864 research outputs found

    A control framework for a remotely operated vehicle

    Get PDF
    A control framework enabling the automated maneuvering of a Remotely Operate Vehicle (ROV) is presented. The control architecture is structured according to the principle of composition of vehicle motions from a minimal set of elemental maneuvers that are designed and verified independently. The principled approach is based on distributed hybrid systems techniques, and spans integrated design, simulation and implementation as the same model is used throughout. Hybrid systems control techniques are used to synthesize the elemental maneuvers and to design protocols, which coordinate the execution of elemental maneuvers within a complex maneuver. This work is part of the Inspection of Underwater Structures (IES) project whose main objective is the implementation of a ROV-based system for the inspection of underwater structures

    Path and Motion Planning for Autonomous Mobile 3D Printing

    Get PDF
    Autonomous robotic construction was envisioned as early as the ‘90s, and yet, con- struction sites today look much alike ones half a century ago. Meanwhile, highly automated and efficient fabrication methods like Additive Manufacturing, or 3D Printing, have seen great success in conventional production. However, existing efforts to transfer printing technology to construction applications mainly rely on manufacturing-like machines and fail to utilise the capabilities of modern robotics. This thesis considers using Mobile Manipulator robots to perform large-scale Additive Manufacturing tasks. Comprised of an articulated arm and a mobile base, Mobile Manipulators, are unique in their simultaneous mobility and agility, which enables printing-in-motion, or Mobile 3D Printing. This is a 3D printing modality, where a robot deposits material along larger-than-self trajectories while in motion. Despite profound potential advantages over existing static manufacturing-like large- scale printers, Mobile 3D printing is underexplored. Therefore, this thesis tack- les Mobile 3D printing-specific challenges and proposes path and motion planning methodologies that allow this printing modality to be realised. The work details the development of Task-Consistent Path Planning that solves the problem of find- ing a valid robot-base path needed to print larger-than-self trajectories. A motion planning and control strategy is then proposed, utilising the robot-base paths found to inform an optimisation-based whole-body motion controller. Several Mobile 3D Printing robot prototypes are built throughout this work, and the overall path and motion planning strategy proposed is holistically evaluated in a series of large-scale 3D printing experiments

    Reuse of pervasive system architectures

    Get PDF
    Developers are often confronted with incompatible systems and lack a proper system abstraction that allows easy integration of various hardware and software components. To try solve these shortcomings, building blocks are identified at different levels of detail in today’s pervasive/communication systems and used in a conceptual reasoning framework allowing easy comparison and combination. The generality of the conceptual framework is validated by decomposing a selection of pervasive systems into models of these building blocks and integrating these models to create improved ones. Additionally, the required properties of pervasive systems on scalability, efficiency, degree of pervasiveness, and maintainability are analysed for a number of application areas. The pervasive systems are compared on these properties. Observations are made, and weak points in the analysed pervasive systems are identified. Furthermore, we provide a set of recommendations as a guideline towards flexible architectures that make pervasive systems usable in a variety of applications

    Operations and control of unmanned underwater vehicles

    Get PDF
    Operations and control of unmanned underwater vehicle systems arediscussed in terms of systems and technologies, vehicles, operational deploymentsand concepts of operation. The notions underlying the specification of single vehicleoperations are contrasted to new concepts of operation to illustrate the challengesthey pose to control engineering. New research directions are discussed in thecontext of the theories and techniques from dynamic optimization and computerscience. The overall discussion is done in the context of the activities of theUnderwater Systems and Technology Laboratory from Porto University

    Design, control and implementation of CoCoA: a human-friendly autonomous service robot

    Get PDF
    The growing demand to automate everyday tasks combined with the rapid development of software technologies that can furnish service robots with a large repertoire of skills, are driving the need for design and implementation of human-friendly service robots, i.e., safe and dependable machines operating in the close vicinity of humans or directly interacting with them in social domains. The technological shift from classical industrial robots utilized in structured factory oors to service robots that are used in close collaboration with humans introduces many demanding challenges to ensure safety and autonomy of operation of such robots. In this thesis, we present mechanical design, modeling and software integration for motion/navigation planning, and human-collaborative control of a human-friendly service robot CoCoA: Cognitive Collaborative Assistant. CoCoA is designed to be bimanual with dual 7 degrees-of-freedom (DoF) anthropomorphic arms, featuring spherical wrists. Each arm weighs less than 1.6 kg and possesses a payload capacity of 1 kg. Bowden-cable based transmissions are used for the arms to enable grounding of motors and this arrangement results in lightweight arms with passive back-driveability. Thanks to passive back-driveability and low inertia of its arms, the operation of CoCoA is guaranteed to be safe not only during physical interactions, but also under collisions with the robot arms. The holonomic base of Co- CoA possesses four driven and steered wheel modules and is compatible with wheelchair accessible environments. CoCoA also features a single DoF torso, and dual one DoF grippers, resulting in a service robot with a total of 25 active DoF. The dynamic/kinematic/geometric models of CoCoA are derived in open source software. Inverse kinematics, stable grasp, kinematic reachability and inverse reachability databases are generated for the robot to enable computation of kinematically-feasible collision-free motion/grasp plans for its arms/grippers and navigation plans for its holonomic base, at interactive rates. For the real-time control of the robot, motion/navigation plans characterizing feasible joint trajectories are passed to feedback controllers dedicated to each joint. The joint space control of each joint is implemented in hardware, while communication/synchronization among di erent DoF is ensured through EtherCAT/RS-485 eldbuses running at high sampling rates. To comply with human movements under physical interactions and to enable human collaborative contour tracking tasks, CoCoA also implements passive velocity eld control that guarantees user safety by ensuring passivity of interaction with respect to externally applied forces. The feasibility of the design and the applicability of the overall planning and control framework are demonstrated through dynamic simulations and physical implementations of several service robotics scenarios

    Exploring user-defined gestures for alternate interaction space for smartphones and smartwatches

    Get PDF
    2016 Spring.Includes bibliographical references.In smartphones and smartwatches, the input space is limited due to their small form factor. Although many studies have highlighted the possibility of expanding the interaction space for these devices, limited work has been conducted on exploring end-user preferences for gestures in the proposed interaction spaces. In this dissertation, I present the results of two elicitation studies that explore end-user preferences for creating gestures in the proposed alternate interaction spaces for smartphones and smartwatches. Using the data collected from the two elicitation studies, I present gestures preferred by end-users for common tasks that can be performed using smartphones and smartwatches. I also present the end-user mental models for interaction in proposed interaction spaces for these devices, and highlight common user motivations and preferences for suggested gestures. Based on the findings, I present design implications for incorporating the proposed alternate interaction spaces for smartphones and smartwatches

    A cable-driven robot for architectural constructions: a visual-guided approach for motion control and path-planning

    Get PDF
    Cable-driven robots have received some attention by the scientific community and, recently, by the industry because they can transport hazardous materials with a high level of safeness which is often required by construction sites. In this context, this research presents an extension of a cable-driven robot called SPIDERobot, that was developed for automated construction of architectural projects. The proposed robot is formed by a rotating claw and a set of four cables, enabling four degrees of freedom. In addition, this paper proposes a new Vision-Guided Path-Planning System (V-GPP) that provides a visual interpretation of the scene: the position of the robot, the target and obstacles location; and optimizes the trajectory of the robot. Moreover, it determines a collision-free trajectory in 3D that takes into account the obstacles and the interaction of the cables with the scene. A set of experiments make possible to validate the contribution of V-GPP to the SPIDERobot while operating in realistic working conditions, as well as, to evaluate the interaction between the V-GPP and the motion controlling system. The results demonstrated that the proposed robot is able to construct architectural structures and to avoid collisions with obstacles in their working environment. The V-GPP system localizes the robot with a precision of 0.006 m, detects the targets and successfully generates a path that takes into account the displacement of cables. Therefore, the results demonstrate that the SPIDERobot can be scaled up to real working conditions.This work is partly funded by the project PTDC/ ATP-AQI/5124/2012 - Robotic Technologies for Non-Standard Design and Construction in Architecture. This work is also financed by the ERDF European Regional Development Fund through the COMPETE Programme (operational programme for competitiveness) and by National Funds through the FCT Portuguese Foundation for Science and Technology within project “FCOMP - 01-0124-FEDER-022701”.info:eu-repo/semantics/publishedVersio

    Indoor occupant positioning system using active RFID deployment and particle filters

    Get PDF
    Abstract-This article describes a method for indoor positioning of human-carried active Radio Frequency Identification (RFID) tags based on the Sampling Importance Resampling (SIR) particle filtering algorithm. To use particle filtering methods, it is necessary to furnish statistical state transition and observation distributions. The state transition distribution is obstacle-aware and sampled from a precomputed accessibility map. The observation distribution is empirically determined by ground truth RSS measurements while moving the RFID tags along a known trajectory. From this data, we generate estimates of the sensor measurement distributions, grouped by distance, between the tag and sensor. A grid of 24 sensors is deployed in an office environment, measuring Received Signal Strength (RSS) from the tags, and a multithreaded program is written to implement the method. We discuss the accuracy of the method using a verification data set collected during a field-operational test
    corecore