s
p
a

ti
a
l

b
fs

h
e

a
rt

w
a
ll

lu
d

n
e

e
d
le

s
ra

d

s
p
e
e
d
u
p

actual

estimated

Figure 6.8: Actual speedup and estimated speedup for all benchmarks for 2,
4, 8 and 16 threads.

are not modeled in our cycle-accounting method, to reduce the over-
head and complexity of the hardware additions. For example, when an
inter-thread miss causes waiting cycles (e.g., due to a bank conflict) for
an intra-thread miss of the same thread, these cycles are not accounted
since both misses belong to the same thread. Accounting for this would
require a categorization of every miss into inter- or intra-thread, which
is impossible using a sampled ATD, and would also need communi-
cating the inter- and intra-thread miss information to the memory con-
troller, which complicates the design.

Furthermore, Figure 6.7 also shows that the resulting error can be
positive or negative (we took the absolute values to calculate the av-
erages, such that these errors do not compensate for each other). This
shows that our technique is not biased, i.e., there is no consistent under-
or overestimation. As a result, additional accounting to decrease the er-
ror in the case interference is overestimated tends to also increase the
error in case the interference is underestimated and vice-versa. This
means that in order to reduce the error consistently, both underestima-
tion and overestimation cases needs to be handled, which would make
the accounting architecture overly complex.

Validating Estimated Speedup

After validating our counter architecture, we now look at the accuracy
of the estimated speedup Ŝ from a speedup stack versus the actual

6.2 Speedup Stacks Measured in Hardware 115

speedup S for an application. We define error as

Error =
Ŝ − S
N

, (6.7)

with N the number of cores/threads.
Figure 6.8 shows the actual speedup against the estimated speedup

for 2, 4, 8 and 16 threads/cores. Accuracy is fairly good: cycle com-
ponent accounting identifies the benchmarks that scale well versus the
benchmarks that do not, and more importantly, the method fairly ac-
curately identifies the degree of scaling. The average absolute error is
3.0%, 3.4%, 2.8% and 5.1%, for 2, 4, 8 and 16 threads, respectively.

For some benchmarks through, the estimated speedup is off, see
for example fluidanimate medium (22.0%), swaptions small (21.3%),
lu.ncont (16.2%) and srad (14.8%). The reason for these errors are mul-
tifold. For one, as mentioned before, the proposed method does not ac-
count for parallelization overhead. Computing the increase in dynamic
instruction count for a multi-threaded execution over single-threaded
execution, and subtracting the number of instructions due to spinning,
is a measure for the amount of parallelization overhead. We found par-
allelization overhead to be fairly high for swaptions small (26% more
instructions) and fluidanimate medium (18% more instructions). Other
possible reasons for the error are inaccuracies for estimating the impact
of positive and negative interference (cf. interpolation and extrapola-
tion); inaccuracies for computing spinning overhead as it is based on
some threshold; not taking into account the impact of cache coherence.

6.2.4 Applications

Having obtained confidence in the accuracy of speedup stacks, we now
explore a number of applications to illustrate their usefulness for per-
forming performance analysis and workload characterization studies,
as well as for driving hardware and software optimizations.

Benchmark Classification

After generating speedup stacks for a large number of benchmarks, one
can classify the benchmarks according to their scaling behavior. Fig-
ure 6.9 shows such a schematic representation for all the benchmarks
considered in this study, based on the speedup stacks for 16-threaded

116 Speedup Stacks: Analyzing Application Scaling

execution. This tree-like representation is built up as follows. Going
from left to right, we first classify the benchmarks according to their
scaling behavior. Good scaling behavior means a speedup of at least
10× for 16 threads, while poor scaling benchmarks have a speedup of
less than 5×. The in-between benchmarks are classified as moderate.
The next bifurcation in the tree is based on the largest scaling delimiter
(i.e., the largest component in the speedup stack). It shows the main
scaling delimiters for each of the benchmarks that belong to a certain
scaling category. The type of the component always appears on top of
the line. If there is no component on top of the line, then there is no con-
siderable component that limits scaling (e.g., for blackscholes, as dis-
cussed before). The following two bifurcations reflect the second and
third largest scaling bottlenecks. Again, if there is no component name
on top of the line, then all remaining components are negligible. The
fifth column lists the names of the benchmarks, followed by the bench-
mark suite they belong to and their actual speedup number. Figure 6.10
shows speedup stacks for a subset of the benchmarks. For some appli-
cations the base speedup differs slightly from the reported speedup in
Figure 6.9 because the speedup stacks show estimated speedup while
the other figure shows actual measured speedup.

An insightful way for reading the tree graph in Figure 6.9, is to read
the graph from right to left. To find the characteristics of a specific
benchmark, locate the benchmark at the right handside of the figure.
Then follow the first line that is underneath this benchmark to the left
to find out the main scaling limiting components and its scaling cat-
egory. For example for facesim, the major scaling bottlenecks are, in
decreasing order, yielding, LLC interference and memory interference,
while achieving moderate scaling.

There are a number of interesting observations to be made from this
tree-based classification. First, only few benchmarks scale well: 5 out
of the 28 benchmarks have a speedup of at least 10× for 16 threads.
The other two categories (moderate and poor scaling) contain approxi-
mately the same number of benchmarks, but by looking at the speedup
numbers, it is clear that even in the moderate group, most of the bench-
marks achieve a speedup only slightly above 5×. The poorest perform-
ing benchmark (ferret) shows a speedup of less than 3× for 16 threads.
It is also interesting to note that scaling behavior typically improves
with input size, see swaptions as an extreme example (speedup in-
creases from 3.8× to 13.0× when the simmedium input is used com-
pared to simsmall); this illustrates the weak scaling behavior of this

6.2 Speedup Stacks Measured in Hardware 117

s
c
a
lin

g
1
s
t

c
o
m

p
2
n
d
 c

o
m

p
3
rd

 c
o
m

p
b
e
n
c
h
m

a
rk

s
u
it
e

s
p
e
e
d
u
p

b
la

c
k
s
c
h
o
le

s
p
a
rs

e
c
_
m

e
d
iu

m
1
5
.9

4

b
la

c
k
s
c
h
o
le

s
p
a
rs

e
c
_
s
m

a
ll

1
5
.7

1

m
e
m

o
ry

y
ie

ld
in

g
ra

d
ix

s
p
la

s
h
2

1
1
.6

0

s
w

a
p
ti
o
n
s

p
a
rs

e
c
_
m

e
d
iu

m
1
2
.9

9

g
o
o
d

y
ie

ld
in

g
h
e
a
rt

w
a
ll

ro
d
in

ia
1
0
.3

9

m
e
m

o
ry

y
ie

ld
in

g
c
a
c
h
e

s
ra

d
ro

d
in

ia
5
.2

0

s
p
in

n
in

g
y
ie

ld
in

g
m

e
m

o
ry

c
h
o
le

s
k
y

s
p
la

s
h
2

5
.0

2

lu
d

ro
d
in

ia
5
.7

7

w
a
te

r-
n
s
q

u
a
re

d
s
p
la

s
h
2

5
.7

7

fl
u
id

a
n
im

a
te

p
a
rs

e
c
_
m

e
d
iu

m
5
.7

1

lu
.n

c
o
n
t

s
p
la

s
h
2

5
.5

3

lu
.c

o
n
t

s
p
la

s
h
2

5
.7

9

fa
c
e
s
im

p
a
rs

e
c
_
m

e
d
iu

m
5
.5

0

c
a
c
h
e

m
e
m

o
ry

fa
c
e
s
im

p
a
rs

e
c
_
s
m

a
ll

5
.4

6

ff
t

s
p
la

s
h
2

9
.4

3

c
a
n
n
e
a
l

p
a
rs

e
c
_
m

e
d
iu

m
7
.6

1

c
a
n
n
e
a
l

p
a
rs

e
c
_
s
m

a
ll

6
.9

3

m
o
d
e
ra

te
y
ie

ld
in

g
m

e
m

o
ry

b
fs

ro
d
in

ia
5
.6

5

fe
rr

e
t

p
a
rs

e
c
_
m

e
d
iu

m
4
.7

7

w
a
te

r-
s
p
a
ti
a
l

s
p
la

s
h
2

7
.5

7

d
e
d
u
p

p
a
rs

e
c
_
m

e
d
iu

m
4
.1

2

fr
e
q

m
in

e
p
a
rs

e
c
_
s
m

a
ll

4
.0

9

fr
e
q

m
in

e
p
a
rs

e
c
_
m

e
d
iu

m
3
.8

9

s
w

a
p
ti
o
n
s

p
a
rs

e
c
_
s
m

a
ll

3
.8

1

d
e
d
u
p

p
a
rs

e
c
_
s
m

a
ll

3
.5

6

b
o
d
y
tr

a
c
k

p
a
rs

e
c
_
s
m

a
ll

3
.0

2

fe
rr

e
t

p
a
rs

e
c
_
s
m

a
ll

2
.9

4

p
o
o
r

y
ie

ld
in

g
m

e
m

o
ry

c
a
c
h
e

n
e
e
d
le

ro
d
in

ia
4
.1

4

Figure 6.9: Tree graph showing main speedup delimiter components for each
benchmark for 16 threads: follow the first line underneath a benchmark from
right to left to find its scaling behavior and its third, second and first (from
right to left) largest components.

118 Speedup Stacks: Analyzing Application Scaling

0

2

4

6

8

10

12

14

16
n

e
e

d
le

fr
e

q
m

in
e

 m
e

d
iu

m

d
e
d

u
p

 m
e

d
iu

m

fe
rr

e
t
m

e
d

iu
m

b
fs

c
a

n
n

e
a
l
m

e
d

iu
m

fl
u

id
a

n
im

a
te

 m
e

d
iu

m

lu
d

s
ra

d

h
e
a

rt
w

a
ll

s
w

a
p
ti
o

n
s
 m

e
d

iu
m

s
p

e
e

d
u

p

base speedup positive LLC interference net negative LLC interference

negative memory interference spinning yielding

Figure 6.10: Speedup stacks for a selection of benchmarks with 16 threads.

Figure 6.11: Speedup numbers for ferret as a function of the number of cores.
The number of threads equals the number of cores (left bars) or equals 16
(right bars).

workload.
Interestingly, yielding seems to be the most significant scaling de-

limiter (see also the speedup stacks in Figure 6.10). It is the largest
component for 23 of the 28 benchmarks (see the second column from

6.2 Speedup Stacks Measured in Hardware 119

Figure 6.12: Negative, positive and net LLC interference components.

the left), and the second largest component for 3 of the remaining 5
benchmarks. For 13 benchmarks it is the only component with a non-
negligible value, which means that the only limiting factor is the fact
that only a few threads are active at a time. In this case, the speedup
number is an approximation of the average number of active threads.
This means that, although there are 16 threads spawned, only a fraction
of the threads is active, and hence only a fraction of the cores are busy.
This suggests that these benchmarks do not need 16 cores; hence, a
number of cores that is slightly larger than their speedup number might
yield the same performance. This insight is validated in Figure 6.11,
which compares speedup for the 16-threaded version of ferret run on 2,
4, 8 and 16 cores. It reveals that if there are 16 threads spawned, per-
formance saturates at 8 cores (the lower performance for 16 cores can
be explained by the Linux scheduler being less efficient when there are
more cores). The graph also shows the speedup when the number of
threads equals the number of cores, from which it follows that having
more software threads than hardware thread contexts (cores) leads to
better performance.

Understanding LLC Performance

Sharing the LLC has two main advantages: cache space is used more ef-
ficiently compared to private caches, and shared data has to be fetched
only once, and then it can be used by all cores (positive interference).
This comes at the cost of negative interference (threads evicting each
other’s data). In this section, we investigate the impact of positive ver-
sus negative interference.

120 Speedup Stacks: Analyzing Application Scaling

Figure 6.13: Negative, positive and net interference components for cholesky
as a function of LLC size.

Figure 6.12 shows the negative, positive and net interference com-
ponents in the LLC assuming 16 cores; only the benchmarks with a non-
negligible positive interference component are shown. For all bench-
marks, the negative interference exceeds the positive interference, re-
sulting in a net component that has a negative impact on performance
(which is the green component in Figure 6.10).

However, as we enlarge the LLC, negative interference should de-
crease (fewer capacity misses), while positive interference should re-
main constant (since this is a result of the characteristics of the program,
not the hardware). This is validated in Figure 6.13, where we show the
same components for cholesky for an LLC of 2MB (default), 4MB, 8MB
and 16MB. Negative interference indeed decreases, while positive in-
terference remains approximately constant as a function of cache size,
resulting in a smaller net interference component, and even a negative
one, which means that the total impact of cache sharing is positive for
performance.

6.3 Speedup Stacks Measured in Software

We now discuss our second version of speedup stacks that is targeted
towards managed language applications. In this version of speedup
stacks we include a set of scaling delimiters that is tailored towards
managed language applications, which is garbage collection, sequen-
tial parts of the application, thread imbalance, synchronization and
hardware interference.

6.3 Speedup Stacks Measured in Software 121

6.3.1 Constructing Speedup Stacks

For constructing those speedup stacks and measuring the impact of
this set of scaling components on performance, we reuse our software
profiling tool that we designed for generating bottle graphs (see Sec-
tion 5.2). This allows us to generate speedup stacks for unmodified ap-
plications running on native hardware, incurring a low overhead. For
generating speedup stacks we had to extend this profiling tool. How
we modified this tool, so that it is also able to measure the various scal-
ing delimiters for managed runtime applications, will be discussed in
the following sections.

Garbage Collection

We construct speedup stacks for Java applications running with a stop-
the-world garbage collector (meaning either the garbage collector or
the application is running, but never both at the same time) and with
a concurrent garbage collector (meaning parts of the garbage collection
can be done while the application is running). We first discuss how we
measure the impact on the performance of an application when using
a stop-the-world garbage collector.

For constructing a speedup stack, we need to know the total time
that the garbage collection threads pause the application. For a stop-
the-world collector this value can be read out of a bottle graph, because
it is the sum of the heights of all garbage collector boxes. This is due
to the fact that garbage collection threads can only run concurrently
with each other. Therefore, summing these heights leads to the total
time garbage collection was running and thus halted the application
threads.

For a concurrent garbage collector we can not follow the same ap-
proach, because garbage collector threads can now run concurrently
with the application threads. However, at some points during the exe-
cution of an application a concurrent collector can also halt the applica-
tion threads and thus behaves like a stop-the-world garbage collector,
for example, when dealing with a full heap and the application can not
allocate objects any more. We modify the JVM so that it signals when
concurrent GC becomes stop-the-world garbage collection. In our pro-
filing tool we then record the timing of these periods.

122 Speedup Stacks: Analyzing Application Scaling

Synchronization

When threads have to wait due to synchronization they use a futex
system call. We already intercept this system call with our profiling tool
because it causes a thread to change its state and therefore delineates a
time interval over which we calculate our criticality metric. We extend
the profiling tool to measure the time threads are waiting inside this
system call. This value is needed by our speedup stacks to quantify the
impact of synchronization on application speedup.

Sequential Parts of the Application

In Jikes RVM, there is a service thread called the MainThread that per-
forms the sequential part of the application, namely initializing the
JVM and data, performing initial compilation, spawning the applica-
tion threads, and later performing shutdown activities. Therefore, the
time this thread is active is considered as the sequential part of an ap-
plication. This value can be read out of a bottle graph by looking at the
height of the box of the MainThread.

Thread Imbalance

Thread imbalance happens when application threads do not finish their
execution at the same time. As soon as one thread finishes its execution,
the thread starts waiting inside an exit system call until all threads have
finished their execution. This is similar to what happens with barrier
synchronization between threads. To account for this waiting time, we
extend our profiling tool to measure the time threads spend waiting
inside an exit system call.

Hardware Interference

The impact of hardware interference on the performance of an appli-
cation is very difficult to measure in system software. Though we can-
not precisely measure this overhead, we present this component as the
difference between the measured speedup and the ideal speedup, mi-
nus all the other overhead components. We also explain this remaining
component by analyzing the application behavior through hardware
performance counters. Because we have the advantage of running un-

6.3 Speedup Stacks Measured in Software 123

Benchmark Suite Version Overhead
lusearch DaCapo 2009 1.15%
pmd DaCapo 2009 0.53%
sunflow DaCapo 2009 1.04%
xalan DaCapo 2009 0.40%

Table 6.3: Considered benchmarks for speedup stacks measured in software.

modified managed applications on current hardware, we can quickly
and accurately gather statistics on real program behavior.

6.3.2 Experimental Setup

Our experimental setup used for this version speedup stacks is similar
to the experimental setup that we used for bottle graphs and discussed
in Section 5.2. We use the same hardware platform but the evaluated set
of benchmarks is different from before. We again use DaCapo bench-
marks, but only a subset of them. Table 6.3 shows the benchmarks we
evaluate in this study. The reason for choosing only these applications
is that speedup stacks only make sense for multi-threaded Java applica-
tions, and the other two multi-threaded applications we evaluated with
bottle graphs, namely avrora and pseudoJBB, do not allow to vary the
number of application threads without changing the input size.

We again use Jikes Research Virtual Machine version 3.12 and do ex-
periments with the default best-performing garbage collector on Jikes,
the stop-the-world parallel generational Immix collector. We also eval-
uate applications running with a concurrent garbage collector. Jikes
RVM uses a mark-sweep snapshot-at-the-beginning concurrent GC al-
gorithm. The concurrent collector initiates a new collection cycle with
a trigger defined per benchmark, i.e., a quantity of memory in bytes is
specified, and after this amount of allocation, a new concurrent col-
lection cycle is triggered. This concurrent collector requires a small
pause of the application to first identify a consistent root set, and later
to actually free memory. Between these two actions, the collector (all
GC threads) runs concurrently with the application threads in order to
trace the object graph and find reachable objects in order to identify live
data. All objects that are not marked as live are then freed by the collec-
tor, while the application is paused. In addition, during the concurrent
activity, all application writes go through a barrier to coordinate with
the GC so that they are not writing to the same object, and so the GC

124 Speedup Stacks: Analyzing Application Scaling

0

1

2

3

4

5

6

7

8

2 threads 4 threads 8 threads 2 threads 4 threads 8 threads 2 threads 4 threads 8 threads 2 threads 4 threads 8 threads

lusearch pmd sunflow xalan

S
p

e
e

d
u

p

Measured Hardware Interference Synchronization Thread Imbalance Sequential Parts Garbage Collector

Figure 6.14: Speedup stacks for all applications with a stop-the-world garbage
collector (2×minimum heap size).

maintains a consistent view of heap pointers [7].

6.3.3 Java Application Scaling Analysis

For understanding how the whole application scales and the relative
contributions of various multi-threaded performance deficiencies, we
now use the speedup stacks. In the next sections we will analyze the
performance of managed language applications running on Jikes RVM
with a stop-the-world and a concurrent garbage collector. We always
use two GC threads, which was identified to be optimal for Jikes RVM
in the bottle graphs study in Chapter 5.

Stop-the-world Garbage Collection

Figure 6.14 shows speedup stacks for all our multi-threaded bench-
marks with 2, 4 and 8 application threads as compared to their single-
threaded versions. The orange component at the bottom of each stack
shows the measured speedup between single-threaded and multi-
threaded execution and the colored boxes on top of it show the various
speedup delimiters and their impact on speedup.

From the stacks we can see that most of our applications do not
scale very well, although our bottle graphs showed that the individual

6.3 Speedup Stacks Measured in Software 125

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

In
s
tr

u
c
ti
o

n
s

L
1
-l
o
a

d
s

L
1
-l

o
a
d

s
-m

is
s
e

s

L
L
C

-l
o

a
d

s

L
L
C

-l
o
a
d
-m

is
s
e
s

In
s
tr

u
c
ti
o

n
s

L
1
-l
o
a

d
s

L
1
-l

o
a
d

s
-m

is
s
e

s

L
L
C

-l
o

a
d

s

L
L
C

-l
o
a
d
-m

is
s
e
s

In
s
tr

u
c
ti
o

n
s

L
1
-l
o
a

d
s

L
1
-l

o
a
d

s
-m

is
s
e

s

L
L
C

-l
o

a
d

s

L
L
C

-l
o
a
d
-m

is
s
e
s

In
s
tr

u
c
ti
o

n
s

L
1
-l
o
a

d
s

L
1
-l

o
a
d

s
-m

is
s
e

s

L
L
C

-l
o

a
d

s

L
L
C

-l
o
a
d
-m

is
s
e
s

lusearch pmd sunflow xalan

R
e

la
ti
v
e
 t

o
 1

 t
h

re
a

d

2 threads 4 threads 8 threads

Figure 6.15: Data from hardware performance counters for all applications
using a stop-the-world garbage collector. (Data normalized to one application
thread.)

threads scale very well (see for example xalan in Figure 5.2). Applica-
tions sunflow and xalan show comparable speedup results, but the rea-
son why their speedup is limited is different. While sunflow mostly suf-
fers from interference in the underlying hardware, xalan mostly suffers
from the limited garbage collector scalability. Pmd is the application
that scales the worst, which we could already expect from our previous
study of this benchmark with bottle graphs. The imbalance between
the threads is the largest speedup delimiter, but the garbage collector
and synchronization between the threads also have a large impact on
speedup. The reason why lusearch does not scale well is a combination
of all components in the speedup stack. Again the garbage collector is
the main reason, together with interference between the threads in the
hardware, or parallelism overhead.

To better understand the component for interference in the hard-
ware, we look at data gathered from hardware performance counters
in Figure 6.15. For sunflow, the application with the largest interference
component, we see that the number of last level cache (LLC) loads goes
up very fast when scaling to 4 and 8 application threads, while the num-
ber of LLC load misses does not increase significantly. For other bench-
marks the interference in the hardware translates into a combination of

126 Speedup Stacks: Analyzing Application Scaling

0

1

2

3

4

5

6

7

8

2 threads 4 threads 8 threads 2 threads 4 threads 8 threads 2 threads 4 threads 8 threads 2 threads 4 threads 8 threads

lusearch pmd sunflow xalan

S
p

e
e

d
u

p

Measured Hardware Interference Synchronization Thread Imbalance Sequential Parts Garbage Collector

Figure 6.16: Speedup stacks for all applications with a concurrent garbage
collector (2×minimum heap size).

increased number of LLC loads and LLC load misses, particularly for
lusearch. The figure also reveals that the number of instructions stays
almost constant when increasing the number of application threads,
meaning that speedup is not limited because of additional instructions
(called parallelization overhead) necessary for creating threads, doing
synchronization, etc.

Concurrent Garbage Collection

From concurrent garbage collection, it is expected that speedup is
less limited by garbage collection as it is the case with stop-the-world
garbage collection, because part of the garbage collection can now
be done while the application threads are running and therefore the
garbage collector should be less determinative to execution time than
it is the case with a stop-the-world garbage collector. Figure 6.16 shows
speedup stacks for our applications running with a concurrent garbage
collector. In this experiment we use the same heap sizes for the ap-
plications as in the previous section which is two times the minimum
heap size. As opposed to what we expected, the speedup stacks reveal
that for all benchmarks the impact of the garbage collector has become
larger compared to stop-the-world garbage collection.

The application that suffers the most from the garbage collector

6.3 Speedup Stacks Measured in Software 127

(a) 1 Application thread (b) 2 Application threads

 0

 2

 4

 6

 8

 10

 12

3 2 1 0 1 2 3

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

Parallelism

GarbageCollector
MainThread

Query0

 0

 2

 4

 6

 8

 10

 12

5 4 3 2 1 0 1 2 3 4 5

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

Parallelism

GarbageCollector
MainThread

Query0
Query1

(c) 4 Application threads (d) 8 Application threads

 0

 2

 4

 6

 8

 10

 12

6 5 4 3 2 1 0 1 2 3 4 5 6

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

Parallelism

GarbageCollector
MainThread

Query1

Query2
Query0
Query3

 0

 2

 4

 6

 8

 10

 12

9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 10

R
u

n
ti
m

e
 (

in
 s

e
c
o

n
d

s
)

Parallelism

GarbageCollector
MainThread

Query1
Query0
Query7

Query4
Query2
Query6
Query3
Query5

Figure 6.17: lusearch: scaling of application threads with concurrent garbage
collector (2×minimum heap size).

is lusearch. This means that the concurrent garbage collector pauses
the application threads very often, leading to a lot of stop-the-world
phases for the application. This can also be seen from the bottle graphs
in Figure 6.17. We note that in Jikes RVM, when we specify that there
should be two garbage collection threads, the runtime environment
spawns two threads to perform stop-the-world pauses, and two that
perform concurrent tracing activities, in addition to having a main
collector thread that performs some initialization work. Thus, in the
bottle graphs of applications using the concurrent collector, there are
five GC thread boxes. The graphs show that three GC threads always
have limited parallelism (the stop-the-world ones and the initialization
thread), while two have parallelism approaching that of the application

128 Speedup Stacks: Analyzing Application Scaling

0

1

2

3

4

5

6

7

8

2 threads 4 threads 8 threads 2 threads 4 threads 8 threads 2 threads 4 threads 8 threads 2 threads 4 threads 8 threads

lusearch pmd sunflow xalan

S
p

e
e

d
u

p

Measured Hardware Interference Synchronization Thread Imbalance Sequential Parts Garbage Collector

Figure 6.18: Speedup stacks for all applications with a concurrent garbage
collector (10×minimum heap size).

threads (the concurrent GC threads). The height of the stop-the-world
GC boxes, especially for 4 and 8 application threads, reveals that these
threads have a high share of the execution time and are therefore very
critical. From this we conclude that the concurrent garbage collector in
Jikes RVM does not scale well, especially with small heap sizes.

To explore the scalability of the concurrent garbage collector when
it is not constrained, we present speedup stacks in Figure 6.18 when the
applications are run with a larger heap size (10×minimum heap size).
For all applications, the impact of the GC’s scalability on speedup is
significantly reduced and the measured speedup improved, compared
to Figure 6.16 (except for pmd that still suffers from large thread imbal-
ance). For sunflow and xalan, the main speedup delimiter is interfer-
ence in the hardware, as expected because of more threads concurrently
running, while for lusearch it is a combination of different components.

For explaining the interference in hardware, we again present mea-
surements from the hardware performance counters in Figure 6.19
when running with a concurrent collector and a large heap. Luse-
arch suffers from an increased number of LLC loads as the application
thread count increases, and LLC load misses increase from 2 to 4 ap-
plication threads, but go down for 8 threads. With a larger number of
application threads, the positive interference between the threads in
the LLC (meaning threads load data in the shared cache that can later

6.3 Speedup Stacks Measured in Software 129

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

In
s
tr

u
c
ti
o
n
s

L
1
-l

o
a

d
s

L
1
-l
o
a

d
s
-m

is
s
e
s

L
L
C

-l
o
a
d
s

L
L
C

-l
o

a
d

-m
is

s
e
s

In
s
tr

u
c
ti
o
n
s

L
1
-l

o
a

d
s

L
1
-l
o
a

d
s
-m

is
s
e
s

L
L
C

-l
o
a
d
s

L
L
C

-l
o

a
d

-m
is

s
e
s

In
s
tr

u
c
ti
o
n
s

L
1
-l

o
a

d
s

L
1
-l
o
a

d
s
-m

is
s
e
s

L
L
C

-l
o
a
d
s

L
L
C

-l
o

a
d

-m
is

s
e
s

In
s
tr

u
c
ti
o
n
s

L
1
-l

o
a

d
s

L
1
-l
o
a

d
s
-m

is
s
e
s

L
L
C

-l
o
a
d
s

L
L
C

-l
o

a
d

-m
is

s
e
s

lusearch pmd sunflow xalan

R
e

la
ti
v
e
 t

o
 1

 t
h
re

a
d

2 threads 4 threads 8 threads

Figure 6.19: Data from hardware performance counters for all applications
using a concurrent garbage collector with a large heap. (Data normalized to
one application thread.)

be used by other threads) compensates almost completely for the neg-
ative LLC interference. Interestingly, this was not the case when using
a stop-the-world collector (see Figure 6.15), which can disrupt the LLC
and incur more LLC load misses for the application, especially at high
thread counts and with a smaller heap size.

Sunflow has an increasing number of L1 loads, misses and LLC
loads, which are the main causes of the hardware interference. This
behavior is somewhat different than when we run sunflow with a stop-
the-world garbage collector which does not have an increasing number
of L1 loads as the application thread count increases. The increased
number of L1 loads are due to the garbage collector accessing the L1
cache more often, but because the garbage collector is concurrent, the
application does not suffer too much (and we see roughly equal num-
bers of L1 load misses as with a stop-the-world collector). When us-
ing the concurrent collector, we see that sunflow has fewer LLC loads
than with the stop-the-world collector, but that is because we also use
a larger heap size.

Xalan with a concurrent collector shows an increasing number of
L1 load misses, which results in larger amounts of LLC load accesses
and LLC load misses. This behavior is similar to using a stop-the-world

130 Speedup Stacks: Analyzing Application Scaling

garbage collector. Pmd’s trends in Figure 6.19 also follow those with a
stop-the-world GC and those of xalan; increased L1 load misses result
in more LLC loads and load misses, even when using concurrent GC.

6.4 Summary

In this chapter, we showed that speedup stacks facilitate the visualiza-
tion of performance and scalability bottlenecks in multi-threaded ap-
plications. We presented two versions of speedup stacks, one version
that is measured in hardware and another version that is measured
in software. We used the first version of speedup stacks for identi-
fying scaling bottlenecks in a set of SPLASH-2, PARSEC and Rodinia
benchmarks, for classifying the benchmarks based on their scaling de-
limiters, and for understanding LLC performance. The second version
of speedup stacks, that is measured in software, targets managed lan-
guage applications. They not only reinforce what we discovered with
bottle graphs in the previous chapter (as in the case of pmd), but also
reveal the impact of the limited scalability of the garbage collector, syn-
chronization activities between application threads, imbalance of appli-
cation threads, and the effect of hardware interference in the memory
subsystem (which can be explained by performance counter data).

Chapter 7

Dynamic Performance
Optimization

In this chapter we show how our methods, besides useful for program analysis,
can also be used to dynamically optimize applications’ performance.

7.1 Introduction

In the previous chapters, we used our methods for analyzing the per-
formance and scalability of multi-threaded applications. However, we
can also use them to dynamically optimize performance. In this chapter
we optimize applications in three dimensions.

First, we propose a mechanism to dynamically optimize fairness by
an improved scheduling of threads on a multi-core processor, which
is not trivial, because interference between threads can lead to certain
threads making faster progress than others.

Secondly, we design an algorithm to dynamically optimize the per-
formance of multi-threaded applications, hereby reducing total execu-
tion time of the application. We also compare the performance of our
algorithm to closely related work, called Bottleneck Identification and
Scheduling (BIS) [34].

Thirdly, we show how energy consumption of a multi-threaded ap-
plication can be reduced, which is becoming an important design con-
cern for mobile and server market hardware.

132 Dynamic Performance Optimization

7.2 Improving Multi-Core Scheduling

In Chapter 2 we discussed the problem of interference between threads
running on a multi-core processor. In Section 6.2.1 we discussed the de-
sign of a profiling tool for speedup stacks, and we proposed a counter
architecture that captures the impact of resource sharing on the per-
formance of threads. We now use this counter architecture to improve
multi-core scheduling.

Progress-aware scheduling leverages the counter architecture to
track per-thread progress and schedules slowly-progressing threads
more frequently so that they are able to catch up and achieve better
performance. Progress-agnostic scheduling assumes that each thread
makes equal progress during each timeslice, however, a thread that
suffers more from resource contention will observe a higher slowdown
compared to other threads. The pitfall is that the scheduler in an OS
or VMM is unaware of this slowdown, which may lead to severely
degraded performance for workloads that suffer significantly from
resource contention.

To evaluate thread-progress aware scheduling, we set up the fol-
lowing experiment. We consider 4-program and 8-program workload
mixes, which we schedule on a 2-core and 4-core system, respectively.
We assume a 5ms timeslice in these experiments, and we simulate until
at least one benchmark has executed 1 billion instructions. The schedul-
ing techniques are implemented in the simulator itself, as we do not
simulate the operating system in these experiments. We use the the
same experimental setup as in Section 6.2.1.

The baseline progress-agnostic scheduling policy schedules pro-
grams such that they all get an equal amount of timeslices; e.g., round-
robin achieves this property. Progress-aware scheduling, on the other
hand, tracks progress for each of the programs in the mix, and priori-
tizes the programs with the highest current slowdown to be scheduled
first. Slowdown is computed as the execution time on the multi-core
system divided by the estimated isolated execution time. In other
words, progress-aware scheduling aims at speeding up slow-progress
programs so that all users experience good performance and none of
the programs experience huge slowdowns nor starvation.

Figure 7.1 reports the progress-agnostic and progress aware schedul-
ing fairness observed for each of the workload mixes for the 2-core and
4-core systems. Fairness [22] is defined as the progress of the slowest

7.2 Improving Multi-Core Scheduling 133

(a) Four-program mixes on 2-core system

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ro

g
re

s
s
-a

g
n

o
s
ti
c
 s

c
h

e
d

u
lin

g

Progress-aware scheduling

Fairness

(b) Eight-program mixes on 4-core system

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ro

g
re

s
s
-a

g
n

o
s
ti
c
 s

c
h

e
d

u
lin

g

Progress-aware scheduling

Fairness

Figure 7.1: Fairness results for progress-aware and progress-agnostic schedul-
ing for (a) 4-program mixes on 2 cores, and (b) 8-program mixes on 4 cores.

134 Dynamic Performance Optimization

program divided by the progress of the fastest program in the job mix.
A fairness of 1 means that each thread has made the same progress,
while a zero fairness means that at least one thread is starving. Each
point represents the progress-agnostic (Y-axis) and progress-aware
(X-axis) scheduling fairness of a specific workload. Points on the in-
dicated bisector have the same fairness for both scheduling policies.
Points beneath the bisector have higher fairness for the progress-aware
scheduling, while points above the bisector show a smaller fairness for
progress-aware scheduling compared to progress-agnostic scheduling.

Progress-aware scheduling improves fairness substantially over
progress-agnostic scheduling for most of the workloads: the majority
of the points are located beneath the bisector. For the points at the
bottom right corner, the fairness improvement is the largest: a smaller
than 0.1 fairness for the progress-agnostic scheduling becomes a bigger
than 0.9 fairness for the progress-aware scheduling, which uses the pro-
posed cycle accounting architecture. We observe an average fairness
improvement of 20.3% and 24.8% for 2 and 4 cores, respectively.

Improving fairness for threads running on a multi-core processor
is important for avoiding missed deadlines in soft real-time applica-
tions, for reducing jitter in the response time for interactive applica-
tions, for guaranteeing fairness in consolidated environments, for de-
livering service-level agreements, for balanced performance in parallel
workloads, etc.

7.3 Improving Multi-Threaded Program Performan-
ce

In the previous section, we optimized the fairness between threads
from a multi-programmed workload by improving the scheduler. In
this section, we improve the performance of a multi-threaded appli-
cation. To achieve this, we use our criticality metric combined with
a dynamic algorithm that accelerates a critical thread during the exe-
cution using frequency scaling. The algorithm dynamically measures
thread criticality over a timeslice, and scales up the identified most criti-
cal thread in the next timeslice. While we evaluate frequency scaling on
only one thread, scaling multiple threads could be an option if critical-
ity stacks reveal that this could be worth the energy cost. This dynamic
optimization requires no offline analysis, reacts to phase behavior, and

7.3 Improving Multi-Threaded Program Performance 135

improves parallel program execution time.
We first detail our dynamic algorithm, then compare results of our

dynamic approach with those gathered for an offline approach. For the
offline approach, we run the program twice, one iteration for identify-
ing the critical thread and then a second iteration where we accelerate
this thread during the whole execution of the application. We also com-
pare our dynamic approach with prior work called BIS, showing we
almost double their performance improvements. In Section 7.4, we will
show that this dynamic algorithm also leads to a more energy-efficient
execution of our parallel applications.

Exploring a large frequency range in Chapter 4 showed that using a
2.5 GHz frequency achieves the largest speedups relative to the amount
of scaling, while not overly consuming energy. Hence, in these exper-
iments, we raise a critical thread’s frequency to 2.5 GHz. We further
assume a multi-core processor with a base frequency of 2 GHz, where
the processor’s Thermal Design Power (TDP) allows one and only one
core’s frequency to be increased. We use a timeslice of 10 ms for our
dynamic algorithm. At the start of a new timeslice, we reset critical-
ity counters. Over the timeslice, the hardware calculates each thread’s
criticality sum using the hardware component for measuring thread
criticality (see Section 4.2.2). Algorithm 1 details how these criticality
numbers are used to decide which (if any) core to scale up in the next
timeslice.

Algorithm description. Initially, we check if there is currently an ac-
celerated core, tracked with f . Calculated criticality numbers are stored
in Ci for each thread. If no core is accelerated (f = ∅), we calculate
the ratio between the largest and the smallest criticality. If the result
is larger than a certain threshold α (the base value is 1.2), then the fre-
quency of the core running the thread with the largest criticality com-
ponent is raised (by setting f to the index of the core with maximum
Ci).

If a core was accelerated in the previous slice, we check the ratio of
the largest criticality to the smallest criticality that is not the currently
accelerated core (taking the second-smallest criticality if the smallest is
for the accelerated thread). We perform this check to prevent constantly
scaling up and down a core, since speeding up a thread will usually
result in a smaller criticality component. If this ratio is above our α
threshold, we raise the frequency of the core running the most critical

136 Dynamic Performance Optimization

if f = ∅ then
if max(Ci)/min(Ci) > α then

f :=maxindex(Ci)
end

else
if max(Ci)/mini 6=f (Ci) > α then

f :=maxindex(Ci)
else

if Cf/max(Ci) < β then
f := ∅

end
end

end
Algorithm 1: Dynamic frequency scaling algorithm. f is the currently
accelerated core; Ci is the criticality for thread i; ‘maxindex’ finds the
index of the core with maximum criticality.

thread (slowing down the previously accelerated thread if it is differ-
ent). If the ratio is not larger than the threshold, the algorithm calculates
the ratio of the criticality of the thread running on the accelerated core
to the largest criticality. If this ratio is smaller than a β threshold (with
a base value of 0.8), then the accelerated thread is slowed down again.
This check prevents continuously accelerating a core without seeing a
performance benefit, as a thread that was initially critical can eventu-
ally become non-critical. We performed experiments in which we vary
timeslice duration, and the α and β parameters, but found little perfor-
mance difference as compared to using the base values.

In addition to this proactive algorithm, we implemented two addi-
tional straightforward reactive mechanisms to further reduce energy
consumption and improve performance. First, when an accelerated
thread is scheduled out by the OS, we reduce the frequency of that core
to the base frequency, as speeding up that thread has no performance
benefit. Secondly, when there is only one thread active, and that thread
is currently not accelerated, we scale up the frequency of the core run-
ning that thread. In this case, the running thread is by definition the
most critical thread, and should be accelerated immediately, without
waiting for the next timeslice.

7.3 Improving Multi-Threaded Program Performance 137

(a) 8 threads

0.95

1

1.05

1.1

1.15

1.2

F
M

M

L
u

 n
o
n

-c
o

n
t.

F
a

c
e

s
im

F
lu

id
a
n

im
a
te

S
tr

e
a
m

c
lu

s
te

r

B
F

S

L
u

d
_

o
m

p

N
e

e
d

le

S
p

e
e

d
u
p

Offline approach

Dynamic approach

BIS

(b) 16 threads

0.95

1

1.05

1.1

1.15

1.2

F
M

M

L
u

 n
o

n
-c

o
n

t.

F
a

c
e

s
im

F
lu

id
a
n

im
a

te

S
tr

e
a

m
c
lu

s
te

r

B
F

S

L
u

d
_

o
m

p

N
e

e
d

le

S
p

e
e

d
u

p

Offline approach

Dynamic approach

BIS

Figure 7.2: Results for the dynamic frequency scaling policy.

7.3.1 Effectiveness of Dynamic Optimization

Figure 7.2 shows the performance results of our dynamic frequency
scaling technique for both 8 and 16-threaded configurations. Because
FMM’s total program criticality stack did reveal a most critical thread,
we include it again in our dynamic results, despite the fact that speed-
ing up one thread over the whole execution did not improve perfor-
mance. Each benchmark has three bars. The first bar is the speedup ob-
tained by the offline approach, i.e., profiling the program and running
the program again while speeding up the most critical thread over the

138 Dynamic Performance Optimization

whole program execution. The next bar shows the speedup obtained
by our dynamic approach. The last bar shows the results for BIS, which
we discuss in the next section.

For both 8 and 16-threaded runs, FMM achieves larger speedups
with our dynamic approach than the offline approach. Although the
offline approach could not improve FMM’s performance, our dynamic
approach deals better with the overlapping criticality, and improved
performance by about 3%. Also, as discussed in the previous chapter,
the offline approach could not solve 16-threaded Lu non-cont.’s prob-
lem that one thread was most critical initially and another was critical
later in the program. The dynamic approach slightly improves upon
the performance of Lu non-cont. with 16 threads, adapting to the most
critical thread during each program phase.

For the other benchmarks, the speedups of the dynamic approach
are slightly smaller than those of the offline approach. This is due to
the reactiveness of the dynamic algorithm: frequency is only scaled
up after a critical thread is detected in the previous timeslice. How-
ever, the dynamic approach achieves similar program speedups with
more a energy-efficient run by not always scaling up the frequency. On
average, the dynamic approach adapts to phase behavior, obtaining
a speedup of 4.4%, compared to 4.8% for the offline approach, while
speeding up one thread from 2 GHz to 2.5 GHz for 71% of the time on
average.

7.3.2 Comparison to Previous Work

We compare the results of our dynamic frequency scaling algorithm
to the best-performing previous work which accelerates synchroniza-
tion bottlenecks instead of threads, called Bottleneck Identification and
Scheduling (BIS) [34]. They focus on accelerating the most critical bot-
tleneck, e.g., a critical section that is heavily contended or a barrier with
many threads waiting for a significant amount of time. When a thread
encounters such a bottleneck, it is temporarily migrated to a faster core
in a heterogeneous system. We reimplemented their technique but in-
stead of thread migration, we use core frequency scaling (to 2.5 GHz)
in our experimental setup.

Figure 7.2 presents the speedup for each benchmark using our dy-
namic algorithm against those obtained using the BIS technique. For
8-threaded benchmarks, in Figure 7.2(a), we see our criticality metric

7.4 Improving Multi-Threaded Program Energy Usage 139

outperforms BIS in all but one benchmark, significantly outperform-
ing BIS for Lu non-cont. by speeding up the benchmark 17% compared
to 3% for BIS. Similarly, our dynamic algorithm improves upon BIS’s
speedup in all 16-threaded benchmarks except for Streamcluster. We
found that our technique is more effective at speeding up programs that
have many barriers, because we speed up more of the whole thread’s
execution instead of only when a single thread that has yet to reach the
barrier. For programs with many heavily contending critical sections,
BIS might achieve better performance. Overall, our dynamic scheme
achieves an average of 4.6% speedup in comparison with BIS’s 2.4%
for 8 threads. For 16 threads, we speed up on average by 4.2%, almost
doubling BIS’s improvement of 2.7%.

7.4 Improving Multi-Threaded Program Energy
Usage

While we wanted to achieve maximum performance for parallel pro-
grams in the previous section, power and energy are first-order con-
cerns in modern systems, including the embedded and server domains.
For optimizing towards this dimension we again use our criticality
stacks.

We perform an experiment to compare the energy consumed when
running our multi-threaded benchmarks at various frequencies. We
run once with all threads at 2 GHz, once with all threads at 2.5 GHz,
and once using our dynamic technique to accelerate only the most crit-
ical thread to 2.5 GHz. Obviously, running all threads at the higher
frequency will result in a larger power output. Figure 7.3 presents the
energy consumed, which is power multiplied by execution time, for
our benchmarks with 8 and 16 threads. We present energy numbers for
all threads at 2.5 GHz, and only the critical thread at 2.5 GHz, normal-
ized to the energy consumption for all threads at 2 GHz. We estimate
power consumption using McPAT [41] (assuming a 32 nm technology).

Figure 7.3 shows that accelerating all threads to the higher fre-
quency consumes more energy than accelerating only one thread for
all of our benchmarks. For both Lu non-cont. and Fluidanimate, run-
ning with all threads at 2.5 GHz consumes slightly less energy than
with all threads at 2 GHz, because it results in large program speedups.
However, if energy is of prime concern, we see the best result comes

140 Dynamic Performance Optimization

(a) 8 threads

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

F
M

M

L
u
 n

o
n
-c

o
n
t.

F
a
c
e
s
im

F
lu

id
a
n

im
a
te

S
tr

e
a
m

c
lu

s
te

r

B
F

S

L
u
d

_
o
m

p

N
e

e
d
le

N
o
rm

a
liz

e
d
 e

n
e
rg

y
 t

o
 w

h
e
n

ru
n
n
in

g
 a

ll
th

re
a
d
s
 a

t
2
 G

H
z

All threads at 2.5 GHz

Only critical thread at 2.5 GHz

(b) 16 threads

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

F
M

M

L
u
 n

o
n
-c

o
n
t.

F
a
c
e
s
im

F
lu

id
a
n

im
a
te

S
tr

e
a
m

c
lu

s
te

r

B
F

S

L
u
d

_
o
m

p

N
e

e
d
le

N
o
rm

a
liz

e
d
 e

n
e
rg

y
to

 w
h
e
n

ru
n
n
in

g
 a

ll
th

re
a
d
s
 a

t
2
 G

H
z

All threads at 2.5 GHz

Only critical thread at 2.5 GHz

Figure 7.3: Comparison of energy consumed when running all threads at
2.5 GHz and only the most critical at 2.5 GHz using our dynamic scheme,
compared to running all threads at 2 GHz.

from targeting acceleration only at the most critical thread. For almost
all benchmarks, using our dynamic algorithm reduces the energy con-
sumed from all threads at 2 GHz. Particularly for BFS with 16 threads,
and Lu non-cont. with 8 threads, we reduce the energy consumed by
11% and 12.6%, respectively. Also, targeting acceleration to the thread
identified as most critical by our metric particularly benefits Facesim,
which consumes about 10% more energy when all threads are accel-
erated. Overall, when all threads are executed at 2.5 GHz, the total

7.5 Related Work 141

energy consumption increases by 1.3% for 16 threads and 2.5% for 8
threads. In comparison, by accelerating only the critical thread, the
total energy consumption is reduced by 3.2% on average for 16 threads
and 2.8% for 8 threads.

7.5 Related Work

Improving parallel performance by reducing thread waiting time is a
well-known optimization paradigm. Many previously proposed mech-
anisms apply this conventional wisdom for specific performance id-
ioms.

Threads wait for several reasons. The most obvious case is serial
execution parts of a parallel program [2]. When there is only one thread
active doing useful work, optimizing its performance is likely to yield
substantial performance benefits. Annavaram et al. [3] optimize serial
code by running at a higher clock frequency; Morad et al. [49] run serial
code on a big core in a heterogeneous multi-core.

Critical sections guarantee mutual exclusion and lead to serializa-
tion, which puts a fundamental limit on parallel performance [23]. Re-
moving or alleviating serialization because of critical sections has been
a topic of wide interest for many years. Transactional Memory (TM)
aims to overlap the execution of critical sections as long as they do not
modify shared data [30]. Speculative Lock Elision [53], Transactional
Lock Removal [54] and Speculative Synchronization [46] apply simi-
lar principles to traditional lock-synchronized programs. Suleman et
al. [59] use the big core in a heterogeneous multi-core to accelerate crit-
ical sections.

Several techniques have been proposed to improve performance
and/or reduce energy consumption of barriers, which all threads have
to reach before the program proceeds. In thrifty barriers [40], a core
is put into a low-power mode when it reaches a barrier with a pre-
dicted long stall time. Liu et al. [44] improve on that by reducing
the frequency of cores running threads that are predicted to reach a
barrier much sooner than other threads, even when they are still ex-
ecuting. Cai et al. [11] keep track of how many iterations of a paral-
lel loop each thread has executed, delaying those that have completed
more, and giving more resources to those with fewer in an SMT con-
text. Age-based scheduling [39] uses history from the previous instance
of the loop to choose the best candidate for acceleration. While previ-

142 Dynamic Performance Optimization

ous works all target a specific synchronization paradigm (barriers and
parallel loops), our criticality metric is independent of the type of syn-
chronization, and can profile every (instrumented) stall event due to
synchronization.

Turbo Boost1 increases the core frequency when there are few ac-
tive cores. As such, for multi-threaded programs, it increases thread
performance when parallelism is low. Booster [47] speeds up threads
that hold locks or that are active when other threads are blocked, us-
ing a dual voltage supply technique. Bottleneck Identification and
Scheduling (BIS) by Joao et al. [34] accelerates synchronization prim-
itives (locks, barriers, pipes) with large amounts of contention by mi-
grating them temporarily to a faster core in a heterogeneous multi-core.
The methods used by both Turbo Boost and Booster to identify threads
that need to be accelerated are a subset of the methods used by BIS,
which means that the BIS results in Section 7.3.2 are an upper bound
for the results for Turbo Boost and Booster. While BIS optimizes bot-
tlenecks, we identify the thread(s) most critical to overall performance.
Optimizing bottlenecks does not necessarily imply improved overall
performance, because they also accelerate non-critical threads. In Sec-
tion 7.3.2, we showed that our dynamic algorithm results in a higher
speedup than BIS for barrier-bound applications.

7.6 Summary

In this chapter we optimized the performance of applications in three
dimensions. We first showed a mechanism to improve fairness between
threads running on a multi-core processor. By making the scheduler
aware of the progress of threads, and scheduling slowly-progressing
threads more frequently, we report an average fairness improvement
of 22.5% over progress-agnostic scheduling. We then proposed an al-
gorithm to dynamically optimize the performance of multi-threaded
applications, achieving an average speedup of 4.4%, and up to 17%. Fi-
nally we showed how the energy consumption of multi-threaded appli-
cations can be reduced by accelerating the most critical thread, result-
ing in a reduction of the total energy consumption by 3% on average
and up to 12.6%.

1http://www.intel.com/technology/turboboost

Chapter 8

Conclusions and Future
Work

In this chapter we summarize the conclusions from this dissertation and elab-
orate on potential avenues for future work.

8.1 Summary

Threads executing on a multi-core processor affect each other’s perfor-
mance at two levels. First, there is interference between the cores due to
hardware resource sharing on modern multi-core processors, in which
co-executing threads compete for shared resources, such as caches, on-
chip interconnection network, off-chip bandwidth, memory banks, etc.
For multi-threaded applications, this interference can either have a pos-
itive or a negative impact on performance. An example of negative in-
terference occurs in shared caches where threads can evict data of other
threads, which means that the latter will experience additional misses
compared to isolated execution. On the other hand, cache sharing can
also lead to positive interference when threads load data into the cache
that can later be used by other threads.

Secondly, next to resource sharing, threads of a multi-threaded ap-
plication also interfere with each other due to synchronization between
the threads. Typical examples of synchronization primitives are barri-
ers, critical sections and consumer-producer relationships. While syn-
chronization is necessary to achieve a correct execution of a parallel
program, it leads to threads waiting for each other, either in a spinning

144 Conclusions and Future Work

or yielding state.
Those two interactions between threads make it very challenging to

analyze the performance and scalability of multi-threaded applications.
However, analyzing parallel performance and identifying scaling bot-
tlenecks is key to optimize both multi-threaded software and hardware.
We therefore propose three new performance analysis methods in this
dissertation, namely criticality stacks, bottle graphs and speedup stacks.

In this dissertation we introduce a novel, intuitive criticality metric
that is independent of synchronization primitives, and that takes into
account both a thread’s active running time and the number of threads
waiting on it. We use this metric to create criticality stacks that break
down total execution time visually based on each thread’s criticality,
facilitating detailed analysis of parallel imbalance. We describe a sim-
ple hardware design that takes a very small amount of power, while
being off the processor’s critical path, to compute criticality stacks dur-
ing execution. We validate the accuracy and utility of criticality stacks
by demonstrating that our low-overhead online calculation approach
indeed finds the thread most critical to performance, improving over a
previously proposed metric based on cache misses. We also use critical-
ity stacks for various use cases in this dissertation that illustrate their
broad applicability to (1) optimize software code, (2) dynamically ac-
celerate the critical thread to improve performance, even doubling over
the best-performing previous work, and (3) target optimizations of par-
allel programs to reduce energy consumption. From these case studies,
we report that (1) after optimizing the code of one benchmark based on
criticality imbalance, we achieve an average speedup of 1.9×; (2) our
dynamic algorithm reacts to application phase changes, achieving an
average speedup of 4.4%, and up to 17%; (3) by accelerating the most
critical thread, we also reduce the total energy consumption by 3% on
average, and up to 12.6% (while at the same time improving perfor-
mance). Overall, we conclude that criticality stacks are instrumental for
analyzing parallel program thread imbalance due to synchronization,
and guiding online optimizations to improve performance and/or re-
duce energy consumption of multi-threaded applications on multi-core
processors.

Besides constructing criticality stacks, we also produce bottle graphs
with our new criticality metric. Bottle graphs are an intuitive and use-
ful method for visualizing multi-threaded application performance, an-
alyzing scalability bottlenecks on a per-thread level, and targeting opti-

8.1 Summary 145

mization. Bottle graphs represent each thread as a box, showing its ex-
ecution time share (height), parallelism (width), and total running time
(area). The total height of the bottle graph when these boxes are stacked
on top of each other is the total application execution time. Because we
place threads with the largest parallelism on the bottom, the neck of
the bottle graph points to threads that offer the most potential for opti-
mization, i.e., those with limited parallelism and a large execution time
share. Although bottle graphs can be constructed with the hardware
component that we designed for creating criticality stacks, we designed
an implementation in software that uses light-weight OS modules to
calculate the components of bottle graphs for unmodified parallel pro-
grams running on real hardware, at very low overhead (0.68% on av-
erage). We use bottle graphs in this work to analyze a set of 12 Java
benchmarks, revealing scalability limitations in several well-known ap-
plications and suggesting optimizations. We use our bottle graphs to
analyze Jikes’ RVM service threads, revealing very limited parallelism
when increasing the number of garbage collection threads beyond two
due to extra synchronization activity. We have compared this to Open-
JDK’s garbage collector which scales much better for our thread counts.
Bottle graphs are a powerful visualization method that is necessary for
tackling multi-threaded application bottlenecks in modern multi-core
hardware.

We also propose speedup stacks, that visualize the achieved speedup
of an application and the various scaling delimiters as a stacked bar.
The height of a speedup stack equals the number of threads, and the
stack components denote the contributions of the scaling delimiters.
The intuition behind speedup stacks is that the relative importance
of the scaling delimiters is immediately clear from the speedup stack,
hence, it is an insightful method for driving both hardware and soft-
ware optimization. The concept of a speedup stack is applicable to
a broad range of multi-threaded, multi-core and multi-processor sys-
tems. We propose two versions of speedup stacks in this work. Our first
version uses additional hardware support for constructing speedup
stacks. In this version of speedup stacks we include LLC and memory
subsystem interference, spinning, yielding, and thread imbalance as
scaling delimiters. For generating these speedup stacks, we designed
a dedicated counter architecture for measuring the impact of resource
sharing on the performance of threads. This cycle accounting architec-
ture estimates the impact of negative interference due to inter-thread
misses in the shared cache as well as the resource and bandwidth

146 Conclusions and Future Work

sharing in the memory subsystem, including the memory bus, bank
conflicts and row buffer conflicts. Besides negative interference the
counter architecture also estimates the impact of positive interference
between threads on performance. The hardware cost is limited to
1.1 KB per core or a total of 18 KB for a 16-core CMP. The accuracy
of these speedup stacks is within 5.1% average absolute error (error is
defined as the difference between estimated and measured speedup
for an application) across a broad set of SPLASH-2, PARSEC and Ro-
dinia benchmarks. We demonstrate the usage of these speedup stacks
for identifying scaling bottlenecks, for classifying benchmarks based
on their scaling delimiters, and for understanding LLC performance.
Our second version of speedup stacks is targeted towards managed
language applications and uses an extended version of the software
profiling tool that we designed for generating bottle graphs. This way
we can generate speedup stacks for applications running on native
hardware. In this version of speedup stacks, we include a different
set of scaling delimiters, namely garbage collection, sequential parts,
thread imbalance, synchronization between threads and hardware in-
terference. We use this second version of speedup stacks to understand
the scaling behavior of Java applications running on Jikes RVM with a
stop-the-world and a concurrent garbage collector.

8.2 Future Work

In this dissertation we proposed new methods for analyzing and opti-
mizing the performance of multi-threaded applications, but there is still
room for future work which we will discuss in the following sections.

Performance Analysis of Distributed Applications

While we analyzed the performance of multi-threaded applications
running on one physical machine, there also exist applications run-
ning with multiple threads on different machines, for example MPI
applications from the HPC domain. If we want to analyze this type of
program, we have to include a third dimension, besides resource shar-
ing and synchronization, which is the communication link between
the different machines. Just like synchronization this communication
link can cause threads to wait and consequently have an impact on the
execution time of the program. This can also apply to other managed

8.2 Future Work 147

languages that use communication channels, like Erlang.
Therefore, if we want to analyze these applications we have to ex-

tend our criticality metric so that it includes waiting time due to com-
munication between the machines. We also need to design a new pro-
filing tool that calculates criticality across different machines.

Performance Analysis of Multi-Tier Applications

A second type of application we did not analyze in this dissertation
are programs that contain multiple layers (hence the name multi-tier)
and where each layer is organized as a thread pool that does work. We
can analyze these applications with bottle graphs, where each bottle
graph represents the threads of a thread pool from one layer. The bottle
graphs then reveal for each thread pool if there is work (im)balance
between the threads and how many threads are active on average in the
thread pool. However, the reason why parallelism of threads is limited
inside a thread pool might be because there are too few requests coming
from the upper layer. Therefore, it makes sense to extend the bottle
graphs to a hierarchical representation that incorporates the behavior
of all layers into one graph.

Improved Scheduling on a Heterogeneous Multi-Core Proces-
sor

Heterogeneous multi-core processors are processors where not all the
cores have the same architecture, typically containing a mix of fast and
big cores with slow and small cores. Scheduling multi-threaded work-
loads on this type of processor is very challenging because not all the
cores have the same performance. There has been research on this topic
in the past [34, 59, 62], and all of this prior work either tries to identify
bottlenecks in the application (for example heavily contended locks)
or uses architectural characteristics to steer thread scheduling. With
our criticality metric we can identify the threads that are most deter-
minative of execution time, and use this to steer scheduling. The dy-
namic optimization algorithm from Chapter 7 can decide which threads
should be executed on the big core. If there are no critical threads, we
can do a round robin scheduling of threads on the big core.

148 Conclusions and Future Work

Improving the Performance of Jikes RVM

While we extensively evaluated the performance of Jikes and the ap-
plications running on top of it in Chapter 5 and 6, we did not optimize
the performance. For example, we noticed that Jikes’ garbage collector
does not scale very well, but we did not look into the causes of this poor
scaling. This could be an interesting direction for future research. Im-
proving the performance of the stop-the-world garbage collector inside
a JVM will definitely lead to a performance gain for the applications
running on top of it.

Secondly, the information from the bottle graphs can also be used
by the JVM to trigger code optimization for certain threads. For ex-
ample if the bottle graphs reveal that some threads are more critical to
performance than others, then this information can be used by the JVM
to optimize the source code of these critical threads more aggressively,
which would lead to a performance gain for the application.

Bibliography

[1] E. Altman, M. Arnold, S. Fink, and N. Mitchell. Performance Anal-
ysis of Idle Programs. In Proceedings of the Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages and
Applications (OOPSLA), pages 739–753, Oct. 2010.

[2] G. M. Amdahl. Validity of the Single-Processor Approach to
Achieving Large-Scale Computing Capabilities. In Proceedings of
the American Federation of Information Processing Societies Conference
(AFIPS), pages 483–485, 1967.

[3] M. Annavaram, E. Grochowski, and J. Shen. Mitigating Amdahl’s
Law through EPI Throttling. In Proceedings of the International Sym-
posium on Computer Architecture (ISCA), pages 298–309, June 2005.

[4] A. Bhattacharjee and M. Martonosi. Thread Criticality Predictors
for Dynamic Performance, Power, and Resource Management in
Chip Multiprocessors. In Proceedings of the International Symposium
on Computer Architecture (ISCA), pages 290–301, June 2009.

[5] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC Benchmark
Suite: Characterization and Architectural Implications. In Proceed-
ings of the International Conference on Parallel Architectures and Com-
pilation Techniques (PACT), pages 72–81, Oct. 2008.

[6] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen,
K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood. The
gem5 Simulator. Computer Architecture News, 39:1–7, May 2011.

[7] S. M. Blackburn and A. L. Hosking. Barriers: Friend or Foe? In
Proceedings of the International Symposium on Memory Management
(ISMM), pages 143–151, Oct. 2004.

150 BIBLIOGRAPHY

[8] S. M. Blackburn and K. S. McKinley. Immix: A Mark-Region
Garbage Collector with Space Efficiency, Fast Collection, and Mu-
tator Performance. In Proceedings of the Annual ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI), pages 22–32, June 2008.

[9] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khan, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z.
Guyer, M. Hirzel, A. L. Hosking, M. Jump, H. B. Lee, J. Moss,
A. Phansalkar, D. Stefanovic, T. VanDrunen, D. von Dincklage,
and B. Wiedermann. The DaCapo Benchmarks: Java Benchmark-
ing Development and Analysis. In Proceedings of the Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-
guages and Applications (OOPSLA), pages 169–190, Oct. 2006.

[10] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A Framework
for Architectural-Level Power Analysis and Optimizations. In
Proceedings of the International Symposium on Computer Architecture
(ISCA), pages 83–94, June 2000.

[11] Q. Cai, J. González, R. Rakvic, G. Magklis, P. Chaparro, and
A. González. Meeting Points: Using Thread Criticality to Adapt
Multicore Hardware to Parallel Regions . In Proceedings of the In-
ternational Conference on Parallel Architectures and Compilation Tech-
niques (PACT), pages 240–249, Sept. 2008.

[12] T. Cao, S. M. Blackburn, T. Gao, and K. S. McKinley. The Yin and
Yang of Power and Performance for Asymmetric Hardware and
Managed Software. In Proceedings of the 39th Annual International
Symposium on Computer Architecture (ISCA), pages 225–236, June
2012.

[13] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron. Rodinia: A Benchmark Suite for Heterogeneous Com-
puting. In Proceedings of the IEEE International Symposium on Work-
load Characterization (IISWC), pages 44–54, Oct. 2009.

[14] G. Chen and P. Stenström. Critical Lock Analysis: Diagnosing Crit-
ical Section Bottlenecks in Multithreaded Applications. In Proceed-
ings of the International Conference on High Performance Computing,
Networking, Storage and Analysis (SC), pages 71:1–71:11, Nov. 2012.

BIBLIOGRAPHY 151

[15] J. Demme and S. Sethumadhavan. Rapid Identication of Architec-
tural Bottlenecks via Precise Event Counting. In Proceedings of the
Annual International Symposium on Computer Architecture (ISCA),
pages 353–364, June 2011.

[16] K. Du Bois, T. Schaeps, S. Polfliet, F. Ryckbosch, and L. Eeck-
hout. SWEEP: Evaluating Computer System Energy Efficiency Us-
ing Synthetic Workloads. In Proceedings of the International Confer-
ence on High Performance and Embedded Architectures and Compilers
(HiPEAC), pages 159–166, Jan. 2011.

[17] K. Du Bois, S. Eyerman, and L. Eeckhout. Per-thread Cycle Ac-
counting in Multicore Processors. ACM Transactions on Architecture
and Code Optimization (TACO), 9(4):1–22, Jan. 2013.

[18] K. Du Bois, S. Eyerman, J. B. Sartor, and L. Eeckhout. Critical-
ity Stacks: Identifying Critical Threads in Parallel Programs Using
Synchronization Behavior. In Proceedings of the International Sym-
posium on Computer Architecture (ISCA), pages 511–522, June 2013.

[19] K. Du Bois, J. B. Sartor, S. Eyerman, and L. Eeckhout. Bottle
Graphs: Visualizing Scalability Bottlenecks in Multi-threaded Ap-
plications. In Proceedings of the ACM SIGPLAN International Con-
ference on Object Oriented Programming, Systems Languages and Ap-
plications (OOPSLA), pages 355–372, Oct. 2013.

[20] K. Du Bois, S. Eyerman, J. B. Sartor, and L. Eeckhout. Analyzing
Scaling Behavior of Managed Runtime Applications. ACM Trans-
actions on Programming Languages and Systems (TOPLAS), 2014. Un-
der review.

[21] P. G. Emma. Understanding Some Simple Processor-Performance
Limits. IBM Journal of Research and Development, 41(3):215–232,
May 1997.

[22] S. Eyerman and L. Eeckhout. System-Level Performance Metrics
for Multi-Program Workloads. IEEE Micro, 28(3):42–53, May/June
2008.

[23] S. Eyerman and L. Eeckhout. Modeling Critical Sections in Am-
dahl’s Law and its Implications for Multicore Design. In Proceed-
ings of the International Symposium on Computer Architecture (ISCA),
pages 362–370, June 2010.

152 BIBLIOGRAPHY

[24] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith. A Perfor-
mance Counter Architecture for Computing Accurate CPI Com-
ponents. In Proceedings of The Twelfth International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems (ASPLOS), pages 175–184, Oct. 2006.

[25] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith. A Mech-
anistic Performance Model for Superscalar Out-of-Order Proces-
sors. ACM Transactions on Computer Systems (TOCS), 27(2):42–53,
May 2009.

[26] S. Eyerman, K. Du Bois, and L. Eeckhout. Speedup Stacks: Identi-
fying Scaling Bottlenecks in Multi-Threaded Applications. In Pro-
ceedings of the International Symposium on Performance Analysis of
Software and Systems (ISPASS), pages 145–155, Apr. 2012.

[27] B. Fields, S. Rubin, and R. Bodı́k. Focusing Processor Policies via
Critical-Path Prediction. In Proceedings of the International Sympo-
sium on Computer Architecture (ISCA), pages 74–85, June 2001.

[28] S. Garcia, D. Jeon, C. M. Louie, and M. B. Taylor. Kremlin: Re-
thinking and Rebooting gprof for the Multicore Age. In Proceedings
of the Annual ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 458–469, June 2011.

[29] L. Gidra, G. Thomas, J. Sopena, and M. Shapiro. A Study of the
Scalability of Stop-The-World Garbage Collectors on Multicores.
In Proceedings of the International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), pages
229–240, Mar. 2013.

[30] M. Herlihy and J. Moss. Transactional Memory: Architectural Sup-
port for Lock-free Data Structures. In Proceedings of the International
Symposium on Computer Architecture (ISCA), pages 289–300, June
1993.

[31] J. Hollingsworth. An Online Computation of Critical Path Profil-
ing. In Proceedings of the SIGMETRICS Symposium on Parallel and
Distributed Tools, pages 11–20, 1996.

[32] Intel. Intel VTuneTM Amplifier XE 2011.
http://software.intel.com/en-us/articles/intel-vtune-amplifier-
xe/.

BIBLIOGRAPHY 153

[33] M. Itzkowitz and Y. Maruyama. HPC Profiling with the Sun
StudioTM Performance Tools. In Tools for High Performance Com-
puting 2009, pages 67–93. Springer, 2010.

[34] J. Joao, M. Suleman, O. Mutlu, and Y. Patt. Bottleneck Identifica-
tion and Scheduling in Multithreaded Applications . In Proceedings
of the International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), pages 223–234,
Mar. 2012.

[35] L. K. John. More on Finding a Single Number to Indicate Over-
all Performance of a Benchmark Suite. ACM SIGARCH Computer
Architecture News, 32(4):1–14, Sept. 2004.

[36] T. Kalibera, M. Mole, R. Jones, and J. Vitek. A Black-Box Approach
to Understanding Concurrency in DaCapo. In Proceedings of the
Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages and Applications (OOPSLA), pages 335–354, Oct.
2012.

[37] M. Kambadur, K. Tang, and M. A. Kim. Harmony: Collection and
Analysis of Parallel Block Vectors. In Proceedings of the Annual In-
ternational Symposium on Computer Architecture (ISCA), pages 452–
463, June 2012.

[38] R. E. Kessler, M. D. Hill, and D. A. Wood. A Comparison of Trace-
Sampling Techniques for Multi-Megabyte Caches. IEEE Transac-
tions on Computers, 43(6):664–675, June 1994.

[39] N. B. Lakshminarayana, J. Lee, and H. Kim. Age Based Scheduling
for Asymmetric Multiprocessors. In Proceedings of Supercomputing:
the Conference on High Performance Computing Networking, Storage
and Analysis (SC), pages 199–210, Nov. 2009.

[40] J. Li, J. Martinez, and M. Huang. The Thrifty Barrier: Energy-
Aware Synchronization in Shared-Memory Multiprocessors. In
Proceedings of the International Symposium on High Performance Com-
puter Architecture (HPCA), pages 14–23, Feb. 2004.

[41] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi. McPAT: An Integrated Power, Area, and Timing
Modeling Framework for Multicore and Manycore Architectures.
In Proceedings of the International Symposium on Microarchitecture
(MICRO), pages 469–480, Dec. 2009.

154 BIBLIOGRAPHY

[42] T. Li, A. Lebeck, and D. Sorin. Quantifying Instruction Criticality
for Shared Memory Multiprocessors. In Proceedings of the Sympo-
sium on Parallel Algorithms and Architectures (SPAA), pages 128–137,
2003.

[43] T. Li, A. R. Lebeck, and D. J. Sorin. Spin Detection Hardware for
Improved Management of Multithreaded Systems. IEEE Transac-
tions on Parallel and Distributed Systems (TPDS), 17:508–521, June
2006.

[44] C. Liu, A. Sivasubramaniam, M. Kandemir, and M. Irwin. Ex-
ploiting Barriers to Optimize Power Consumption of CMPs. In
Proceedings of the International Symposium on Parallel and Distributed
Processing, page 5a, Apr. 2005.

[45] C. Luque, M. Moreto, F. J. Cazorla, R. Gioiosa, A. Buyuktosunoglu,
and M. Valero. ITCA: Inter-Task Conflict-Aware CPU Accounting
for CMPs. In Proceedings of the International Conference on Paral-
lel Architectures and Compilation Techniques (PACT), pages 203–213,
Sept. 2009.

[46] J. F. Martinez and J. Torrellas. Speculative Synchronization: Ap-
plying Thread-level Speculation to Explicitly Parallel Applica-
tions. In Proceedings of the International Conference on Architectural
Support for Programming Languages and Operating Systems (ASP-
LOS), pages 18–29, Oct. 2002.

[47] T. Miller, X. Pan, R. Thomas, N. Sedaghati, and R. Teodorescu.
Booster: Reactive Core Acceleration for Mitigating the Effects
of Process Variation and Application Imbalance in Low-Voltage
Chips. In 18th International Symposium on High Performance Com-
puter Architecture (HPCA), pages 1–12, Feb. 2012.

[48] G. E. Moore. Cramming More Components onto Integrated Cir-
cuits. Electronics Magazine, 38(8):1–6, Apr. 1965.

[49] T. Y. Morad, U. C. Weiser, A. Kolodny, M. Valero, and A. Ayguade.
Performance, Power Efficiency and Scalability of Asymmetric
Cluster Chip Multiprocessors. IEEE Computer Architecture Letters,
5(1):14–17, Jan. 2006.

[50] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K.-Y.
Chang. The Case for a Single-Chip Multiprocessor. In Proceedings

BIBLIOGRAPHY 155

of the International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), pages 2–11, Oct.
1996.

[51] OpenJDK. OpenJDK (Implementation of the Java SE 6 Specification),
Version 1.6. Oracle, 2006. URL http://openjdk.java.net/
projects/jdk6/.

[52] M. K. Qureshi and Y. N. Patt. Utility-Based Cache Partitioning: A
Low-Overhead, High-Performance, Runtime Mechanism to Parti-
tion Shared Caches. In Proceedings of the 39th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 423–
432, Dec. 2006.

[53] R. Rajwar and J. R. Goodman. Speculative Lock Elision: Enabling
Highly Concurrent Multithreaded Execution. In Proceedings of the
International Symposium on Microarchitecture (MICRO), pages 294–
305, Dec. 2001.

[54] R. Rajwar and J. R. Goodman. Transactional Lock-free Execution of
Lock-based Programs. In Proceedings of the International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 5–17, Oct. 2002.

[55] A. G. Saidi, N. L. Binkert, S. K. Reinhardt, and T. Mudge. End-
to-end Performance Forecasting: Finding Bottlenecks Before They
Happen. In Proceedings of the International Symposium on Computer
Architecture (ISCA), pages 361–370, June 2009.

[56] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automati-
cally Characterizing Large Scale Program Behavior. In Proceedings
of the International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), pages 45–57, Oct.
2002.

[57] SPEC. SPECjbb2005 (Java Server Benchmark), Release 1.07. Standard
Performance Evaluation Corporation, 2006. URL http://www.
spec.org/jbb2005.

[58] STMicroelectronics. PGProf: Parallel Profiling for Scientists
and Efngineers. http://www.pgroup.com/products/pgprof.htm,
2011.

http://openjdk.java.net/projects/jdk6/
http://openjdk.java.net/projects/jdk6/
http://www.spec.org/jbb2005
http://www.spec.org/jbb2005

156 BIBLIOGRAPHY

[59] M. A. Suleman, O. Mutlu, M. K. Qureshi, and Y. N. Patt. Acceler-
ating Critical Section Execution with Asymmetric Multi-Core Ar-
chitectures. In Proceedings of the International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS), pages 253–264, Mar. 2009.

[60] C. Tian, V. Nagarajan, R. Gupta, and S. Tallam. Dynamic Recog-
nition of Synchronization Operations for Improved Data Race De-
tection. In Proceedings of the International Symposium on Software
Testing and Analysis, pages 143–154, July 2008.

[61] E. Tune, D. Liang, D. Tullsen, and B. Calder. Dynamic Prediction
of Critical Path Instructions. In Proceedings of the International Sym-
posium on High-Performance Computer Architecture (HPCA), pages
185–195, Feb. 2001.

[62] K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and J. Emer.
Scheduling Heterogeneous Multi-cores Through Performance Im-
pact Estimation (PIE). In Proceedings of the 39th Annual International
Symposium on Computer Architecture (ISCA), pages 213–224, June
2012.

[63] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The
SPLASH-2 Programs: Characterization and Methodological Con-
siderations. In Proceedings of the International Symposium on Com-
puter Architecture (ISCA), pages 24–36, June 1995.

[64] X. Zhou, W. Chen, and W. Zheng. Cache Sharing Management for
Performance Fairness in Chip Multiprocessors. In Proceedings of
the International Conference on Parallel Architectures and Compilation
Techniques (PACT), pages 384–393, Sept. 2009.

	Nederlandse samenvatting
	English Summary
	Introduction
	Motivation
	Key Challenges
	Contributions in This Dissertation
	Other Research Activities
	Overview of This Dissertation

	Background
	Multi-Core Processors
	Resource Sharing
	Sources of Thread Interference
	Quantifying Thread Interference

	Multi-Threaded Applications
	Summary

	Performance Analysis Methods
	Introduction
	Criticality Stacks
	Constructing Criticality Stacks
	Example Criticality Stacks

	Bottle Graphs
	Constructing Bottle Graphs
	Example Bottle Graphs

	Speedup Stacks
	Constructing Speedup Stacks
	Scaling Delimiters
	Example Speedup Stacks

	Speedup Stacks for Java
	Scaling Delimiters for Java
	Example Speedup Stacks for Java

	Related Work
	Performance Visualization
	Criticality Analysis

	Summary

	Criticality Stacks: Identifying Critical Threads
	Introduction
	Constructing Criticality Stacks
	Identifying Running Threads
	Calculating Criticality

	Experimental Setup
	Validation and Analysis
	Validation of Criticality Stacks
	Comparison to Prior Criticality Metric
	Varying the Amount of Frequency Scaling
	Steering Software Optimization

	Summary

	Bottle Graphs: Visualizing Per-Thread Performance
	Introduction
	Constructing Bottle Graphs
	Experimental Setup
	Jikes RVM and Benchmark Analysis
	Garbage Collection Performance Analysis
	Application Performance Analysis
	Compiler Performance Analysis
	Solving the Poor Scaling of Pmd
	Comparing Jikes to OpenJDK

	Related Work
	Comparison to IBM WAIT
	Java Parallelism Analysis

	Summary

	Speedup Stacks: Analyzing Application Scaling
	Introduction
	Speedup Stacks Measured in Hardware
	Constructing Speedup Stacks
	Experimental Setup
	Validation
	Applications

	Speedup Stacks Measured in Software
	Constructing Speedup Stacks
	Experimental Setup
	Java Application Scaling Analysis

	Summary

	Dynamic Performance Optimization
	Introduction
	Improving Multi-Core Scheduling
	Improving Multi-Threaded Program Performance
	Effectiveness of Dynamic Optimization
	Comparison to Previous Work

	Improving Multi-Threaded Program Energy Usage
	Related Work
	Summary

	Conclusions and Future Work
	Summary
	Future Work

