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Abstract

Autonomous robotic construction was envisioned as early as the ‘90s, and yet, con-

struction sites today look much alike ones half a century ago. Meanwhile, highly

automated and efficient fabrication methods like Additive Manufacturing, or 3D

Printing, have seen great success in conventional production. However, existing

efforts to transfer printing technology to construction applications mainly rely on

manufacturing-like machines and fail to utilise the capabilities of modern robotics.

This thesis considers using Mobile Manipulator robots to perform large-scale

Additive Manufacturing tasks. Comprised of an articulated arm and a mobile base,

Mobile Manipulators, are unique in their simultaneous mobility and agility, which

enables printing-in-motion, or Mobile 3D Printing. This is a 3D printing modality,

where a robot deposits material along larger-than-self trajectories while in motion.

Despite profound potential advantages over existing static manufacturing-like large-

scale printers, Mobile 3D printing is underexplored. Therefore, this thesis tack-

les Mobile 3D printing-specific challenges and proposes path and motion planning

methodologies that allow this printing modality to be realised. The work details

the development of Task-Consistent Path Planning that solves the problem of find-

ing a valid robot-base path needed to print larger-than-self trajectories. A motion

planning and control strategy is then proposed, utilising the robot-base paths found

to inform an optimisation-based whole-body motion controller. Several Mobile 3D

Printing robot prototypes are built throughout this work, and the overall path and

motion planning strategy proposed is holistically evaluated in a series of large-scale

3D printing experiments.



Impact Statement

The construction industry has been slow to keep up with technological advance-

ments seen in other sectors, with building sites today appearing largely the same

as they did 50 years ago. However, global challenges such as sustainability, ur-

banization, and an aging workforce are making it increasingly imperative for the

Architecture, Engineering, and Construction (AEC) industry to not only consider

what is being built but also how it is being built. Additive Manufacturing, or 3D

Printing, has emerged as one solution, offering benefits such as increased efficiency,

reduced waste, and cost-effective production of complex geometries. Unfortunately,

its adoption in on-site construction has been limited. This research delves into au-

tonomous mobile 3D printing and proposes path and motion planning strategies that

enable a mobile manipulator robot to execute larger-than-self toolpaths, thereby ex-

panding its workspace and simplifying deployment.

The path and motion planning strategies developed in this research have a

broad range of impacts on robotics applications that rely on continuous toolpath

tracing, including surface finishing, painting, subtractive manufacturing, and other

similar processes. By applying these strategies, researchers in digital manufacturing

and small-to-medium-sized enterprises (SMEs) could potentially extend the capa-

bilities of their robotic systems. Furthermore, the ”printing-in-motion” methodol-

ogy proposed in this study increases the workspace of a robot, enabling it to cover a

larger area with the same system and providing a more affordable alternative to ex-

isting solutions. This could result in significant cost savings for research and SMEs

working on similar robotics applications.

This study also presents a full in-hardware implementation of mobile 3D print-
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ing, which is an area that has not received extensive research attention. As a result,

this research has the potential to expedite the investigation and advancement of

comparable systems and robotic applications. During a collaborative workshop for

AEC industry professionals facilitated by thesis co-supervisor firm Arup, implica-

tions to several prospective applied research areas were identified. These included

the use of mobile 3D printing robots for early and continuous repair of infrastruc-

ture such as piping, roads or tunnels. Additionally, these robots could help increase

the viability of retrofit solutions by using bespoke concrete confinement techniques

to strengthen load-bearing columns. By encouraging further research in these areas,

this work contributes towards the AEC industry’s challenges, such as extending as-

set lifespans or lowering embodied carbon in construction.
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1. Introduction

From sky-high cities to continent-splitting canals, humanity is second to none at

shaping the environment that we all live in. Construction is such a significant part

of the human endeavour that this sector alone is worth $8.8Tr [1], making it over

a tenth of our global economic product [2]. Despite this, unlike other industries,

construction did not experience a dramatic increase in worker productivity during

the late 20th century [3, 4, 5], see Fig. 1.1. Digitisation and automation of the third

industrial revolution has had little effect on construction.

Figure 1.1: Stagnation of hourly productivity in construction sector compared to the total economy
during the past decades, according to a report by McKinsey [5]

Laborious manual tasks were made easier by automatic equipment, heavy

power tools or complex and highly capable machinery. However, more was needed

to streamline the construction process akin to the manufacturing of automobiles [6].

Consequently, understanding and tackling this missing productivity became a chal-

lenge to research areas from civil engineering and architecture to robotics.
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One notable answer proposed by Pegna et al. as early as 1997 [7], was cemen-

titious Additive Manufacturing (AM), or 3D printing, of entire buildings. Inspired

by the successes of traditional manufacturing and in a similar static-tool fashion,

early applications of AM in construction used highly stiff and accurate articulated

arms or gantries to perform large-scale 3D printing. Although this approach became

widely adopted for off-site prefabrication, construction sites were not significantly

affected. In fact, construction sites today still look much like ones half a century

ago.

Among other administrative and organisational barriers [4,8,9], studies exam-

ining innovation adoption failures in construction have identified inadequate tech-

nology as a leading cause. In order to automate the construction process, as a

whole, machines are required to exhibit ‘self-control’ [10] and to be either ‘numer-

ically controlled, semi-autonomous, or autonomous’ [11]. This was challenging to

achieve in construction as the large static-tool-like AM machines are strongly re-

liant on assumptions of certainty and controlled environment that they inherit from

their manufacturing origins [11, 12].

Recently, it has become possible to rethink automation in construction. Ad-

vances in computing, state estimation, motion planning and sensor capability allow

modern robotics to view construction differently than early manufacturing-like sys-

tems. A building does not have to be considered as an object that has to be pro-

duced but an environment that a robot inhabits and creates simultaneously. This

sentiment is echoed in the original Pegna’s vision as well, as they imagined that a

large structure “could conceivably be built by an army of ants, one grain of sand

at a time” [7]. This thesis applies such a dynamic-tool approach to large-scale 3D

printing. Specifically, this thesis tackles path and motion planning challenges that

arise from larger-than-self 3D printing via mobile manipulator-type robots. This

way, the thesis is part of a greater effort to bring high levels of autonomy to con-

struction automation and, in doing so, play a small part in the realisation of Pegna’s

robotic construction vision.
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1.1 Motivation for Robotic Construction
There is a greater context, beyond increased productivity, as to why construction

automation is a crucial pursuit today. The scale of construction means it is wide-

reaching. Therefore, construction innovation, specifically robotics and automation,

is increasingly seen as a key part of the solution to major global challenges. Our

society is urbanising quickly [13], and the ageing workforce [4, 14] is struggling

to keep up with the associated housing demands. Automation could allow rapid

construction where needed, while the versatility of dynamic and autonomous robots

could relinquish the pressure for construction labour. This, in turn, could also save

lives, as construction is intrinsically hazardous and is responsible for over 50,000

deaths annually [15, 16].

As the world relentlessly moves towards a more environmentally friendly and

sustainable future, the efficiency of the construction process and buildings them-

selves fall under scrutiny. Construction and operation of buildings consume 36%

of the world’s energy and produce almost 40% of energy-related waste [17]. Ad-

dressing this, the construction adoption of Additive Manufacturing is rising. Using

precisely the amounts of materials that are needed [4], AM is a leading technology

for reducing waste. Unfortunately, it remains largely stuck in remote factories, pre-

fabricating building components, which are difficult and costly to transport, have

size limitations and require local investment [16]. If AM is mobilised, abundant lo-

cally sourced raw materials could be used on-site, reducing costs and environmental

impacts.

In addition to reduced wastefulness, digitised and autonomous construction

opens up new optimised design opportunities. Buildings can be designed to produce

less waste throughout their life, use less material to build and cost less to main-

tain. Emergent technologies, including AM, have been used to create structures

customised for the environment [18], containing complex and optimal geometry

parts [19], or passively fulfilling thermal, acoustic or other functionalities [20, 21].

Such complex customisation and specificity are either not feasible or not afford-

able using conventional construction methods. In contrast, case studies showed that
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‘Additive Manufacturing and robotic construction lead to linear scaling of costs

with respect to specificity’ [22] and that‘there is no additional cost derived from the

robotic fabrication method if the complexity [...] increases’ [23]. Taking a step fur-

ther, mobilised robotic construction and specifically Additive Manufacturing could

allow the design-implementation cycle to be rapid and responsive [16]. This way,

not just improving the efficiency of the construction process but enabling effective

architectural solutions as well.

Ultimately, challenges and opportunities ahead call for immediate action in

changing the way we build. Moreover, the efficiency and specificity of mobilised

and autonomous additive manufacturing is a promising strategic part of this endeav-

our.

1.2 Aims and Structure

Figure 1.2: Illustration of use of Mobile Manipulator robots for large-scale Additive Manufactur-
ing [24]

This thesis aims to unlock the aforementioned benefits of Additive Manufac-

turing (AM) in construction by mobilising large-scale 3D printing via the use of

Mobile Manipulator (MM) type robots. Illustrated in Fig. 1.2, MM robots consist

of an articulated robot arm, a manipulator rigidly attached to a mobile platform.

Such robots extend the workspace and capabilities of the manipulator via motion.

This combination of mobility and agility has profound potential to leverage AM in

on-site construction effectively. Despite this, the mobilisation of AM methods is
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under-explored. At the start of this project, very few such systems existed; none

exploited the capabilities of MM-type robots beyond relocation. Specifically, there

was no demonstration of printing-in-motion modality, where a MM robot leverages

both the manipulator and the robot-base to perform 3D printing. This is arguably a

unique functionality of MM-enabled material deposition as it allows printing larger-

than-self geometries. Therefore printing-in-motion or Mobile 3D Printing (M3DP)

is the focus of this thesis.

Printing-in-motion, being an under-explored topic, means there is little un-

derstanding of the technical difficulties in developing such functionality. Conse-

quently, the contributions of the thesis are derived by analysing the M3DP problem

and focusing on path and motion planning challenges that must be tackled to enable

printing-in-motion. Thus core overarching research goal of this work is Tackling

Mobile 3D Printing specific Path and Motion Planning Challenges.

In this thesis, this question is tackled by, firstly, iterative hardware prototyping

aimed at deriving a better understanding of M3DP and giving rise to subsequent

research questions that shape thesis contributions. Secondly, the proposal and de-

velopment of novel path and motion planning methodologies that address unique

aspects of the printing-in-motion problem and, in turn, are the main contributions

of this work. The hardware prototyping aspect of this work is important as aspiring

to develop a M3DP capable robot not only allows empirical validation of theoreti-

cal results but also enhances the applicability of this work to realistic construction

applications. And more significantly, hardware realisation directly answers the core

research question by example. The overall thesis structure is then as follows.

• Chapter 2 performs a broad systems-level review of construction automation and

robotics in construction. Mobile manipulators are contextualised, and their com-

parative strengths and weaknesses are discussed. In addition, the scope of the

thesis is further narrowed down, and a discussion of assumptions and simplifica-

tions made throughout the work is presented.

• Chapter 3 presents works relevant to M3DP and establishes challenges and gaps

in research related to building M3DP capable robots. This is done by discussing
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prototypical M3DP systems, each approaching path planning and control for

printing-in-motion in a different way. The discussion of these early prototypes

then highlights the underlying challenges of printing-in-motion and helps derive

two subsequent research questions. Firstly, how can mobile manipulator robot-

base paths be derived from a given print trajectory and secondly, given a feasible

robot-base path for print trajectory execution, how can such path references be

used to inform a whole-body controller for simultaneous robot-base and arm mo-

tion during printing.

• Chapter 4 then tackles the first subquestion by proposing a Task-Consistent Path

Planning (TCPP) methodology for finding MM-robot base paths in the M3DP

context. The algorithm considers the constraints and nuances arising from the

printing-in-motion application. This is done by leveraging and adapting robot

reachability metrics to inform and constrain a sampling-based planning algo-

rithm RRT*. The TCPP algorithm is then extensively evaluated in the subsequent

Chapter 5.

• Chapter 6 presents the final hardware development of a M3DP-capable robot

Armstone. This robot is designed to address the shortcomings of the two earlier

prototypes in Chapter 3 and provide a capable platform for validating theoretical

results.

• Chapter 7 then tackles the second sub-question raised in Chapter 3. A whole-

body optimal control-based controller is derived for the Armstone robot, pre-

sented in Chapter 6. This controller is then extended to be informed via the

TCPP-derived robot-base paths utilising a combination of quadratic cost func-

tions and time-varying soft constraints. This chapter also presents a series of

large-scale 3D printing experiments done in hardware via the Armstone robot.

Ultimately, the contributions of this thesis are holistically evaluated in hardware,

and the sought-after printing-in-motion functionality is demonstrated.

• Lastly, the conclusions of the thesis, including a critical discussion of the work

and future research directions, are presented in Chapter 8.



2. Robotics in Construction

Construction is a physically enormous, complex and fragmented process, often

comprised of hundreds of tasks of various scale, nature and importance. Although

this thesis is concerned with the use of MM type robots used for on-site AM, this

Chapter provides a broad system-level review of existing robotic construction sys-

tems. The discussion presented covers different type of robotic systems and man-

ufacturing techniques. Doing so motivates the technologies used throughout the

thesis.

Two criteria were used to narrow the focus of the review - scale and auton-

omy. Firstly, construction systems reviewed must automate the physical process by

which significant, e.g. load-bearing, structurally or geometrically crucial, compo-

nents, such as walls, columns or foundations, are built. This criterion was used to

help focus on robots that do not just automate a single specific task but are a more

holistic part of the construction process. Secondly, the robots should demonstrate

some level of autonomy. For example, machines that automate a task and require a

human user, like Mule135 [25] bricklayer, are not considered. On the other hand,

a system that would automatically lay bricks and mortar for an entire floor without

human intervention, like HadrianX [26], would be discussed. Speculative systems

contributing to the exploration of robotic construction techniques are also discussed.

Keeping the diversity of robotic solutions discussed high but using scale and auton-

omy to assure comparability allows an informed comparison between the systems.

This way, the Mobile Manipulators as a robotic construction system are contextu-

alised holistically and informedly.
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2.1 Robotic Construction Systems
The design space of robotics construction systems is vast and high dimensional.

Every robotic system makes different assumptions about where it lies in the con-

struction process, how it delivers materials or components, what type of material

it delivers, what level of human interaction is assumed and so on. For in-depth

categorisation and classification of such systems, please see taxonomies and re-

views [21, 27, 28, 29] on the subject. Fortunately, these works largely agree on the

broadly defining characteristics of most robotic construction systems. Such char-

acteristics are the assumed location (on-site or off-site pre-fabrication), mobility

(stationary or mobile), and whether it is an assembly system or it leverages Addi-

tive Manufacturing. Although construction systems do not always lie neatly in these

categories, they have widely excepted the advantages and disadvantages. Moreover,

covering these will allow gaining a strong understanding of how MM systems can

be best leveraged to perform on-site AM construction.

Gantry Systems: The first digital construction systems were based on large

workspace enveloping gantries. These static systems, shown in Fig. 2.0, apply to

on-site construction and off-site prefabrication of building elements for assembly.

Commonly, gantry-type systems are comprised of large motorised frames on rails

and heavy extruders. Gantry systems were first proposed by Pegna [7] and pio-

neered by Contour Crafting [32]. The large-scale system is usually not limited by

(a) Contour Crafting concept drawing [30] de-
picts concrete deposition and component assem-
bly

(b) D-Shape binder-jetting deployed via a gantry
system [31]
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(c) 3D Concrete Printing (3DCP) system [36] for
off-site refabrication of assembly components

(d) Kamp-C 3D gantry based printer [37] de-
ployed on-site

Figure 2.0: Examples of gantry-base construction systems

payload and is kinematically simple. Therefore, many different AM methods have

been used with gantry systems [33]. However, in the majority of cases, these meth-

ods involve some form of material deposition. Successful and established examples

using different AM methods include Concrete Printing(CP) [31, 34], Freeform [35]

and D-Shape [31].

These systems have seen commercial success in concrete printing one or two-

story buildings, walls or even modular flood defence components [38, 39]. Despite

this, they have been criticised for lacking workspace scalability and low agility.

Fig. 2.0 illustrates how the large frame must envelop the constructed structure and

thus imposes upper bounds on the workspace volume. This is especially limiting

on-site as the construction system must scale with the footprint of the building.

The Contour Crafting concept drawing features rails as a method to extend the

workspace of the system. However, their size and weight already make gantries

expensive and difficult to deploy. And the use of rails does not address scalability

as more rails are needed for the gantry to move further. Lastly, the motion of the

gantry frame only provides three degrees of freedom, meaning material can only be

deposited from one direction which leads to geometry restrictions. Therefore, while

gantries are a robust and proven system, they are not highly suitable for on-site con-

struction.
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Transportable arms and Cable-suspended systems: The scalability con-

cern of gantries is partly addressed by stationary, but transportable, robot arms and

cable-suspended systems [40]. Both of these are easier to transport and can ex-

tend their workspace via relocation. Transportable robotic arms have been used for

on-site Additive Manufacturing [41] as well as off-site prefabrication and assem-

bly [42]. Further, a system integrating brick delivery and mortar deposition via a

transportable arm has been successfully used for commercial brick-laying [43]. As

such systems are used while stationary, they often aim to extend their stationary

workspace by using far-reaching arms and sometimes rails for easier transport. To

date, the largest 3D Printed building was built using the ApisCore [44] system seen

in Fig. 2.1.

(a) ApisCore large arm printer [44] has been used for many commercial projects

(b) A concept diagram of cable-suspended system [40] and a realisation of such a system by on-
site 3D [45]

Figure 2.1: Examples of cable-suspended and transportable arm based printers

Cable-suspended systems have shown a greater potential as 6-Degree of Free-

dom (DoF) extruder control has been developed by Barnett et al. [46]. Also, it has
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been postulated that surrounding buildings could be used for cable attachment in

order to eliminate the need for supporting structures [47]. However, these systems

are still criticised for workspace scalability as extending their workspace, that is,

relocating them, is costly. Further, as these systems strongly favour approaching

construction tasks from above, this constrains the design space similarly to in the

case of gantry systems. And similarly to gantries, both must be installed on the

construction site.

Unmanned Air Vehicles: A radical proposition to address the aforementioned

workspace limitations have been multi-rotor unmanned air vehicles(UAV). Special,

lightweight extruders [50] and stabilisation methods [48] have been developed to

allow UAV-based material deposition. However, these systems have low payload

capacity and low energy efficiency. UAVs consume energy to remain in the air;

thus their low payload property leads to the necessity for numerous and costly re-

filling trips or having to carry heavy, material-filled teathers [51]. Further, whilst

it is common for aerial construction systems to claim the potential for on-site de-

ployment, most of the systems proposed so far have only been tested indoors. As

material deposition requires trajectory following, it is not trivial to assume that such

systems will be applicable outside due to higher wind interference and localisation

uncertainty. On the other hand, UAVs agility and speed, when travelling from point

to point, can be taken advantage of by tensile construction [52] and assembly [49]

systems, see Fig. 2.2. Whilst these methods are more suited for the platform, neither

has been demonstrated to work on a commercially feasible construction task.

Figure 2.2: 3D printing expanding foam with UAVs [48] and flight assembled pillar [49]
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Another criticism of UAVs in this context is scalability in deposition volume.

This is because the volume of material needed to be deposited or assembled is sig-

nificantly larger than the payload of a single UAV. Therefore, A lot of research

has gone into demonstrating the ability of UAVs to be deployed in parallel as

multi-agent or swarm systems. Parallelisation offsets low single robot payload,

by distributing small incremental tasks to multi robots for simultaneous execu-

tion [53, 54, 55, 56]. Although such parallelisation is crucial for UAVs, they are

not unique in this matter and multi-robot task parallelisation has been demonstrated

by gantry [57] and cable suspended [47] systems as well.

Climbing Robots: A nature-inspired type of robotic construction system is

climbing vehicles. This type of system is designed explicitly to traverse the struc-

ture it constructs. The project TERMES [58], shown in Fig. 2.3, heavily inspired

by termite behaviour, popularised this approach as they have demonstrated a group

of small crawling robots assembling a structure many times larger than each indi-

(a) TERMES, climbing robot swarm construction sys-
tem [58]

(b) Fiberbots, climbing robotic nylon
weaving and curing system [59]

(c) Minibuilders [60] robots traverse a 3D printed concrete
structure and have demonstrated construction-scale capabil-
ity

(d) Material–Robot assembly sys-
tem [61] assembles and climbs mag-
netically active componenets

Figure 2.3: Examples of climbing robots
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vidual robot. They went on to derive provable guarantees for the feasibility of the

construction task and analysed constructible models of the main temple at Chichen

Itza [62]. However, climbing robotic construction systems developed so far showed

specificity in their design towards the material being deposited or assembled [63]. In

the case of TERMES, the assembly components and robots had magnets designed to

increase the robustness of pick, traverse and place tasks. This purpose-built compo-

nent paradigm was recently illustratively named as Material-Robot system by Jenett

et al. [61]. Climbing robots, using tensile elements to create weaved structures be-

tween walls, was also demonstrated by Yablonina et al. [64]. As these systems are

usually small and their motion method is complex, they have rarely been scaled up

to the construction scale. The one exception is Minibuilders [60]. These are several

specialised extruders that can grip or stick to the 3D-printed concrete structure and

traverse it while depositing more material.

A common characteristic seen in these types of systems is coupling the act of

motion and construction. This is well illustrated by Fiberbots [59], as this system

of cylindrical nylon-weaving robots deposit material around themselves and use it

to nudge themselves further. This way, creating complex, self-supporting, tubular

nylon structures. This method, also seen in assembly [65], is surprisingly analogous

to the recent conventional construction methodology of Factory 2.0 [66,67]. Here, a

conventional yet automation-assisted construction environment is used to assemble

a floor of a multi-story building and then lift itself up to construct the next one.

Mobile Manipulators: Lastly, a robotic construction system receiving in-

creasing attention is Mobile Manipulators (MMs). MMs are a diverse set of sys-

tems as they vary greatly in size and method of locomotion. They can be tracked

for rough terrain, wheeled for Omni-directional motion on the factory floor or even

legged, although there have not been many examples of the latter. Typically, MMs

robots are comprised of a ground vehicle integrated with a 6 DoF robot arm that

is moved around an indefinite planar workspace. Note that the distinction between

MMs and transportable arms arises from the ease of mobility. A transportable arm

has a static workspace to which the end-effector is constrained, whilst a MM system
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(a) Digital Construction Platform [16] seen de-
positing foam in a 10 m radius circle.

(b) DCP [16] was envisioned to act in a multi-
robot context

(c) In-situ fabricator welding together
a steel formwork on-site [68]

(d) MM systems depositing concrete in a multi-robot con-
text [69]

Figure 2.4: Examples of Mobile Manipulators in construction

can extend the arm’s workspace throughout the motion. This way effectively render-

ing an indefinite workspace. The first robot system to demonstrate something like

this was the Digital Construction Platform (DCP) [16]. Although to a large extent it

would fall in the transportable arm category, it was the first system to demonstrate

material deposition from a moving vehicle. DCP consists of a heavy-duty 4-DoF,

10 m spanning tracked lift system that carries a 6-DoF robot arm. This composi-

tion of a low and high degree of freedom systems named micro-macro. DCP was

mainly used in a stationary capacity, but such micro-macro arrangement of actua-

tors, to some extent, simulated the nature of a MM and inspired other works.

A variety of manufacturing methods have been deployed via mobile manipu-

lators. ETH Zurich has shown brick laying [70] and steel mesh welding via their

in-situ fabricator platform. The latter project involved welding small metal rods
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into a complex mesh, simultaneously forming re-enforcement and form-work for

a concrete wall [68, 71, 72]. Furthermore, MM systems have also been used for

single-task automation like drilling [73, 74] or painting [75]. Also, Heterogeneous

component assembly has been demonstrated by Ikea Bots [76] as well as Dogar

et al. [77]. The later project involved cooperatively carrying parts that would oth-

erwise be too heavy for a single robot and participating in a multi-part assembly

process. Additionally, researchers at ETH Zurich have also developed a methodol-

ogy for whole-body motion of a walking excavator [78] and used such robots for

autonomous trench digging [79, 80]. These are heavy-duty yet agile systems that

can have up to 31 DoF. Furthermore, simpler autonomous excavators have seen

commercial success in earthworks [81].

Whilst demonstrably versatile in how they can be applied, MM systems are

often criticised for lack of vertical workspace scaling. No matter how large, a ma-

nipulator will have a maximum vertical reach that ground mobility does not help

counteract. Scissor lift platforms have been used by Pictobot [75], the wall painting

system, to address this issue. However, lift-like solutions increase robot footprint,

reduce mobility and extend maximum vertical reach instead of eliminating this con-

straint. Furthermore, similarly to UAVs, MM systems can have poor scaling in

terms of the rate of material deposition that can be addressed via parallelisation.

2.2 Additive Manufacturing in Construction

The systems described throughout the previous Section are grouped by their me-

chanical ontology and features. However, these systems are not exclusively associ-

ated with a single manufacturing method, that is, the actual processes of transform-

ing raw material into a target design. For example, the aforementioned Contour

Crafting (CC) was described as an application of a gantry-based system, but the

name refers to the patented manufacturing method deployed on this system. CC is

a method that uses two nozzles to print a type of form-work simultaneously, hence

contour, that is later filled with high-performance concrete and integrated into the

printed object.
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Other methods that are deployed using robotics systems previously covered

are as follows. Binder Jetting (BJ), deployed via a gantry by D-Shape(DS), sprays

liquid binder stream through multiple nozzles onto a powder material. A uniform

structure is formed as the powder solidifies and adheres to itself. The DCP plat-

form used 3D Foam Printing (3DFP), which utilises lightweight, adhesive and fast

curing properties of Polyurethane Foam to construct form-work in which concrete

can be poured. Fused Deposit Modelling (FDM) is a common technique seen in

commercially available desktop 3D Printers as well as construction. FDM relies on

heating the material above the melting point and extruding it into a shape as it solid-

ifies. FDM is usually deployed via gantries or stationary arms and, in a construction

context, is mostly used for the pre-fabrication of assemblable components. Cellular

Fabrication (C-Fab) is the use of stationary robot arms to perform FDM printing

of plastic lattice-like structures that then act as simultaneous formwork and rein-

forcement and can be filled with foam. Lastly, articulated robot arms on rails have

used Direct Energy Deposition (DED) to perform 3D printing in metal [82]. A steel

wire feedstock is heated up with an electric arc and effectively welded into a greater

structure. The naming of these methods here is consistent with the taxonomy by

Figure 2.5: Categorization of AM methods in construction. Data gathered by Van Woensel et
al. [33]. Highlighted methods are applicable to large-scale construction and are discussed here. For
details on other methods please, please see the original review by Van Woensel et al.
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Van Woensel et al. [33], a graphical summary of which is presented in Fig. 2.5.

Further classifications and reviews of various AM methods used in construction are

available [6, 36].

The method of manufacture determines what materials can be used and speci-

fies how they are combined into a unified structure. However, different manufactur-

ing methods might look similar to the robot’s perspective. In the case of large-scale

construction, as seen in the figure above, the most applicable methods fall under the

extrusion family. As such, they are mostly comprised of tracing long and poten-

tially complex tool-paths, in order to grow a structure by adding multiple layers of

material together. This means that in essence, deploying these methods on a robotic

system would require the robot to trace these end-effector trajectories while being

mostly agnostic of the exact method of manufacture being used. Lastly, a common

trait of extrusion methods is their specificity. As the material is added onto the

structure in small increments, the process benefits greatly from the available agility

of the system it is deployed on. Therefore extrusion-based methods often leverage

articulated robot arms for their high degree of freedom capability. A few examples

of complex geometries that can be achieved using high degree of freedom extrusion

are seen in Fig. 2.6.

(a) MX3D [82] leveraging high agility articulated arm to
perform freeform metal 3D printing

(b) Branch AI [83] leveraging 6-DoF
arm to perform C-Fab manufacturing

Figure 2.6: Examples of high degree of freedom printing
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2.3 Advantages of Mobile Manipulators
The shortcomings and advantages of different construction systems covered in this

Chapter can be summarised as follows. Gantry-like systems are historically pio-

neers of AM in construction. To date, they produce the most robust and commer-

cially successful structures. However, they lack workspace scalability and degrees

of freedom to be readily adopted for on-site work. Transportable arms and cable-

suspended systems are more flexible and cheaper to install. They are also capable

of 6 DoF motions, but still have a limited workspace and do not scale with the

construction site. The more agile UAVs have a potentially unbounded workspace

but struggle with required payloads for materials and desired accuracy of robust

extrusion. Climbing or Robot-Material systems also have a potentially unbounded

workspace but are dependent on the material or assembly components. On the

whole, the common criticisms highlight workspace scalability, achievable payloads,

available degrees of freedom and inexpensive deployment as desirable characteris-

tics of a robotic construction system.

When assessed against the criteria above, Mobile Manipulators excel at all of

the desired characteristics to a large extent. Their mobility leads to an unlimited

workspace in two dimensions and allows them to be deployed easily and cheaply.

The use of agile articulated arms means that they can deliver the high degree of

freedom motion that many extrusion tasks benefit from. In addition, Mobile Manip-

ulator-type systems do not struggle with payload, power or material independence

as rugged mobile robots can easily carry hundreds of kilograms on board or tens of

kilograms on the end-effector. The one exception is restricted vertical reach, which

is the strongest criticism of MM systems and, perhaps, their single system-imposed

limitation. However, as this limitation is shared with conventional manual labour,

solutions that apply to the latter, such as scaffolding or stairs, can feasibly transfer

to MM systems as well. Scaffold-mounted arms have already been explored [84],

and existing advances in animaloid robotics like the MIT Cheetah, ETH Anymal

show that mobile quadrupeds are able to climb stairs and ladders [85] [86]. These

capabilities could feasibly be extended to remove the vertical workspace constraint
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of MM construction systems. Unfortunately, no work showcasing an animoid-based

platform constructing a terrain to climb on exists. This is, of course, a highly chal-

lenging task and serves as an example of the type of requirements of robot intelli-

gence, e.g. environmental awareness, and abstract task modelling, that must be met

for mobile manipulators to thrive in the construction environment.

This type of necessity for autonomy and intelligent behaviour is why, to a

large extent, Mobile manipulators in construction have not yet been commercially

successful. MM intrinsically differ from the gantry and arm systems that are more

commonplace in the industry. The latter, to a large extent, treat a building as an

object to be manufactured, while mobile robots are dynamic tools inhabiting and

shaping a growing structure. For example, the rigid frame of a gantry system is

what imposes a workspace limitation, but it also allows highly accurate end-effector

positioning via motion encoding. In the case of a MM system, the flat workspace

is unbounded, but localisation of the system in a dynamic and congested construc-

tion environment is difficult. Furthermore, UAVs, gantries and transportable arms

all tend to sequence material deposition or assembly tasks vertically. This is of-

ten not a choice but a necessity due to their design only allowing these systems to

approach an object from above. On the one hand, such simplification allows these

systems to mostly move through free space and not worry about cluttering their own

configuration space with the structure they are creating. MMs, however, can lever-

age the agility of a high DoF arms from almost any angle of approach throughout

the workspace, but they also have to traverse the same space as the construction

task, restricting its free space as it constructs. Ultimately, to be effective, MM-type

robots must perform abstract modelling of the construction tasks and environment

and employ computational techniques to overall exhibit intelligent behaviour and

autonomy.
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2.4 Thesis Scope and Focus
Conceivably, a MM robot can perform continuous material deposition over trajec-

tories much larger than itself by leveraging both robot-base and arm motion simul-

taneously. In this work, this will be thought of as a modality of 3D Printing and

interchangeably referred to as printing-in-motion or Mobile 3D Printing (M3DP).

This functionality is both advantageous and challenging. It is an example of un-

restricted planar workspace, a demonstration of simultaneous mobility and agility,

and it may also involve high-DoF printing trajectories. On the other hand, printing-

in-motion is a complex robot behaviour. The robot must exhibit coordinated control

over all of its actuators to meet the printing task requirements while simultaneously

navigating the robot-base. Hence, printing-in-motion, or M3DP, is representative

of the challenges and advantages of MM discussed in the previous section.

Despite this, the MM capability for printing-in-motion of trajectories that are

larger-than-self appears to be a gap in research. Therefore, this thesis’s core focus

and research goal is Tackling Path and Motion Planning Challenges specific to Mo-

bile 3D Printing. Arguably, addressing such challenges is of great impact to the

adoption of MM-robots in construction and specifically AM, in turn, contributing

towards automation in construction more broadly.

Although focussing on printing-in-motion means that the application domain

of this work is strongly grounded in construction, as discussed throughout this and

the previous sections, the challenges of achieving M3DP lie in algorithm and sys-

tem development, which define the contribution domain of this thesis. In the next

Chapter (Chapter 3), works related to M3DP are discussed and challenges in path

and motion planning aspects of the M3DP problem raised. Addressing these are

thus the contributions of this thesis.

2.4.1 Assumptions and Considerations

To help limit the scope of the thesis, a number of simplifications and assumptions

are made about the robot environment and tasks. As construction is still the desired

area of impact, it informed design decisions taken and evaluation metrics used.
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Most importantly, a self-imposed governing principle of this work is that the con-

tributions of the thesis should feasibly translate to real construction applications

and field-ready robots. This ambitious aim meant that scope-limiting assumptions

and choices had to be considered carefully, not only to bring focus to the work but

also to preserve its applicability and impact on construction. For this reason, pre-

sented here is a discussion of the reasoning behind the assumptions and choices

made throughout this thesis.

Construction Site Environment: On-site construction environment is often un-

structured, dynamic and uncertain and, in turn impacts robot localisation and terrain

traversal. Firstly, robust localisation in environments such as construction sites is a

long-standing and established open challenge. It is, thus, too great a challenge to

tackle in this work and hence not pursued. Instead, for most of the work, an external

motion tracking and localisation system is used as a placeholder. Secondly, tack-

ling rough terrain controllability issues requires facilities or outdoor testing, which

is not feasible under the resource constraints of this project. However, to assure the

applicability of this work to construction, when developing algorithms or system

elements that would depend on reliable robot state estimation or controllability -

the nature of a construction site, terrain and performance of standard localisation

solutions will be taken into account or modelled explicitly.

Target Structure: In this work, the desired structures being printed will mostly

be monolithic wall components or smaller-scale shapes of similar topology. Such

floorplan type geometries were shown in the previous Chapter — Fig. 2.1. This

choice reflects the focus on on-site construction as opposed to off-site prefabrication

of modular components. It is also assumed that the desired structure is known prior

to printing. This includes a specification of the printing trajectory along which

material must be deposited.

Physical Robot Scale: Construction is a large-scale activity both in terms of the

volume that a building spans as well as the volume of matter it is composed of.

Additionally, the construction site terrain is rough. Therefore, robots and machin-

ery typically used are large and rugged, capable of high payloads and travelling
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long distances. However, due to the practical limitations of the project, it was not

feasible to work with such systems. Instead, smaller-scale robots are used. Al-

though robot dynamics and material deposition characteristics (e.g. terrain traversal

noise, nozzle width, deposition rate) scale non-trivially, it was still desired that sys-

tems used could be compared to real construction-ready robots and findings of the

thesis could feasibility be extrapolated to this larger scale. For this reason, human-

scale robots were used. Such robots span roughly 1 m in any dimension and can

fit through human-sized passages such as doors. Thus, could potentially be used in

a construction scenario and are not far-removed magnitude-wise from rugged con-

struction equipment. Furthermore, Liquid Deposition Modelling (LDM) with clay

was chosen as a more practical and lightweight substitute for the concrete-based

material deposition family of AM methods. Furthermore, the work puts an em-

phasis on printing structures larger than the robot itself, as this is a key aspect that

translates between lab and construction scales.

Parallelisation: As AM in construction requires vast volumes of material to be de-

posited, one of the identified advantages of MM robots is the possibility for parallel

deployment in order to aid with deposition throughput. Therefore, multi-robot print-

ing was briefly explored at the start of this project and this work was published [87].

However, it was found that the path and motion planning aspects of the M3DP prob-

lem are the most prominent gaps in research and also a prerequisite for investigating

multi-robot printing. Thus, printing parallelisation was not investigated further and

is not tackled by this thesis.

Deposition Quality: Many examples of industrial robot arms performing clay or

even concrete 3D printing exist and have shown high-quality results. These works,

in the vast majority of cases, have put great effort into the extrusion process itself.

Such research often falls under the field of rheology or material science. In this

work, however, the focus is the autonomy of the deposition and thus limited effort

is spent on increasing the deposition quality. Off-the-shelf components are used

as much as possible to accomplish material extrusion and no systematic method is

adopted when choosing clay viscosity or chemical composition.
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Deposition Process: As most LDM printing processes use circular profile extruder

nozzles. Such an assumption is made in this work as well. As the deposition quality

and rheology of material flowares not considered in this work, from kinematics

point of view, this means rotation about the end-effector frame z-axis is allowed, i.e.

unconstrained. Moreover, in LDM printing the orientation of the extruder aligned to

the normal of the previously deposited material. This is in order to assure material

cohesion. In most research and applications, only vertical slicing of deposition

layers is considered, and the end-effector simply points vertically downwards. In

contrast, to fully showcase the agility of MM robots in this work, non-planar higher-

DoF printing trajectories will be considered as well. As the nozzle being used is

circular, this means, 5DoF printing trajectories are used.

2.5 Summary
To summarise, among existing robotic construction systems, MM-robots hold the

potential to drastically impact construction automation via on-site deployment of

AM. However, autonomous MM-robots are complex and very few have been built

thus far. This work will tackle the printing-in-motion, or M3DP, which is a modal-

ity of AM, where MM-robots perform 3D printing-in-motion of larger-than-self

geometries. M3DP as a robot task captures the foundations of the coupling between

the robot type, MM, and manufacturing method, AM. Lastly, the following assump-

tions are made to limit the scope of this thesis. The environment and print tasks are

known, and experiments will often aim to imitate wall components of buildings.

Printing in clay will be used to mimic the scale and deposition rate of printing in

concrete. Expected noise and controllability challenges of a construction site will

not be tested but anticipated or simulated where possible. And lastly, non-planar

printing trajectories will be considered.



3. Related Work in Path and Motion

Planning

The literature review in the last Chapter concluded that, among existing solutions,

MM type robots are most suitable for AM tasks in construction. Despite this, few

of these systems have been built, and none have exhibited sufficient autonomy that

leverages the mobility and agility the system type provides. As such, Sec. 2.4 also

refined the scope of this thesis to focus on such printing-in-motion capability and

raised the core research question of how Autonomous Mobile 3D Printing can be

achieved. Therefore, this Chapter reviews existing attempts at M3DP in depth and

focuses specifically on challenges of path and motion planning relating to the sought

after printing-in-motion functionality. This allows the derivation of more tangible

sub-questions that the contributions of this thesis will tackle.

The structure of this Chapter is as follows. Firstly the general system model

and nomenclature used throughout the work are established. Next, existing work

on M3DP robot prototypes is reviewed, common challenges discussed and a set of

subsequent research questions tackled by the contributions of forthcoming chapters

are raised. This is followed by a technical literature review relating to existing

constrained path and motion methodologies that underlie the algorithms developed

and proposed in this thesis.

3.1 M3DP Problem Modelling
A MM-type robot, as illustrated in Fig. 3.1, consists of an articulated manipulator

rigidly attached to a mobile robot-bose. In this work, the robot-base is denoted by
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the frame FB and the mounting point of the robot-arm by frame FA. As the frame

FA is rigidly fixed to FB, it will often be omitted for presentation clarity and lo-

cal arm manipulator motion will be described in frame FB instead. Moreover, in the

mathematical model, this work assumes a flat traversable surface for the robot-base.

Thus the pose of the robot-base will be represented by a tuple (x,y,θ) describing

a homogenous 2D transformation (SE(2)), where θ is robot-base orientation in the

world frame. The frame FEE always represents the pose of the extruder nozzle tip

and the terms TCP (Tool Center Point) and End-Effector will be used interchange-

ably.

Figure 3.1: An illustration of the M3DP problem.A MM-type robot, equipped with a single nozzle
extruder, must deposit material along a pre-described printing trajectory.
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As stated in Sec. 2.4, the printing tasks are of 5 DoF, as the rotation about the

extruder nozzle axis (FEE z-axis) is unconstrained. Therefore, a printing task will

be modelled as a trajectory of end-effector poses p, expressed as 3D homogeneous

transformations p ∈ SE(3), in the world frame FW as seen in Eq. 3.1. Note, that

such representation is redundant. Therefore, when considering the orientation of

the TCP pose, only the third column of the rotation matrix R will be used. Let

rx,ry and rz be collumns of R. Then, rz corresponds to the z-axis of frame FEE

that p prescribes. For example, when printing normal to flat floor surface, the end-

effector must align downwards along the negative z-axis in the world frame, thus

rz = [0,0,−1]ᵀ.

p :=

 R pxyz

01×3 1

=

 rx ry rz pxyz

01×3 1

 (3.1)

Moreover, in this work, several conventions for the parametrisation of the print

trajectory are used. In the context of path planning (Chapters 4 and 5), p(s) is

parameterised over the line integral over the print path s ∈ [0, l], where l represents

the Cartesian length of the print path. In the context of motion control(Chapter 7),

p(t) is parameterised over time. The parameterisation will be stated explicitly when

it is used. Lastly, in this work, the desired variables will be denoted with a hat

symbol, e.g. the desired end-effector orientation r̂z. In contrast, the ground truth

(usually measured via external tracking) will be denoted with a tilde symbol, e.g.

the achieved TCP path p̃.

3.2 Mobile 3D Printing Systems

At the outset of this thesis, there was a dearth of research available on mobile 3D

printing systems. This prompted the early stages of this project to be focussed on

exploratory work to better understand the problem at hand. Therefore, two exper-

imental robot platforms, the Mobile Agile Printer (MAP) and the YouWasp, were

developed, see Fig. 3.2. These works were published in IEEE/RSJ International

Conference on Intelligent Robots and Systems(IROS) 2018 [88] and 2019 [87] and
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(a) Mobile Agile Printer(MAP) robot (b) Youwasp robot

Figure 3.2: Mobile deposition robots: MAP and Youwasp

an extensive description of the work carried out can be found in the Appendix 9.2.

The MAP robot featured a Omni-directional platform, based on Active Split

Offset Caster (ASOC) design [89] and a mounted 7-Degree-of-Freedom (DoF)

Kuka Iiwa7 R800 articulated arm. MAP’s physical design parameters were in-

fluenced by the desirable characteristics of an on-site construction system recom-

mended by the in-situ fabricator [70], such as high payload capacity and the ability

to traverse rough terrain. The MAP robot used a decoupled approach to control its

base and arm independently. The Kuka Iiwa arm was controlled via joint position

controller at a frequency of 500 Hz. Although the base controller ran onboard at

50 Hz, the controller for the KUKA control box was not mounted onboard due to

its large size, making the MAP robot tethered.

The robot base and arm controllers used position control against two synchro-

nised reference trajectories, one for the end effector and one for robot base poses.

These trajectories were implemented as a queue of poses. An off-the-shelf RRT-

Connect [90] planner was used to replan to the first pose on the queue at 50 Hz,

while considering the latest robot-base pose estimate. This was feasible as the

planned motions were small. Upon reaching the desired end effector pose, the

queue of setpoints was updated, sending new poses to both the base and arm con-

trollers. In addition, the base controller utilised a human-prescribed trajectory. This

decision was made as, during the development the MAP robot, the problem of com-

putationally deriving a base trajectory from a task trajectory was found to be highly
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non-trivial. This control strategy was put to the test by tracing various trajectories

with the arm while the base was stationary and moving. The maximum absolute

error throughout the trajectory was shown to increase only marginally, from 1.2 cm

to 1.5 cm. While this serves as a confirmation of feasibility, the fact that robot-base

path was human-prescribed was a significant shortcoming.

The Youwasp robot, modified Kuka Youbot platform, was designed to be a

more convenient research platform. It was untethered and power-wise and com-

putationally independent and iterated upon the control strategy of the MAP robot.

Path planning for the print trajectory was carried out in a combined base-arm joint

space, modelling the robot as a redundant manipulator. Therefore, unlike the MAP

system, the Youwasp did not require a human-prescribed robot-base path to be pro-

vided alongside the print path.

While using existing solvers allowed a slightly deeper exploration of the re-

lationship between the robot, environment, and printing task, it was found that the

off-the-shelf planners were inadequate and did not meaningfully explore the con-

figuration space. The classical planning problem formulation is static and did not

support the incremental creation of obstacles throughout printing. Instead, it con-

sidered the entire print segment as a static obstacle prior to printing, which is a

very strong assumption. Moreover, it did not consider multiple robot-base starting

poses. On the other hand, experimenting with off-the-shelf planners also suggested

that even in simple scenarios (See Fig. 9.8), the path planning capability may require

dealing with the necessity of printing with intermediate relocations.

Although planning was performed in combined robot-base and arm joint space,

the controllers of the two systems were separate. The fact that they followed pre-

planned time-synchronised reference trajectories meant that the combined systems,

in essence, controlled open loop. Experiments performed using the Youwasp sys-

tem included tracing floorplan-like trajectories in an area over 5m×5m. While the

mean end-effector error of 0.0091 m (std.0.0087 m) was relatively low, maximum

errors throughout the trajectory could reach up to 5cm due to this open-loop nature,

as the arm controller did not take into account online base pose estimates.
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Figure 3.3: Printing-while-moving robot proposed [91]

Following the early MAP and Youwasp prototypes, new research tackling mo-

bile manipulator-based 3D printing has become available. Researchers from NTU

Singapore, Tiryaki et al. [91] and Zhang et al. [69], developed a mobile manipulator

prototype exploring both mobile printing, as well as collaborative printing with mul-

tiple robots. Work by Tiryaki et al. highlights similar planning and control issues

as ones raised by MAP and Youwasp. Firstly, they had to use human-prescribed

paths as deriving one from the task was non-trivial. Moreover, they had decou-

pled control and had to rely on accurate tracking of robot base trajectory, and did

not utilise the arm for disturbance rejection. Moreover, they also used a decoupled

control approach, relying on accurate tracking of the robot’s base trajectory while

not utilising the arm for disturbance rejection, this mirrors the challenges faced by

MAP and Youwasp. Fig. 3.3 shows the mobile manipulator prototype developed by

Tiryaki et al. Meanwhile, Zhang et al.’s research focused on optimising the place-

ment of robots for 3D printing tasks. They utilised reachability maps to position two

robots at different locations to collaboratively print a structure. This approach hints

at robot workspace analysis helping to capture capturing the relationship between

printing tasks and the pose of the robot base.
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A common challenge faced by the robotic systems discussed is the derivation

of a robot-base path for a given task trajectory and a robot-base and arm control

approach that enables the utilisation of all available degrees of freedom to minimise

disturbances. The next two sections will provide a comprehensive overview of the

existing literature on these questions.

3.3 Path Planning for Mobile Manipulators
Path planning, a well-studied area with decades of research, involves finding an op-

timal path from a start to a goal configuration for a robot in a given environment.

Geometric path planning decomposes the continuous configuration space into cells,

constructing a graph from their centers, and commonly uses sampling-based ap-

proaches like PRM and RRTs to find collision-free paths. This section will specif-

ically address the challenges of constrained path planning for mobile 3D printing.

For a broader overview of the field, please refer to [92, 93, 94, 95, 96].

3.3.1 Task-Consistent Planning

Path planning for a robot-body given that it’s end-effector needs to trace a task-

trajectory is a constrained path planning problem. This work adopts the name task-

consistent path planningfrom two of the works [97, 98] discussed here, but it is not

a conventional term in the literature. Probably the first work to consider path plan-

ning for a MM with a given end-effector task was by Nagatani et al. [99]. They were

concerned with the challenge of drawing large objects on a wall by an MM. The

two aspects of the problem were: 1) The end-effector was given a path to trace that

is perpendicular to and constrained to the surface of a wall 2) This path, or task, was

much larger than the manipulator’s workspace thus requiring simultaneous motion

of the whole MM system. Their key insight was to model the region that the manip-

ulator can reach using its manipulability metric. They used Yoshikawa’s definition

of manipulability ellipsoid, which represents a set of possible velocities the end-

effector can take [100]. If the Jacobian of a configurations is J, m =
√

det(JJᵀ) can

be interpreted as distance from singularity configurations [101]. Nagatani et al. de-

fined contour regions of high manipulability in mobile base configuration space as
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Layers of Manipulability Area (LMA). In turn, this allowed dimensionality reduc-

tion of the problem from 9 DoF (full MM system) to 3 DoF (just the mobile base).

Further, using a PRM type of approach and keeping the path found inside the LMA

ensured the task trajectory is kept in manipulable regions of the arms configuration

space.

A later work, by Oriolo et al. [102], defined a Motion Planning along End-

effector Paths problem. They sought to find a collision-free path for a MM and a

given end-effector path p(t) ∈ R3. Instead of using manipulability, they built upon

work in redundant manipulators. They considered the mobile base to be the re-

dundant set of joints of the manipulator chain. Then, each point along p(t) can be

realised by the self-motion manifold of this model. In this case, the manifold is

the inverse image set of redundant joints (base joints) of the redundant manipula-

tor while achieving point p(t). They approximated the set with a circle defined by

the manipulator’s reach. Thus similarly to Nagatani, they too had a way of defin-

ing a region of base poses such that a particular task point is reachable. Oriolo et

al. then used this region to sample possible base configurations for an RRT-like

search. Configurations were also further validated inverse kinematics calls for the

associated manipulator task.

As demonstrated by Oriolo et al., the RRT family of algorithms make it very

easy to introduce task-consistent constraints by modifying how random configura-

tions are sampled from or validated. Further, manipulability, as used by Nagatani

et al. would be a suitable way to assure the robot arm will be able to quickly reject

disturbances. However, there are multiple metrics associated with robot workspace

analysis that could be used by a path planner to provide assurances with regarding

disturbance rejection. Thus the robot workspace analysis is discussed in greater

detail in the following subsection.

3.3.2 Robot Workspace Reachability

One of the early areas of robotics research extensively studying an articulated ma-

nipulator’s workspace is the design of humanoid robots. Such systems are highly

complex and challenging to build; thus, it was important to analyse their kinematic
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properties in order to reflect how design decisions would impact them [103]. As in

the work of Nagatani et al., one way to do this was to use the manipulability mea-

sure. Manipulability m is a function of the manipulator’s joint state φ and can also

be geometrically interpreted as an ellipsoid representation of a set of possible Carte-

sian velocities the end-effector can render at a given joint state [100]. To evaluate a

robot’s workspace, the configuration space of the manipulator can be sampled and,

for each joint state, the manipulability computed. Then m can be mapped to a small

cell in Cartesian robot workspace via forward kinematics and visualised in order to

reveal singular regions in the workspace [104].

However, Zacharias et al. [101] identified a number of issues when manipula-

bility is used to infer the characteristics of a robot’s Cartesian workspace. The fact

that the Jacobian is defined in joint-space leads to complications. Firstly, the Jaco-

bian is unaware of joint limits. Jacobian values around joint limits could thus lead

to high manipulability values and thus be misleading. Secondly, it mixes spatial and

angular units making the computed solution difficult to interpret, although this can

be circumvented by only considering translational parts of the Jacobian. Lastly and

most significantly, Zacharias et al. show that since manipulator singularities map

large regions in joint-space to small regions in Cartesian space, this causes the joint-

space sampling approach to overrepresent singular regions. In turn, this makes the

manipulability values assigned to Cartesian points inaccurate and misleading, since

there might still be perfectly manipulable joint configurations mapping to the same

point. To overcome the limitations of manipulability used as a wellness metric of

robot workspace, the robot Reachability Map (RM) was developed [101].

A Reachability Map (RM) provides a measure, for each point in task space, of

how hard it is for a robot to place an end-effector at that point. Instead of sampling

manipulator joint-space, the task-space is discretised into a set of voxels. Each voxel

is assigned a reachability index. The reachability index for the jth voxel is calcu-

lated by fitting a sphere S j inside the voxel. A set of N random end-effector poses

in SE(3) are chosen on the surface of S j. For each pose, the inverse kinematics (IK)

are computed. Let R j store the total number of IK solutions that exist. Then, the



3.3. Path Planning for Mobile Manipulators 48

RI for the jth cell is simply given by D j = 100R j
N . When D j = 0, no IK solutions

exist and the cell is not reachable. When D j = 100 then many IK solutions exist

and the voxel is easy to reach. Intermediate values provide a measure of the degree

of difficulty of placing an end-effector in that voxel. Furthermore, since the poses

tested are in SE(3), their orientation also relates to reachability. Fig. 3.4 exhibits a

pattern where voxels further away from the robot have more poses pointing away

and voxels closer to the robot body tend to point inwards. This illustrates the effects

of self-collision on reachability in local regions.

(a) Reachability voxels spanning from
close range to end of robot’s reach

(b) Close up of the reachability voxels (spheres).

Figure 3.4: Illustration of Reachability Map directionality structure. Black arrows pointing towards
the centre of the spheres show orientation of poses with existing IK solutions. Colours indicate total
number of existing solutions from low (red) to high (blue). Original illustrations by Zacharias et
al. [101]

Subsequently, Zacharias et al. [105] showed how the RM could be used to

optimise the placement of a static base in a robot manipulation task. They cross-

correlated the set of end-effector task points the robot had to undertake with the

reachability map. This provided the best placement of the task within the robot

workspace. Then, inverting this position for a given task in a world frame could

suggest a base pose such that the task is in a highly reachable region of the arm. This

work demonstrated that RM can be used for such robot-base placement problems

effectively which strongly relate to the TCPP problem in M3DP context.

However, the RM is a measure over the manipulator workspace, not poten-

tial base poses. To further aid in base placement, Vahrenkamp et al. developed

the Inverse Reachability Distribution (IRD) [106]. They argued that a reachability

index could be interpreted as a heuristic for the a probability of Inverse Kinemat-
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ics (IK) solution existing for a given end-effector pose-voxel. A high reachability

index does not guarantee this but makes it empirically likely. Further, their RM,

was constructed over the full SE(3) of the robot workspace as voxels spanned ro-

tation space SO(3) as well. Each voxel was then a tuple of a pose in SE(3) and a

reachability measure. These poses could be inverted to form the IRD. Vahrenkamp

et al. noted that such inversions resulted in base poses that are not constrained to

the floor surface. And thus another step had to be taken to cut the volume of IRD

with the floor surface, to arrive at an Oriented Reachability Map in SE(2), the space

of possible base poses. This is also called an Inverse Reachability Map (IRM) and

this term will be used in this work.

Workspace analysis like this is carried out offline and results in RM and Inverse

Reachability Map (IRM) which are large data structures. Further work in TCPP for

humanoids deems such large structures to be too cumbersome and computationally

expensive to work with online. Instead, propose fitting lightweight approximations

like ellipses to simplify them [107]. Further, intersecting an IRM in SE(3) with a

ground surface to produce an IRM over SE(2) could be an effective way to account

for the elevation, often called 2.5D, of uneven construction site floor. However,

as IRMs are already large structures, performing this intersection online, could be

computationally expensive.

Nevertheless, connecting the works of Vahrenkamp et al. and Oriolo et al.,

leads to an insight that workspace metrics like RM and IRM provide not only a

method of validating if a given robot-base pose is suitable for reaching a given end-

effector pose, but also, a method of generating a set of suitable robot-base poses

given a desired end-effector pose. This way, these metrics are more suitable for

use together with a sampling based path planner than Manipulability and will be

adopted for use further in this work.
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3.4 Whole-Body Control
As discussed in Section 3.2, existing works on M3DP have fallen short in utilising

all degrees of freedom of a mobile manipulator robot to perform printing-in-motion.

However, simultaneous robot body and arm, or otherwise, appendage control, is

not unique to the M3DP application. Perhaps the most prominent area of research

tackling the same problem is the field of whole-body control of complex and highly

redundant systems such as humanoid or quadruped robots [108,109]. The complex-

ity of these systems often means that most of the tasks performed by these robots

require careful negotiation of multiple objectives and adherence to a large set of

constraints. Thus, whole-body control is usually characterised not just by the re-

dundancy of the system but the simultaneous execution of multiple tasks [110,111].

For example, opening doors or performing a pick-and-place via a humanoid robot

also requires maintaining mass and momentum equilibrium, adhering to joint effort,

or even, feet contact force limits.

Whole-Body Control (WBC) is closely related to the field of Optimal Control,

which is concerned with techniques suited for such constrained and multi-objective

control problems. A broad overview of optimal control and WBC can be found

in [112]. As optimal control is a vast field of research on its own and is not limited to

robotics, only the specific methods relevant to end-effector tracking will be covered

in this Section. Specifically, the control approach presented in this Chapter uses the

WBC framework presented by Pankert et al. [113], and thus, this Section builds up

the context and mathematical framework necessary to present how this work is later

applied to the M3DP problem.
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The general principle of optimal control to robotics systems relies on the in-

sight that the solution to robot differential inverse kinematics can be shown to

be equivalent to the solution of a quadratic optimisation problem [114]. Such

optimisation-based formulation, or otherwise known as Quadratic Programing,

has multiple advantages. Firstly, it is a well-studied optimisation problem and

there exists a large variety of powerful, robust tools that can solve it incredibly

fast [115, 116]. Also, the optimisation is subject to various constraints for exam-

ple to capture control input limits. And lastly, the cost-function-based formulation

allows for an intuitive composition and formulation of tasks [114, 117]. Similarly,

expanding this idea over a fixed time horizon, an optimisation problem can be for-

mulated to help find entire control input trajectories so that the system state would

track a desired state trajectory. A general optimal control problem is thus often

formulated as [115, 116].

argmin
u

∫ t0+tI

t0
L(x(τ), x̂(τ),u(τ))dτ,

s.t.x(t0) = x0 initial state

ẋ(t) = f(x(t),u(t), t) system flow map

g1(x(t),u(t), t) = 0 state-input equality constraints

g2(x(t), t) = 0 state-only equality constraints

h(x(t),u(t), t)≥ 0 Inequality constraints

(3.2)

Here, x is the system state, x̂ is the reference trajectory, and u are the inputs.

tI is a time horizon over which optimisation takes place. The cost function L is

usually designed to capture various tracking costs as well as input penalty terms

while the various state and input constraints allow capturing control input limits,

robot centre of mass or other system constraints. The system flow map, or model, is

used to iteratively predict state progression forwards in time, thus allowing L to be

evaluated over the entire horizon. The input trajectory resulting from minimising

the cost function is thus locally optimal within the horizon. However, practically,

outside disturbances and system model imperfections mean that such prediction
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would lose accuracy along the horizon. A common strategy is thus to solve such an

optimisation problem at a high frequency. Each time, updating the initial state x0

with the current system state estimate and only using the first control input. This

control mechanism is often referred to as Receding Horizon or Model Predictive

Control or MPC [118].

3.4.1 End-effector Tracking

One family of underlying solvers allowing fast and efficient solving of the opti-

mal control problem presented in Eq. 3.2 are Sequential Linear Quadratic (SLQ)

methods [119]. These methods iteratively use local quadratic approximations of the

value function at operating points, followed by a forward integration of the system

dynamics [120]. Research by Neunert et al. [121] utilised a SLQ solver together

with an Model Predictive Control (MPC) fashion control strategy to control com-

plex balancing ballbot and hexrotor robot systems. In the case of the hexrotor,

optimal trajectory generation and control input derivation allowed the hexrotor to

fly through waypoints taking it through narrow window-like gaps. While initially

the SLQ-MPC formulation used by Neunert et al. was discrete in time and strug-

gled to enforce equality constraints, subsequent research by Farshidian et al. [120],

extended the work via a constrained SLQ-MPC version using adaptive step-size

integrators which allowed a time-continuous formulation.

Several works have applied the SLQ-MPC to perform end-effector tracking via

an MM system. One of these works is the In-Situ Fabricator (ISF) composed of an

industrial ABB IRB 4600 robot arm and a tracked mobile base. A robot-system

level discussion of this project was presented in Chapter 2. Giftthaler et al. [70]

adopted the constrained continuous-time SLQ-MPC formulation to guide the ISF

end-effector to a setpoint in Cartesian space. This was done by imposing equality

constraints as in Eq. 3.2 on the end-effector position and velocity. Meanwhile,

the cost function included only the state-error against the desired terminal state

at the setpoint. The system was evaluated by looking at the end-effector ability to

repeatedly reach the same setpoint as measured by a maximum min-max error. Over

10 experiments, this was 76 mm for the end-effector and 2 cm for the robot base.
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This is impressive considering that their system used a visual-inertial localisation

to provide robot state estimates and the large tracked 1500 kg, 2.55 m reach robot

would experience disturbances due to interactions with the ground.

A further work by Gawel et al. [74] tackled the problem of positioning a MM

end-effector to a high degree of accuracy within a large indoor construction site.

This work featured a smaller scale Inspector-Bots: Super Mega Bot robot mounted

with a Kinova Jaco robot arm. This application required the robot base to travel

long distances to the proximity of the desired end-effector setpoint. Therefore,

the SLQ-MPC control approach proposed a quadratic cost function formulation

(1−α)Cb +αCee. Here, Cb Cee represent base and end-effector pose quadratic tra-

jectory tracking errors which are included into the cost function L, as in Eq.3.2. The

parameter α ∈ [0,1] determines which cost is active, allowing the robot to first ap-

proach the proximity of the end-effector setpoint before reaching for it. The authors

found that such quadratic end-effector cost formulation leads to a higher disturbance

tolerance compared to the equality constraint formulation. Furthermore, a part of

this work also investigated the use of highly expensive and accurate range sensors

mounted at the end-effector to aid the positioning task with state estimates relative

to a known building model. The different experiments performed consisted of po-

sitioning the end-effector over marked dot patterns placed on the building walls.

The absolute positioning error in the global building coordinate frame was found

to be between 7 mm and 26 mm while the error relative to the dot pattern markers

was between 3 mm and 6 mm. However, due to the localisation system used, the

comparison of setpoint positioning error with the ISF system is difficult.

Finally, a recent work by Pankert et al. [113] proposed an unconstrained SLQ-

MPC-based control strategy for continuous process tasks. They have used two MM

robot systems Swaco and MabiMobile to demonstrate end-effector trajectory plan-

ning and tracking, admittance control, and collision avoidance. These features as

well as other system constraints like self-collision and centre of mass equilibrium

were modelled without imposing strict equality or inequality constraints and instead

as soft constraints as part of the optimised value function.
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L(x, x̂,u) = ∑Ci +∑Bi +uᵀRu (3.3)

The value function L in Pankert et al. work is a composition of multiple cost func-

tions as in Eq. 3.3. Here, Ci represents the end-effector tracking cost terms for

position and orientation. The uᵀRu is an input penalty term, and Bi represents a

multitude of soft constraints implemented as control barrier functions. Control bar-

rier functions are a function of inequality constraint state penetration zi ≥ 0 and

allow to model smooth but steep rise in cost as the constraint is violated. Specifi-

cally, Pankert et al. used Relaxed Logarithmic Barrier Function (RBF) [122] of the

following form.

Bi(zi) =

−µ ln(zi), zi > δ

µβ (zi,δ ), zi ≤ δ

,where β (zi,δ ) =− log(δ )+
1
2
·
(

zi−2δ

δ

)2

− 1
2

(3.4)

β is a quadratic function such that B is twice differentially continuous. µ and δ are

tuning parameters governing the steepness of the costs at the transition points and

the flatness of the costs around constraint violation. Using these barrier functions,

Pankert et al. modelled manipulator joint position and velocity limits, as well as

the aforementioned collision avoidance and admittance control features. A suite of

experiments was performed using odometry and visual-inertial localisation systems

and lead to a reduced tracking error compared to previous methods introduced. The

mean end-effector tracking errors over 6 reference trajectories were 15 mm -20 mm

for translational error and 2° -3° for rotational error.

The three SLQ-MPC systems discussed above solve an optimal control prob-

lem over a fixed time horizon tI . In the case of the ISF system this tI ranged from

5 s to 12 s between different experiments. In work by Gawel et al., it was set to 1 s

and in work by Pankert et al. between 2 s and 4 s. The reason for this is that the

underlying SLQ or similar methods solving the optimisation problem at hand do not

scale well in time or sometimes even dimensionality [120]. Therefore, while these
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methods could find both base and manipulator collision-aware control inputs for

tracking a print path larger than the robot workspace, the M3DP problem requires a

far too long of a horizon for this to be a feasible approach.

Additive manufacturing is a slow process involving very long print paths that

will inevitably be vastly longer than the predictive horizon. Therefore, obstacles

created by printing can prevent the robot from completing the task. This can be seen

in Chapter 4, as in some cases, a viable Rapidly Exploring Random Tree (RRT) tree

branch denoting a base path splits off from other branches far before an obstacle

causing this split. Such a need to choose a different route for the robot-base would

be unknown to the MPC controller and would lead to the optimisation problem be-

coming infeasible. A similar failure case occurred in the work of Pankert et al. when

reaching for an end-effector setpoint behind an obstacle. This led to competing col-

lision avoidance and end-effector tracking objectives. In turn, the robot violated

collision avoidance constraint, and the arm travelled through occupied space.

Such cases might occur often in 3D printing applications. To illustrate this,

consider the scenario in Fig. 3.5. The robot prints, left to right, a trajectory that

carries on beyond immediate reach. The predictive horizon fails to see the need for

the robot-base to move rightwards before such motion would cause a collision or

compromise in end-effector tracking.

Figure 3.5: Trajectories substantially longer than predictive horizon may lead to infeasible states.

3.5 Summary
The early works on M3DP robots discussed in Sec. 3.2 highlighted two major chal-

lenges in reaslising a printing-in-motion system. Firstly, the constrained path plan-

ning problem of derivation of a robot-base from a task trajectory. And, secondly,

utilisation of all available degrees of freedom of an MM robot to perform printing.
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The more detailed literature review carried out in sections. Combining these reflec-

tions allows setting out tangible research questions to be tackled in the remainder

of this thesis.

Path Planning for Mobile 3D Printing Firstly, the relationship between the print

trajectory and the robot will be examined in order to tackle the robot-base pathfind-

ing problem. The robot-base path ought to be task-consistent, meaning that the

print trajectory should remain reachable throughout the robot-base path. Addition-

ally, a path planner for M3DP ought to account for application-specific nuances,

such as ones discussed in Sec. 3.2. A planning approach ought to account for mul-

tiple starting poses, the ability to relocate and continue printing, as well as consider

the evolving nature of the print path obstacle, to be desirable characteristics of a

task-consistent path planner designed for M3DP . The question of how can the

robot-base paths, for M3DP, be derived from a given print task, becomes a sec-

ondary research question of this thesis. The development of such a Task-Consistent

Path Planner is carried out in Chapter 4. This also includes a more detailed dis-

cussion of desired path planner properties and a review of related work. Chapter 5

then extensively evaluates the proposed TCPP path planner and implements several

performance improvements.

Robust Research Platform Development: As stated in Section 2.4, the work car-

ried out in this thesis is ought to be feasibly applicable to real construction scale and

equipment. The MAP and Youwasp robots presented in Section 3.2 are early pro-

totypes and lack sufficient robustness for the realisation of M3DP. The MAP robot

is tethered, lacks a material deposition system and has a cumbersome manipulator

control interface making development difficult. The Youwasp robot is too small in

scale, specifically the small 500g payload of the manipulator making deployment of

a deposition system difficult. These hardware shortcomings are discussed in detail

Chapter 6 alongside the presentation of a purpose-built robot research platform for

physically embedding and realising the contributions of this thesis.

Motion Planning and Control for M3DP: Finally, in Chapter 7, newly emerg-

ing optimal-control methodologies will be adopted for the M3DP problem. Such
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control strategies utilise the entire robot in a synchronous manner such that the con-

trol input is derived online with respect to end-effector tracking error. However,

as discussed in Sec. 3.4, they rely on a relatively short planning horizon, which is

problematic when applied to M3DP. Chapter 7 thus tackles the question of how

TCPP-derived robot-base path references can be used to to inform a WBC con-

troller, thus prioviding a prior to a global path-planninng solution. Additionally, a

holistic system evaluation of M3DP performance will be presented in this Chapter

as well.



4. Task-Consistent Path Planning

for Mobile 3D Printing

The works discussed in the previous Chapter highlighted a core challenge of mo-

bilising material deposition. Given a specification of a print trajectory and a known

MM-type robot, what is the trajectory the robot-base should follow so that the task

remains reachable? From the perspective of robot kinematics, this path-planning

problem can be expressed as follows. Let print path p(s) describe the trajectory of

the end-effector frame W T EE(s) with respect to the world frame. What is the robot-

base frame trajectory W T B(s), such that ∀s, the end-effector trajectory with respect

to the robot-arm frame AT EE(s) is feasible:

AT EE(s) =
(W T B(s)BT A

)−1 W T EE(s) (4.1)

That is, IK for AT EE(s) are defined and can form a continuous solution in

joint space. In this thesis, satisfying such constraints will be referred to as Task-

Consistency and the overall path planning problem as Task-Consistent Path Plan-

ning (TCPP).

Furthermore, as discovered in the previous Chapter, there are a number of addi-

tional application-specific considerations that a TCPP path planner should address

within the M3DP context. Therefore, this Chapter begins tackling the TCPP prob-

lem by firstly discussing the desired features or behaviours that a robot-base path

planner for M3DP ought to have. Next, learning from existent works, described in

Sec. 3.3, and combining multiple methods together, a novel path planning approach
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for M3DP is proposed. This approach is based on utilising robot workspace reach-

ability measures to inform a sampling-based path planner. This chapter covers the

development of the proposed algorithm. For presentation clarity, an extensive eval-

uation and some performance improvements are discussed in the subsequent Chap-

ter 5. Most of the work in this and the following Chapter 5 is published [123, 124]

in International Conference on Intelligent Robots and Systems (IROS) 2021 and

2022.

4.1 Application-Specific Requirements

The TCPP problem is similar to some other constrained planning problems such

as when mobile manipulators or humanoid robots need to open a door, interact

with a tool or otherwise trace a trajectory requiring both base and arm motion.

However, the context of 3D Printing for construction adds unique considerations to

the problem as material deposition raises the following additional task constraints

that must be considered.

Accommodating Disturbance Rejection: The base and the arm components of

MM systems have very different controllability and state estimation properties. A

robotic arm is usually rigid and precisely encoded. This means that its joint posi-

tion and the resulting end-effector pose is known almost exactly. High reduction

ratios of its joint gearboxes also mean that the joint positions can be achieved very

accurately, leading to repeatability of the order of 0.1 mm. Therefore, when the arm

is tasked to move to a relative transformation AFEE(s), the arm will achieve it with

very little error. However, by contrast, the robot base can move freely over a 2D

surface, and its pose can only be estimated via localisation systems such as SLAM,

GPS, or other solutions. The errors with such systems can be several centimetres.

Furthermore, due to wheel friction and compliances (e.g. suspension), mobile bases

have high static friction and struggle to travel a commanded distance exactly. E.g.

commanding a robot-base to move 1 mm exactly is challenging. On top of that,

moving through a construction site subjects the base to uneven terrain and wheel

traction issues. As a result, the trajectory of the mobile base cannot be accurately



4.1. Application-Specific Requirements 60

followed as well as being subject to perturbations.

As the two systems are rigidly attached, there are two sources of errors that

propagate from the robot-base to the end-effector. The first is low base controllabil-

ity, that is inability to render slow and steady motion due to breakaway friction and

any motor motor or gear friction. The second is disturbances due to rough terrain

is another. These types of error were demonstrated in both the MAP and Youwasp

experiments in Chapter 3. Therefore, to achieve successful material deposition, e.g.

subsequent material layer overlap, the robotic arm must be able to rapidly compen-

sate for the errors propagating from the base by undertaking fast, corrective motion.

Therefore, the joint-space solution for the robot-arm motion should never be close

to joint limits or singularity. Instead, it should be contained in a highly manipulable

or reachable region. In turn, this creates a notion of quality for the corresponding

robot-base pose and an assurance that the path planner algorithm must provide.

Static and Evolving Obstacles: Collision avoidance is often inherent to a path

planning problem. However, mobile 3D Printing is different from many path plan-

ning problems. As the material is deposited, the robot dynamically creates and

reshapes the obstacles in the environment. The robot must not collide with these

dynamic obstacles; otherwise the print will be ruined.

This unusual feature of the problem is made explicit when printing the first

layer. Consider the case of a mobile 3D Printing system being given a printing

task in a narrow passage as in Fig.4.1. Prior to the task, the corridor is empty and

wide enough for the robot to traverse. The printing task is situated in the middle

of the corridor. If a planning algorithm crudely assumes the whole task to be a

static obstacle prior to execution, the task is not feasible. However, there is an

intuitively obvious solution — the robot base should travel through the corridor first

and deposit material behind itself. Therefore, to find this solution, the path planner

must explicitly plan for dynamic and evolving obstacles created by the print task

itself.

Discontinuous Printing: Although the end effector must trace out a continuous

path, the print process itself might not be continuous. In Chapter 3 it was discussed
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Figure 4.1: Illustration of infeasible tasks if evolving obstacles are not considered.

how a MM 3D Printing robot could cope with seemingly infeasible tasks by relocat-

ing and continuing the print. For more details and an illustration, see the Three-Box

problem (Fig.9.8) in the Appendix 9.2. While such relocations are undesirable, be-

cause they can cause errors and artefacts to the material deposition process, they

can also be unavoidable.

There are three causes that make it necessary to interrupt the print. The first are

static obstacles that inhibit task reachability from some continuous base trajectory,

as in the case of the Three-Box problem. Second is the task itself. Since the planner

must consider previously deposited material as obstacles, the task can render itself

infeasible. For example, consider printing a figure eight that is much larger in scale

than the robot. Fig. 4.2a illustrates that, if the robot starts at the top or bottom of the

shape, once one of the diagonal lines is printed, the second, intersecting one will

require the robot to cross over previously deposited material. However, consider if

the robot starts the task at the intersection point as in Fig.4.2b. Now it is feasible to

execute the task without relocation. The third consideration is robot self-enclosure,

as illustrated by the two possible end poses in Fig.4.2b. In such cases, interrupting

the print and relocating before the enclosure is completed is a possible solution.

(a) Printing a figure eight starting at the top (b) Printing a figure eight starting in the mid-
dle

Figure 4.2: Illustration of starting point effect on the feasibility of the print path.
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Two conclusions can be drawn from these examples. Detecting and coping

with print tasks that require relocation allows the path planner to find solutions for

a wider range of possible print tasks. Additionally, the ability to detect such nec-

essary interruptions has implications beyond the scope of the path planner. Most

significantly, such a feature might be used to inform a task decomposition and allo-

cation methods. For example, if unavoidable print interruptions are used as a way

to segment a long print task and distribute it between multiple robots for printing.

Therefore, the ability of the TCPP path planner to allow for print interruption and

relocation is desirable.

4.2 Task-Consistent Path Planning

Building upon the previous work discussed, this Section proposes a methodology

to tackle task-consistent planning for mobile 3D printing. The proposed novel ap-

proach aims to construct and leverage a measure of robot workspace reachability to

inform and constrain an RRT* search algorithm, chosen for its optimality charac-

teristics. Specifically, the proposed algorithm seeks to use an IRM to both validate

graph-nodes and graph-edges as well as to aid in sampling valid new graph-nodes

to be added. Firstly, off-line construction of Reachability and Inverse Reachabil-

ity Maps will be discussed and these measures will be extended to better apply to

M3DP. Secondly, the standard RRT* algorithm will be presented and changes to

its subroutines proposed. This will be followed via a brief discussion on imple-

mentation details and a summary of how the proposed algorithm aims to address

application-specific requirements presented in Section 4.1. For clarity of presenta-

tion the evaluation of the resulting algorithm is carried out in the following Chapter.

The work in this Section is carried out in simulation via a robot consisting

of a Youbot [125] robot-base and Franka Panda arm [126]. The robot’s dynamics,

e.g. mass, are not simulated as the system is used as a kinematic placeholder. This

placeholder robot was used to illustrate the M3DP problem setup in Fig. 3.1.



4.2. Task-Consistent Path Planning 63

Simplifications and Assumptions:

• Looking back at Section 2.4, this work assumes material deposition is a slow

process. The extruder systems used in this work deposit at rough rate of 1–

3cm3 s−1 and the required tool tip velocity kept throughout the task p(s) is

around 2–5cms−1. This is about two orders of magnitude below the joint

velocity limits of the arm or mobile-base speed. Thus it is reasonable to

simplify the path planning problem to a kinematic one.

• The robot prototypes discussed in Sec. 3.2 were holonomic or at least omni-

directional. The additional flexibility of holonomy has thus been deemed

useful and is assumed throughout the development of the TCPP planner.

• Another assumption stated in Section 2.4 was that of a circular-profile nozzle

and that the p(s) is a 5DoF trajectory with only the extruder z-axis orientation

specified. Thus, when standard IK software packages are used throughout this

Chapter, such as MoveIt! [127], KDL [128], TracIK [129], specific Z-axis

rotation is not imposed when computing the IK.

• Lastly, RM and IRM robot workspace measures used to inform path planning

in this Section only infer about the existence of manipulator IK solutions, but

they are not used to find them. This is intentful as the TCPP planning prob-

lem tackled, only aims to produce a feasible robot-base path and finding the

joint-space solution for the manipulator will be tackled as part of the motion

planning work in Chapter 7. However, to evaluate if the robot-base paths are

in fact, feasible, as a placeholder, off-the-shelf Cartesian path planning tools

such as Matlab Peter Corke’s Robotics Toolbox [130] will be used. This step

is necessary, as even if IK solutions used to compute the reachability metrics

are stored, they would not be suitable.
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4.2.1 Orientation-Aware Reachability Map

The construction of an Inverse Reachability Map (IRM), which captures the quality

of a robot-base placement xb = (x,y,θ) ∈ SE(2), firstly begins with a closer look

at a forwards Reachability Map (RM) construction. The Reachability Index (RI)

and RM methodology proposed by Zacharias et al., and discussed in Section 3.3,

is concerned with representing robot workspace in the general case. Thus it is not

obvious that it is well-suited to represent reachable regions for a printing task. This

section examines the suitability of these metrics and proposes modifications to the

RM and IRM construction while keeping two desirables in mind. Firstly, the print

trajectory p(s) is allowed to have a varying end-effector Z-axis orientation r(s)z.

Secondly, the RM and IRM data structures will be used as part of a sampling-

based path planner. Such planners often consider thousands or tens of thousands

of samples and thus, looking up RI or Inverse Reachability Index (IRI) values from

these data structures should not be computationally expensive.

To first examine the suitability of RM construction as it is described in the

commonly used implementations [101, 131] — the RM for the kinematic place-

holder robot at hand is constructed as follows.

1. Robot workspace is discretised into a set of voxels. All voxels vi are cubes

with side length 5cm. This resolution is chosen empirically depending on the

computational power available.

2. ∀vi, a sphere Si of voxel width diameter, is placed at vi’s centre.

3. N test poses are sampled by picking equidistant points on Si using spiral sam-

pling [132] and aligning their z-axis to the tangential normal vector of the

sphere at each point. Let this set of test poses inside voxel vi be Pi. A yaw

offset is also applied for each pose using a fixed step. This set can be seen

on the left side of Fig. 4.3. Note that different Pis for different voxels are

computed by simply translating Pi computed at the origin to different voxel

centres. This means the sets of poses Pi are identical with respect to local

voxel centres. In this work, N = 200 and is determined empirically based on

available computing resources.
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4. ∀i, IK is solved for each pose in Pi. Let the set of test poses with existent

IK solution be P̂i. IK routines here, are called on full 6 DoF poses, and

the industry-standard 10−5 tolerance is applied on the L2-norm of combined

translational and rotational error [128, 129]. Additionally, self-collision and

joint limits are respected.

5. The RI for the ith voxel is then Di = 100 |P̂i|
N , where |P̂i| denotes the number of

elements in P̂i. In other words, RI relates to the number of poses with existent

IK solutions inside Pi. When Di = 0, no IK solutions exist, and the cell is not

reachable. When Di = 100, then IK solutions exist for all the poses tested,

which suggests the voxel is easy to reach.

Figure 4.3: Reachability Map (RM) Construction. Left: the sphere in one voxel showing the set of
sampled poses Pi. Right: cross-section of resulting RM

Fig. 4.3 shows RM cross-sections. Bright yellow represents highly reachable

RI voxels, while dark blue indicates limited reachability. The RM, presented in

the robot-base frame, can be seen to be a gradually changing scalar around the

robot. The result confirms the intuition of a radial symmetry around some com-

fortable region in the middle of the arm’s reach. Voxels far away from the robot

can only be reached by full extensions of the arm, thus making some orientations

not achievable, similarly, voxels close to the robot can only be reached when the

end-effector is pointing outside-in. However, the scalar nature of the RI lacks pose-

specific reachability information within corresponding Pi, omitting the capture of

end-effector orientation as proposed by Zacharias et al.
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To test if the RI can successfully identify regions where a print task could

be executed the following investigation is performed. A circular and oscillating

task trajectory that spans the whole planar workspace is placed on the z = 0 plane.

This is drawn in a black or red dashed line in the Fig. 4.4 below. The desired

TCP orientation is to point downwards while the TCP yaw rotation tolerance is

2π , as described in assumptions. The tolerance for translational and other rotation

components is kept at standard 10−5. IK routines are called in a loop on consecutive

task poses using the last successful IK solution as a starting point. If no solution

was found, the task pose is skipped and the next one is processed. If a solution is

found, the point is coloured red and the result is shown in Fig. 4.4.

Figure 4.4: Reachability Map cross-section at z = 0. Superimposed, test-task trajectory in black.
Highlighted in red - trajectory segments with a solution in joint-space.

The segments of the task highlighted in red show where IK routines were suc-

cessful at returning joint-space solutions. Whilst at first glance, solutions were
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found for task poses inside regions of high reachability, there are a number of issues

in the relationship between RI and IK existence. One is that RI fails to indicate

reachability when orientation is considered. Although RI can be seen varying be-

tween 0.3 and 0.8, in front of the robot (right side of the figure), the task was feasible

consistently throughout that region. Therefore, variations in RI do not relate to fail-

ure to reach the task, at least at the higher range of values. Furthermore, the outer

perimeter of the reachability map has consistently low values. Solutions tend to still

exist when RI is about 0.3 and cease to exist when it drops to about 0.1. This is a

desired property of a reachability map as it could be leveraged to perform thresh-

olding in order to define a subset region where tasks would always be successful.

The letter C shape formed of high RI values could be such a region. However, this

hypothesis is broken by examining the back of the robot (left side of the figure). The

region at the back, consistently contains solutions in its width where RI is about 0.3.

Meanwhile, in front of the robot, the value of 0.3 indicates the edge of a reachable

region, in the back it forms the reachable region. Thus finding a reliable threshold

that robustly separates reachable and unreachable regions would be difficult.

For a measure to be useful in predicting task feasibility, ideally, values should

be high throughout a region where the task is feasible and lower near the edge of

this region. The standard RM does not meet this criterion. Pi is deliberately chosen

to try and represent the whole rotation space, which is inappropriate when tasks

are always constrained to be some single orientation. While commonly printing

tasks restrict the end-effector to simply point downwards, Sec. 2.4, discusses how

in this work, the task p(s) is allowed to have a varying orientation. Therefore,

the construction of Pi must take this into account. A simple solution would be to

only sample some desired set of orientations in the RM construction. However,

then, the RM would only be applicable for a limited set of print tasks. Since RM

construction is expensive, ideally, end-effector orientation should be considered in

an online fashion. That is, when RI value is being looked up. This can be done

with two modifications. Firstly, the IK solution existence is stored as an array of

booleans. This way, for each voxel, the information stored is not only the total count
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of poses with existing IK, but also which poses had existing IK. Secondly, this array

is then used to check for orientation constraints during RI lookup. To implement

this, the RM generation procedure can then be altered from step 4 onwards.

4 For each voxel vi, compute IK for all poses inside the associated test pose set Pi. Note

that Pi can be expressed as an array of poses (thus are indexable). Define a logical

array ci ∈ {0,1}N of size N (recall N = 200 in this work) and set elements of ci to

true if corresponding (via array index) pose in Pi has an existing IK solution. That

is, ci( j) := ∃IK(Pi( j)), where j is a pose array index inside Pi. The RM voxel then

stores the vector ci instead of a scalar.

5 Let ζ : SE(3)→{0,1} be a constraint function on pose orientation. I.e. given a pose,

it returns a logical value depending on pose orientation.

6 The orientation-aware reachability index for the ith voxel is then computed as conju-

gation between IK existence and constraint satisfaction i.e. RI(ci) = 100 ∑ j (ci∧ζ (Pi))

∑ j ζ (Pi)
,

where ζ (Pi) results in a logical array indicating which poses in Pi satisfy the con-

straint. Thus the numerator of the expression corresponds to the number of poses in

Pi that have existing IK solutions and satisfy a given constraint. The denominator is

then the count of constraint-satisfying test poses.

Instead of storing only a scalar value, storing the boolean array ci for each voxel

makes it possible to dynamically (i.e. online) compare the desired end-effector ori-

entation to the set of poses with existing IK. As only z-axis orientation is relevant,

the constraint function looks at the third column rz of the rotation matrices corre-

sponding to poses p ∈ Pi and a given the desired z-axis vector r̂z.

ζ (p, r̂z) := arccos
(

rz · R̂z

‖rz‖‖R̂z‖

)
≤ θtol (4.2)

The parameter θtol can then be used as a tolerance, effectively defining a cone of

acceptable z-axis orientations rz around the desired z-axis orientation R̂z. In this

work, θtol = 0.5 or about 30◦, was used.

Finally, computing the RI for a given Cartesian point (x,y,z) in the robot

workspace is evaluated as follows. Firstly, (x,y,z) is discretised to find the voxel

it belongs to. This is implemented as a rounding operation. The RM is imple-

mented as a multidimensional array, such that indexing into this array can be done
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via the centres (xi,yi,zi) of voxels vi. Therefore, the voxel centre coordinates are

then used to index the RM and retrieve the ci boolean vector as in Eq. 4.3.

(xi,yi,zi) = d(x,y,z)c, round to nearest voxel center

ci = RM((xi,yi,zi)), retrieve boolean vector

RI(ci, r̂z) = 100
∑ j (ci∧ζ (Pi, r̂z))

∑ j ζ (Pi, r̂z)

(4.3)

In this work, the end-effector is normally oriented downwards. Therefore, to

simplify notation, unless specified otherwise, r̂z is assumed to be (0,0,−1)ᵀ and

is omitted. Note that a conjugation operation on two boolean vectors is computa-

tionally cheap to perform. Thus, r̂z varying between RI calculations does not add

significant computational load. In turn, this will allow computing RI for print tasks

with varying end-effector orientations r̂z(s). On the other hand, if p(s) is such that

the end-effector orientation constraint is constant, e.g. always pointing downwards,

ζ (Pi,(0,0,−1)ᵀ) can be computed only once and stored, since orientations of poses

in the Pi do not change. In such cases, values stored inside RM voxels can be

thought of as scalar again.

The proposed modifications effectively discard Pi poses from RI computation

if they are more than some threshold away from the desired orientation. Since

the construction of test poses set Pi couples both the end-effector position and ori-

entation together, limiting the orientation produces fewer samples for translation.

Considering the case when r̂z = (0,0,−1)ᵀ, it can be seen that the set of test poses

is concentrated at the bottom centre of the voxel, see Fig. 4.5. This is undesirable

as it means the set of poses considered do not adequately represent the space inside

the voxel. It also breaks the, the intuitive rationale proposed by Vahrenkamp et al.

(see Sec. 3.3), which associates the RI to the probability of a voxel being reachable.

Furthermore, testing very few poses would mean non-existing IK solution for one

of them would have a large impact on the resulting RI. To alleviate these issues, the

set of test poses can be expanded to include voxels in the neighbourhood. Since all
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Figure 4.5: Comparison of the set of poses inside a voxel in the standard approach (Left) and the
modified, constrained version (Right)

voxels will exhibit the issue of test poses concentrated on one side of the sphere,

these sets of poses will be only about the diameter of a voxel away from each other.

Thus the union set of test poses around voxel vi is spatially similarly distributed as

an unconstrained Pi. Hence, considering Pi and its neighbours leads to RI being

derived from a set of poses that is more representative of the region. Fig. 4.6 shows

how the small regions where poses satisfying the constraint (ζ (Pi,(0,0,1)ᵀ)) are

distributed in space and effectively render orientation-constrained sampling from a

larger voxel.

Figure 4.6: Illustration of the neighbouring voxels and their inscribed spheres. The 3D grid lines
help show how the 6 spheres drawn touch the face of the centre cube.
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This type of sum over a neighbourhood is similar to smoothing via an equally

weighted kernel. The kernel used in this work consists of 7 voxels. Six voxels

whose centres are closest to the target voxel see Fig. 4.6, and the target voxel it-

self. The orientation-aware RM no longer counts the poses in Pi with existing IK

but instead stores the boolean vector ci, denoting their existence. Therefore, the

smoothing operation is implemented as a concatenation of ci with c j, where c j cor-

responds to voxels v j, which are neighbours of vi. As, in this work N = |ci|= 200,

the size of ci vector after smoothing is |ci|= 1400.

To see if the effects of imposing orientation constraints and smoothing the

RM, the previous test is repeated. Recall, in this test the TCP is constrained to

point downwards. Cross-sections of RM before and after smoothing alongside a

prescribed task can be seen in Fig. 4.7. Both RMs presented exhibit a much more

consistent high-value region spanning the front and back of the robot. Unlike the

original method seen in Fig. 4.4, because of orientation constraint, the RI values do

not vary drastically throughout the region where the task was consistently solved

successfully. Furthermore, the RM prior to smoothing is indeed seen to be more er-

ratic due to the small number of poses considered. Also, the edge region of middle-

range values is very narrow as voxels change from reachable to unreachable very

quickly. Smoothing increases the uniformity of the map and slightly widens this

edge region, seen in green-blue, allowing easier thresholding and isolation of the

highly reachable region.

Figure 4.7: Left: RM, prior to smoothing. Right: RM after smoothing kernel is applied.
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Figure 4.8: Cross-sections x = 0,y = 0,z = 0 of the Original (Left), orientation-constrained r̂z =
(0,0,−1)ᵀ (Middle) and Constrained-Smoothed (Right) Reachability Maps.

Returning to 3D, cross-sections of original, constrained (downwards) and

constrained-smoothed RMs are shown in Fig.4.8. Enforcing orientation constraints

is seen to reduce the volume of operation of the robot. This is expected. Also,

reflecting on the original RM on the left, RI values are much higher at a higher ele-

vation compared to the ground plane. This is because at higher elevation, poses can

be reached from below. In contrast, the RM on the right has high RI values on the

ground plane and they decrease in value as height increases.

Fig. 4.9 examines how the RM changes under different orientation constraints.

The highly reachable region in yellow can be seen shifting in the direction of the

desired end-effector orientation rz. This conforms to intuition as the robot mostly

finds it easier to orient the TCP away from itself.

(a) rz = (0,0,−1)ᵀ (b) rz = (1,0,0)ᵀ (c) rz = (0,−1,0)ᵀ

Figure 4.9: Cross-sections x = 0,y = 0,z = 0 RM at different orientation constraints rz.

Results from Fig. 4.7, Fig. 4.8 and Fig. 4.9 suggest that the proposed modifica-

tions to RM construction effectively make the workspace measure more orientation-

aware and suitable to predict task feasibility for M3DP.
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4.2.2 Orientation-Aware Inverse Reachability Map

Recall that the RM shows end-effector reachability for different poses in the robot

frame. To be used in path planning, the RM needs to be inverted and turned into an

Inverse Reachability Map (IRM). Other works in Sec. 3.3 do this by inverting all

the poses inside Pi for which IK exists. The resulting set of poses then correspond

to base placements ∈ SE(3) and are voxelised. To derive a set of feasible base

placements on the ground plane (i.e. SE(2)), the full IRM ⊂ SE(3) must be cut by

the ground surface. Then base orientations not normal to the surface are discarded

via principal component analysis. This projection must be performed for each end-

effector pose in the world frame that would be evaluated. A study that compared

several similar implementations of this method showed the best performance of

about 1.5s, using 5cm voxel resolution and N = 100 number poses inside Pi [131,

133]. Since IRMs was developed for a single base placement given a single, say

grasping, TCP-pose, this performance was acceptable. However, to allow querying

IRM rapidly throughout a path planning search, the approach used here is simpler.

Since the reach of the manipulator is known, the space of possible robot base

poses such that a task at origin is reachable, can be bounded and discretised by

equally spaced points xb,i := (xi,yi,θi) ∈ SE(2). 5cm increments were used for

Cartesian dimensions and 5◦ for rotations (determined experimentally). Then, for

similarly discretized heights zi, IRM stores tuples xb,i, zi and c∗i boolean vectors

corresponding to appropriately inverted RM voxels:

IRM := {(xb,i,zi),c∗i = RM(R(θi)
−1(xi,yi)

ᵀ,zi)} (4.4)

R(θi) is a 2D rotation matrix and the IRM is implemented as an array allowing

indexing, as in Eq.4.3, to retrieve c∗i corresponding to given (xb,i,zi). Therefore, the

Inverse Reachability Index (IRI), which captures how well a robot-base placement

(in the world frame) is suited for placing the end-effector at position (0,0,zi) with

Z-axis orientation r̂z (in the world frame), can be computed as follows.
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c∗i = IRM((xb,i,zi)), retrieve corresponding ci as per Eq.4.4

IRI((xb,i,zi), r̂z) := RI(c∗i , r̂z),as per Eq.4.3
(4.5)

The IRM, presented in Fig. 4.10 is visualised by projecting the voxels from

SE(2) onto the x-y plane by displaying the sum of IRIs overall values of θ . Addi-

tionally, Non-zero IRI voxels along the θ dimension are shown via the direction of

red lines originating from the centres of the voxels. The shape is symmetric as a

result of the symmetry of the RM when the TCP is constrained to point downwards.

The full red circles show that at a certain radius away from a task, the base is able

to achieve it in any orientation.

Figure 4.10: Visualisation of Inverse Reachability Map (IRM). Task height z = 0 and desired TCP
orientation is downwards. Voxels shown are projections of SE(2) onto R2. The colour brightness
indicates the value of IRI summed over rotation dimension θ of SE(2). Voxels along θ dimension
with non-zero IRI are shown as red lines drawn from centers of projected voxels.
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Using this method, the IRI value is computed via looking up the RI value

of the appropriate voxel inside the RM. From an implementation perspective, the

IRM is generated by copying the boolean array ci from the appropriate vi ∈ RM.

This copied array is then evaluated to obtain the scalar IRI given a desired TCP

orientation r̂z, as in Eq. 4.3.

To understand how specifying different TCP orientations affects the IRM, the

following trial is performed. Consider a print task p(s) following a sine wave pattern

as illustrated in black arrows in Fig. 4.11. The black arrows denote the desired

TCP z-axis orientation, which points downward at the nodes of the sine, and along

positive or negative Y-axis at the peaks. Fig. 4.11a shows robot-base poses with

non-zero IRI values taken from an IRM placed at two different points along the

print task. On the left side of the figure, the TCP is pointing along the negative

Z-axis (into the page), and the IRM appears to be symmetric about that point. On

the right side of the figure, the TCP is pointing along the negative Y-axis, which

causes the IRM to be horseshoe-shaped. This is consistent with the pattern seen

in Fig.4.9 as the robot prefers not to point towards itself. Additionally, Fig. 4.11b

shows how such biases of feasible base poses begin to create regions of preferable

robot-base placements. In this figure, the X-Y plane is discretised and IRMs are

evaluated for all the printing poses shown. Feasible robot-base poses are collapsed

onto the discretised X-Y plane and counted. The resulting 2D-histogram shows how

the TCP orientation constraint creates attractive regions for robot-base placement.

This provides an insight on how the IRM can be used for sampling valid robot-base

poses and help bias a sampling-based path planning algorithm developed in the next

Section.

In this Section, the RM and IRM were developed with the intention that they

will be thresholded in order to isolate regions of high reachability. In the next

Section the IRM will be used for sampling and validating robot-base placements.

Therefore only considering robot-base poses with IRI values above some lower

bound λ , i.e. λ ≤ IRI. This will in turn impose such a lower bound on reachability

throughout the entire robot-base path found by the planner. As per the definition of
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(a) Orientation-aware IRM placed at different points along a print task. Arrows in red indicate
which task pose the IRM was drawn for.

(b) IRI values projected onto x-y plane and summed over all IRMs.

Figure 4.11: Orientation-aware IRM placed over a print trajectory.

IRI, see Eq. (4.5) and Eq. (4.3), the IRI value will range from 0 to 100 based on

how many of the test poses Pi have existent IK solutions and satisfy an orientation

constraint. As discussed earlier, in cases when orientation constraint r̂z is constant,

the IRI values of the entire IRM can be evaluated offline. Effectively, the IRM then

returns scalar values. In such cases, the threshold can be chosen to be a percentile

boundary of all IRI values. In other words, only the best X% of voxels are consid-

ered. However, in cases when r̂z varies throughout the print task p(s), this cannot

be done. Both the numerator and denominator of RI require an evaluation of the

constraint and computing this for the entire IRM is too computationally costly. In

such cases, a threshold value is picked empirically and by reflecting on the implied

ratio of Pi poses with existent IK to all poses tested.
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Figure 4.12: Visualisation of IRM at different levels of pruning. Bottom 30% of IRI values are
discarded (Top). Bottom 70% of IRI values are discarded (Bottom). The bottom IRM is shrunken,
and red circles illustrating orientation can be seen to be more incomplete.
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Despite which method is used, such thresholding effectively narrows the

IRM and discards voxels from the region where the task might not be feasible,

see Fig. 4.12 on the next page. The figure shows a thresholded IRMs when

r̂z = (0,0,−1)ᵀ and the thresholds used represent the top 70th and top 30th per-

centile. Red arrows, indicating the orientation of voxels, are now missing orien-

tations pointing away from the task. The value of thresholds λ used in this work

is determined experimentally as a balance between the performance of the search

algorithm presented later on and joint-space solution existence. When r̂z is con-

stant, a threshold corresponding to the top 70th is used; otherwise, the value of

λ = 50 is used. The latter implies that more than half of the poses considered in the

orientation-constrained IRI computation have existing IK solutions.

To summarise, this section has carried out the development of an orientation-

aware Inverse Reachability Map (IRM). The IRM is a data structure and stores

tuples of discretised robot-base poses xb, task heights z and IRI values, see Eq. 4.4.

The IRM can be indexed by any (xb,z) tuple to obtain an associated IRI value, see

Eq. 4.5 and Eq. 4.3. More accurately, IRM is constructed from an RM by looking

up and storing boolean vectors ci, which capture the existence of IK solutions for

placing the TCP in an associated workspace voxel. When orientation constraint r̂z

is constant, the IRI values for the entire IRM may be evaluated offline and made

available, otherwise only look ups for specific (xb,z) tuples (and provided r̂z) are

possible. Lastly, when deciding if a robot-base pose is suitable, a threshold value is

used to compare against the IRI.

4.2.3 Task-Consistent RRT*

The RM and IRM data structures capture the task-reachability constraint and, in

turn, allow to propose a methodology for tackling the Task-Consistent Path Plan-

ning (TCPP)-problem. The TCPP problem provides the search algorithm with a

print path p(s), an environment of static obstacles and uses these to constrain the

search space of robot-base poses xb(t) to regions in SE(2) from which p(s) is

reachable. As the task is a time-varying trajectory, task-consistency creates a time-

varying constraint. However, as dynamic constraints of the robot are not modelled
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with this approach, the task will be parameterised over a process variable s ∈ [0; l]

instead of time, where l is the print path length (line integral). This parameterisation

is used commonly and is normally modelled by extending the search space with the

process variable [92]. Additionally, when the process is directed and moving back-

wards along the process variable dimension is not allowed, the distance measure

defined on the new configuration space must reflect this. This is commonly done

by introducing an asymmetry into the distance measure definition. To formulate

such a distance measure, the graph node used for the proposed TCPP planner is

q := (xb,s) = (x,y,θ ,s)∈ SE(2)× [0; l]. This way, the robot-base poses are coupled

with a specific point along a process. To compute the distance between nodes, an

L2 norm is used.

d(q1,q2) =

‖xb,1	 xb,2‖2, if s2 > s1

∞,otherwise.
(4.6)

where 	 means that angle difference is used for θ . Note that the performance

of the TCPP algorithm being proposed here is tightly connected to the distance

measure used. For this reason, the use of s in the distance calculation itself as well

as in the inequality, will be discussed and adjusted throughout the evaluation and

performance carried out in the upcoming Chapter 5.

Setting up the search space in this manner allows a searching over a given

parameterised print path. A standard RRT∗ algorithm can then explore this space

via a tree structure. The tree is maintained by a parent-child relationship between

nodes q and a cost-functional is minimised by maintaining a cost(q) for each q

visited. Usually, this is integral of the distance function along the parent-child path

leading to the configuration q. For a detailed description of RRT∗ please see [134].

In this work, the standard framework for RRT∗ is slightly modified to accom-

modate custom validation and sampling routines. Named isValid and RandConfig

respectively, these routines will leverage the IRM data structure to capture the task-

consistency constraint. However, firstly, the simplified core RRT∗ framework used

in this work is presented and briefly explained line by line here.
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Task-Consistent RRT∗

1: procedure RRT* FRAMEWORK({qstart}, p(s))
2: graph.insert( /0,{qstart})
3: while True do
4: (qrand , isGoal)← RandCon f ig(smax)
5: qnearest ← Nearest(graph,qrand)
6: (qnew, isReached)← Extend(qnearest ,qrand)
7: {qnear}← Near(graph,qnew)
8: qmin←ChoseParent(qnew,{qnear})
9: graph.insert(qmin,qnew)

10: Rewire({qnear},qnew)
11: if isGoal and isReached then
12: Break
13: return qnew.traceToRoot()

• Line 1: The input consists of the task p(s) and a set of n starting robot-

base poses {qstart}. The {qstart} are sampled using RandConfig. This custom

routine is discussed further on. In this work, n = 50.

• Line 2: All qstart are set as root nodes. i.e. nodes without a parent.

• Line 4: In each iteration, random configurations qrand are sampled using

RandConfig. The use of smax is discussed further on. If the sample returned

is a valid goal node, isGoal flag is set.

• Line 5: The graph vertex closest to qrand is found via a nearest-neighbour

search using the distance measure in (4.6).

• Line 6: The Extend function uses the isValid routine to validate the edge

between qnearest and qrand at intervals εinc and up to a distance εreach. In

this work εinc = 0.01 and εreach = 0.05, determined empirically. If qnearest is

reached, isReached is set to true.

• Lines 7–9: Routines Near and ChooseParent find the set {qnear} of graph ver-

tices in a region of radius εnear around qnew. Here,εnear = 0.3. The closest ver-

tex qmin is made the parent of qnew. The parent-child assignment is also used

to calculate the accumulative cost cost(qnew) = d(qmin,qnew)+ cost(qmin).

• Lines 10: The Rewire routine changes the parent of any vertices in {qnear} to

qnew if this leads to a lower cost.

• Lines 12: The algorithm terminates if the qnew added to the tree is a goal

vertex.
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4.2.3.1 Validation

To decide if a graph node q is valid, two checks must be performed. The robot-

base placement captured by q must be checked for collisions and reachability of the

associated print task point. In the context of M3DP, as the robot deposits material,

the print task acts as an evolving obstacle. Since, q is defined over the process

variable s, this allows for collision checking with the print task itself up to qs, i.e.

p([0,qs]). This way, collisions can be checked for both static and evolving obstacles.

To check if q captures a robot-base placement with high reachability of the

task, first recall that the IRM stores tuples of discretised robot-base poses xb =

(x,y,θ), task heights z and IRI values, see Eq. 4.4. Also, the IRM can be indexed via

a (xb,z) to recover the associated IRI value, see Eq. 4.5 and Eq. 4.3. Then, consider

graph node q and for notation clarity denote components of q via a subscript i.e.

q = (qx,qy,qθ ,qs). To validate a given q, firstly, the associated point along the

print task p(qs) is found. Let p(qs)x, p(qs)y, p(qs)z be Cartesian components of

p(qs) and r̂(qs)z the desired Z-axis orientation derived from the third column of

the homogeneous transformation matrix describing p(qs). As the IRM captures

reachability values of reaching the origin, checking if base-placement (qx,qy,qθ ) is

valid for reaching a point (p(qs)x, p(qs)y), p(qs)z is done as follows:

inIRM(q) := IRI((qx− p(qs)x,qy− p(qs)y,qθ , p(qs)z), r̂(qs)z)> λ (4.7)

The threshold value λ was discussed in Section 4.2.2. Also, note that the robot-base

heading qθ is used directly to index into the IRM. Additionally, if the TCP orien-

tation constraint is constant, p(qs)rz is not used as the IRM ζ (Pi) vector is constant

and determined during algorithm initialisation. Finally, combining collision and

reachability validation, a custom isValid routine is defined and used by the RRT ∗:

TCPP: Subroutine
1: procedure ISVALID(q)
2: valid←¬isInCollisionWithStaticEnvironment(q)
3: valid← valid ∧ ¬isInCollisionWithTask(q, p([0;qs]))
4: valid← valid ∧ inIRM(q)
5: return valid
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4.2.3.2 Sampling

To aid sampling efforts and thus make RRT ∗ tree growth more efficiently, a sam-

pling bias which utilises the IRM can be introduced. For a given s, the IRM can

be used to draw samples of robot-base poses of high reachability. This is done by

treating the IRI values as a probability density function ΓIRM over the SE(2) voxel

centres xb,i. The IRM is then sampled using this distribution and samples are trans-

lated by the print path point p(s) location.

ΓIRM(xb,i) =
IRI(xb,i, p(s)z)

∑i IRI(xb,i, p(s)z)
(4.8)

sampleIRM(s) := xb +(p(s)x, p(s)y,0), (4.9)

where xb ∼ ΓIRM (4.10)

However, this approach is only feasible when TCP orientation constraint r̂z is con-

stant. In such a case, the denominator of Eq. 4.8 may be evaluated once at algorithm

initialisation, thus allowing samples to be drawn quickly. In cases when r̂(s)z varies

throughout p(s), the ΓIRM uses an unconstrained IRI computation first. That is the

mask ζ (Pi) is not used (i.e. ζ = 1), to draw a small number of samples m. Then, xb

is picked by minimising the constrained IRI:

{xb}m ∼ ΓIRM(xb)|ζ = 1 (4.11)

sampleIRM(s) := argmin
{xb}m

(IRI(xb, r̂(s)z))+(p(s)x, p(s)y,0), (4.12)

In this work, m = 3 is determined empirically by investigating how this parameter

affects the distribution with which xb is chosen. since commonly, printing orien-

tation is constrained downwards and remains constant, the calculation in Eq. 4.9

is used for most experiments presented in this work. Eq. 4.12 is used only when

non-planar printing is being tested.

Furthermore, it is common for state sampling to include a bias towards the

goal. However, the 3D printing process necessitates that the whole task is printed

before reaching the goal. Therefore, a moving sampling bias towards the task fron-
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tier is introduced in addition to bias towards the goal. This is done in the following

way. The RRT ∗ algorithm keeps track of the configuration furthest along the print-

ing process qmax, i.e. qmax such that qmax,s = max(qs) for q ∈ RRT . This furthest

point smax = qmax,s along the process variable dimension is then used to bias where

along the print task an IRM is placed to draw robot-base poses from. The random

configurations qrand are drawn from a normal distribution centred at smax with stan-

dard deviation svar. Thus, more poses are drawn around the task frontier. In this

work svar = 0.1l where l is the total print path length. The RandConfig is thus de-

fined as follows: The parameter βgoal determines the probability with which a goal

TCPP: Subroutine
1: procedure RANDCONFIG(smax)
2: if rand()< βgoal then
3: srand ← l
4: else
5: srand ← max(0,min(l,s∼ N(smax,svar)))

6: xb = (x,y,θ)← sampleIRM(p(srand))
7: return qrand = (xb,srand)

configuration, i.e. srand = l, is chosen. Otherwise, srand is sampled from a region

around smax and is used to draw the robot-base placement xb. Note, that to assure the

qrand returned by this valid, the RandConfig routine is called until qrand is validated

via the isValid routine.

4.2.4 Interruption Detection

The two custom routines developed assure that the RRT ∗ graph nodes are not in col-

lision with the environment or the task and represent robot-base placements which

have high IRI values associated with reaching the corresponding print task points.

As described in the RRT-framework explanation line 6, the Extend routine of the

RRT validates the edges of the graph. This is done by densely sampling configura-

tions q along between two nodes q1 and q2. Specifically, intermediate configurations

of the form q1+εinc
q2−q1
‖q2−q1‖ are validated via the isValid routine. Such dense valida-

tion assures that the entire path found by the algorithm will have the same collision

and reachability assurances. Additionally, this validation will also prohibit the RRT

tree from growing beyond some point along the process sI if it is not feasible to do
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so. Such tree growth stalling can thus be used to infer about points along the print

task where print interruption and robot relocation is needed.

Analytically, let some point in process sI be a point where interruption is nec-

essary. Then all of the pairwise edges between a search graph vertex qI = (xb,I,sI)

(that can reach p(sI)) and configurations qI+ε (that can reach p(sI + ε) for some

ε > 0) cannot be validated, e.g. are in a collision with obstacles or previously de-

posited material. Such an event will, by construction, will cause the proposed RRT

search to stall. The algorithm will grow the graph until smax = sI , at which point,

the random configurations qrand will all fail to grow the tree beyond smax. To detect

when this occurs, a stall counter is introduced. The proposed algorithm counts how

many iterations of the RRT ∗ loop went by with smax not changing value. If this

number exceeds a threshold (in this work 300 is used), an interruption is detected.

At this point, a set of new starting poses qstart,new = sampleIRM(T (sI + εinc)) is

sampled and a new graph path planning problem is started for the remaining task

p(s∈ [I; l]). The special parent-child relationship relating to interruption is captured

by assigning qmax as a special interruption-parent of all new poses qstart,new.

4.3 Summary
This Chapter presents a Task-Consistent Path Planning (TCPP) approach designed

to address the Mobile 3D Printing (M3DP) domain-specific path planning require-

ments. Section 4.2 presented the development of an Inverse Reachability Map

(IRM) data structure which allows evaluating the robot-base poses by their abil-

ity to reach a given end-effector pose along the print path. An RRT ∗ path planning

algorithm was then extended via modified validation and sampling routines utilis-

ing the IRM to constrain the search problem onto regions of robot-base poses which

satisfy the task-consistency constraint. Additionally, the RRT ∗ algorithm was ex-

tended to suit the M3DP specific requirements such as avoidance of collisions with

the evolving print obstacle and detection of cases when the robot must relocate to

continue printing. This proposed methodology is extensively evaluated in the next

chapter for presentation clarity.



5. TCPP: Evaluation and Perfor-

mace Improvements

The previous Chapter presented a sampling-based RRT ∗ path planning algorithm

by utilising the Inverse Reachability Map (IRM) data structure to capture the task-

consistency constraint and account for M3DP-specific path planning requirements.

In this chapter, the performance of the TCPP algorithm is evaluated. The structure

of this Chapter is as follows. Firstly, the TCPP is tasked to find a robot-base path

for a single floorplan-like printing geometry. The process of doing this is discussed

in detail, and various assessment metrics are proposed for evaluating algorithm per-

formance. Then, a suite of different printing tasks and scenarios are solved multiple

times, the aggregate data is presented and discussed more broadly, including reflec-

tion on qualitative algorithm behaviour. Following this, several key shortcomings

of the original TCPP implementation are identified, and isolated performance im-

provements are made. This includes a path smoothing method for post-processing

of robot-base paths found. Lastly, this evaluation is summarised, highlighting key

limitations of the algorithm. Most of this work in this and the previous Chapter is

published in International Conference on Intelligent Robots and Systems (IROS)

2021 [123] and 2022 [124].

5.1 Setting up Algorithm Evaluation
The TCPP problem analysis and definition in Sec. 4.1 identified three desirable

characteristics that a task-consistent path planner should address. These were 1)

the task must be kept within a highly reachable region in order to accommodate
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disturbance rejection, 2) dynamic and evolving obstacles, namely the task itself,

ought to be avoided and lastly, 3) the algorithm should allow detection and handling

of discontinuities in printing and plan how to discontinue and restart the printing

task. This Section will examine the performance of the proposed task-consistent

RRT* algorithm in relation to these desirables.

The planner’s performance is assessed over a number of scenarios and tasks.

The experimental setup and general discussion on how the algorithm finds a solution

is first provided by looking at a single test case in depth. This is because the eval-

uation metrics must be introduced and explained. Then the evaluation is repeated

multiple times for multiple scenarios and various trends, algorithm characteristics,

and behaviours are discussed.

5.1.1 Hilbert Curve Scenario

As outlined in Sec. 4.1, the evolving obstacles created via material deposition are

a unique challenge in path planning. The previous Section outlines how this was

addressed by extending the search space to include task progress and performing

collision checks accordingly. Furthermore, dynamic handling of task collision en-

ables the feasibility of tasks that would otherwise not be feasible. Thus to showcase

the algorithm handling the ever-shrinking free space, test scenarios in this Section

will mostly consist of the first few print layers, where this feature is most evident.

A test scenario, called Hilbert Curve was created and is shown in Fig. 5.1. This

scenario captures the core characteristics of the expected task. The task is a 47.4 m

long, single-layer trajectory, simulating the first layer of a wall. Task progress is

shown by a colour change from blue (start) to light green (end). The task consists

of 10 cm wide and 20 cm long repeating filling curve, often used in concrete 3D

printing. The end-effector orientation remains constant throughout the task and

points downwards. The environment contains an obstacle-free region at the top left,

a narrow passage between obstacles (seen in dark brown) in the middle, and a task

close to an obstacle on the right side. The robot footprint (62cm× 36cm), is seen

in transparent orange. The scenario was constructed so that it is impossible for the

robot to execute it, if the whole task is assumed to be a static obstacle.
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Figure 5.1: Task-consistent base path planning solution for Hilbert Curve scenario using ex-
tended RRT*. Top: Algorithm search tree and solution. Static Obstacles (black), Print Task
(dark blue to light green), xb(s) found (blue to red), RRT* tree exploration visible in grey. Robot
and Arm boxes for illustration purposes are shown at six equally spaced time intervals. Bot-
tom: Solution visualisation shows the robot base leading the arm through narrow passage. The
video of the experiment, which also accompanied the associated publication [123], can be found at
https://youtu.be/guyZEsBgakE

https://youtu.be/guyZEsBgakE


5.1. Setting up Algorithm Evaluation 88

The solution found by the algorithm is shown in a thick line which changes

colour from blue to red as the task progresses. Arrows accompanying the solution

show robot-base orientation. Note that the association between poses in xb(s) and

corresponding task points is only shown in a few places via the orange robot foot-

print and the white transparent arm illustration. Small light grey arrows show the

space explored by the RRT*. While the x− y shape of the tree is visible, the ar-

rows are kept small for presentation clarity. Note that the tree vertices are in full

SE(2)× [0; l = 47.4]. The lone, unconnected tree vertices seen near the task start

are the remaining potential starting poses. Finally, the algorithm is seeded with a

set of 50 qstart poses sampled using sampleIRM(s = 0).

The highlighted solution found allows the arm to trace the task trajectory while

the base is in motion. The left side of the figure shows tree segments on the outer

side of the task being discarded as suboptimal. As it follows the task, the solution

found moves only enough to allow the arm to perform printing. The base can be

seen leading the arm through the narrow gap as it drives over free space and prints

behind itself. Later on, the path is mostly straight and the base allows the arm to

perform most of the motions. While the full task length is 47.4 m the solution xb(s)

is 13.2 m long and the robot rotates 12.8rad.

The path solution xb(s) found makes it possible to compute the print-task in

local manipulator frame AT EE(s) as per Eq. 4.1. For clarity let a(s) = AT EE(s).

Fig. 5.2 on the next page, shows a segment of the robot-base path, task, and a(s),

which corresponds to the print task in local arm frame. It can be seen that as the

base travels, the local task is situated in a small, close region in the arm frame that

shifts as the task shifts. Throughout xb(s), the reachability index of a(s) was on

average 91.8 which is in the top 10% of the RM of the arm when the end-effector

is orientated downwards. This is computed by collapsing a(s) into RM voxels as in

the description of inIRM function in Eq. 4.7. This high value indicates the quality

of xb(s) is such that a(s) is highly reachable according to the RM.

However, the assessment criteria for xb(s) raised in the beginning of this Sec-

tion requires to demonstrate a capacity for disturbance rejection by the arm. This
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(a) Left: Section of a task p(s) and base path xb(s). Right: Corresponding a(s)

(b) Joint-space solution for this Section of a(s)

Figure 5.2: Analysis of a(s) in task and joint-space.

can only be estimated by finding the joint-space solution j(s) for the trajectory a(s)

and computing the manipulability m(s) =
√

detJ( j(s))J( j(s))ᵀ of the arm. j(s)

is found using MoveIt! [127] and Trac-IK [129] as per Sec. 4.1. As discussed in

Sec. 3.3 this expression of manipulability describes the volume of an ellipsoid that

encapsulates locally achievable vector velocities of the end-effector. It also relates

to distance away from a singular configuration. As the Jacobian contains both trans-

lational and rotational components, manipulability can be computed separately in

order not to mix units. Translational and rotational m(s) was computed using j(s)

and found to oscillate tightly around a constant value. Interpretation of manipula-

bility of the print task in robot-arm frame will be discussed in detail further on in

Sec. 5.2.1.
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To summarise, there are a number of quantitative and qualitative measures

available to assess a path planning solution xb(s). These are the visual path inspec-

tion and comparison of task length to solution path length; the reachability index

values for local arm trajectory RI(a(s)); translational and rotational manipulability

m(s). And lastly, average computation time. This will be presented alongside other

scenarios tested.

5.2 Algorithm Evaluation

Using these measures, the task-consistent RRT* algorithm can be evaluated. It is

tasked with six scenarios that aim to capture a variety of circumstances. Three sce-

narios have static obstacles, and three do not. All tasks exhibit a repeating filling

pattern with the same parameters (10 cm wide and 20 cm long ). Same RRT* param-

eters were used to find all solutions, these are: εinc = 0.01; εreach = 0.05; εneigh = 3;

svar = 0.1 · l; βgoal = 0.01. To isolate the discussion, all scenarios constraint the

end-effector orientation downwards. A case when r̂z varies throughout p(s) is dis-

cussed seprately in a later Section 5.2.4. RM and in turn IRM were generated with

constraint tolerance θtol = 0.5 (see Eq. 4.2) and IRM threshold was set such that

the bottom 30% of the voxels are not valid (see Eq. 4.7). All scenarios are run five

times. Here, the scenarios chosen are described:

• Figure Eight: is a centre-start version of a figure eight-type task. The task was

chosen as it illustrates tree branch propagation when the task forms closed regions.

• Two Circles: is composed of two layers of overlapping counter-clockwise circles.

The second layer is at z = 0.03. The scenario was chosen for continuous direction

change of the task and encapsulating geometry.

• Area Filling: scenario shows a covering of an area, such that the task would be

impossible using crude task collision avoidance assumption.

• Hilbert Curve: is the same scenario as discussed previously. Single-layer, contains

regions of free space, narrow passage, and obstacle proximity.

• Circular Corridor: is a 1 m wide rectangular corridor. Considering the task is 10 cm

wide, and robot footprint is 62cm×36cm, it is barely wide enough for the robot to

pass through.



5.2. Algorithm Evaluation 91

• Narrow Pathway: shows a task going in and out of a 2 m wide corridor. The task

overlaps itself and is elevated at z = 0.03 as it returns from the passage. The scenario

is designed so that the robot would find it easy to go into the passage, but difficult to

get out.

The following two pages contain full page figures Fig. 5.3 and Fig. 5.4 that

show the solutions found by the five runs on each scenario as well as the exploration

tree of the x− y plane during one of the runs.

Distance measure adjustment: During initial trials of this study it was found that

the algorithm struggled finding solutions for tasks that loop back onto themselves.

Namely the Two Circles scenario. The algorithm would stall at the point in the pro-

cess where such loops would occur. Upon investigation, it was found that the root

cause was the distance measure used. The measure does not consider the process

variable s in distance calculation (see Eq. 4.6) when looking for nearest neighbours.

This means that when the task loops back onto itself, the tree nodes generated at the

start of the task are being considered as valid neighbours. This effectively distracts

the RRT and causes it to attempt to extend such nodes. Although the edge valida-

tion fails, the RRT takes a long time to progress from such cases. For this reason, a

modification was added to the distance measure as follows:

d(q1,q2) =

‖xb,1	 xb,1‖2, if s2− εd · l < s1 < s2

∞,otherwise.
(5.1)

Effectively, neighbour nodes are only considered to be valid if they are at a point

along the process dimension that is εd · l away. This modification was done empiri-

cally and εd = 0.1 was used. Further discussion of the distance measure and how the

process variable s can be more elegantly added directly into distance computation

is carried out as a performance improvement in Sec. 5.3.
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(a) Figure Eight Scenario

(b) Two Circles Scenario

(c) Area Filling Scenario

Figure 5.3: Obstacle free scenarios. Left: x− y plane (unit meters) exploration of a single RRT*
search tree. Right: solutions of five independent searches.
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(a) Hilbert Curve Scenario

(b) Circular Corridor Scenario

(c) Narrow Pathway Scenario

Figure 5.4: Scenarios containing static obstacles. Left: x− y plane (unit meters) exploration of the
RRT* tree. Right: solutions of five independent searches.
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Looking over Fig. 5.3 and Fig. 5.4, the algorithm appears to have a level

of consistency as solutions found are mostly overlapping. Of course, RRT* is

asymptotically-optimal and probabilistic, so solutions are expected to tend towards

an optimal one.

Note, the lack of smoothness displayed by the solutions is due to no kinody-

namic constraints being imposed as per Sec. 4.2. However, this might still prove

difficult for a controller to follow and thus path smoothness is addressed in Sec-

tion 5.3.2. The Table 5.1 below, shows computation time, path, and task lengths

from all trials. The static-obstacle-free scenarios (first three), were solved faster

Scenarios Calc Time (s) l xb length l
xb length

mean mean
Figure Eight 130 80.8 21.4 3.78
Two Circles 96 129 35.2 3.66
Area Filling 64 88.6 20.7 4.28
Hilbert Curve 156 47.4 13.2 3.59
Circular Corridor 186 27.7 9 3.07
Narrow Pathway 234 20.55 9 2.28

Table 5.1: Scenario Path Length Data

than one with obstacles even though their tasks were overall longer. However, com-

paring task lengths and computation time, in general, suggests task length is not a

dominating factor leading to longer computation. Among the first three scenarios, it

is Figure Eight that performs poorly and among last three scenarios its the Narrow

Pathway. This suggests that the necessity to navigate through tight free space likely

leads to many invalid samples and very short branches being extended from the tree,

in turn slowing down tree progression. This is very evident if Hilbert Curve, which

has an obstacle-free region and only one tight passage, is compared to Circular Cor-

ridor and Narrow Pathway. The latter two are shorter, but have to navigate through

much more constricted space.

The task p(s) and solution xb(s) lengths can be said to indicate how well the

base path leverages the arm’s workspace. However, the presence of the space-filling

pattern in the task makes it harder to compare the lengths, thus the ratio of the task

to solution lengths is presented. The space-filling pattern is 69 cm long and repeats

every 20 cm along the macro curve. This means if the base were to only follow



5.2. Algorithm Evaluation 95

the macro curve, the ratio would be about 3.48. Looking at the last column of the

Table 5.1, it can be seen that in most cases, the solution found, leverages the arm

workspace well as the ratio values are similar or higher than 3.48. Area Filling

scenario stands out as a case where xb(s) takes advantage of task macro curve turns

and appears to cut corners very well. On the other hand, Narrow Pathway has a

low ratio, and solutions found seem to not take advantage of being on the interior

of task turns. Furthermore, solutions do not leverage the task turning onto itself,

and instead, the robot travels further than the task before having to turn back. This

scenario stands out as exceptionally difficult for the algorithm. The reasons for

this and other qualitative behaviour observations will be discussed in the upcoming

Section 5.2.2.

5.2.1 Reachability and Manipulability

To assess how xb(s) lends itself to disturbance rejection capacity of the robot-arm,

the reachability index RI(a(s)) and manipulability of j(s) are shown in the Ta-

ble 5.2. The median and maximum of RI values over a(s) for all solutions varied

little and were around 90.81 and 96.94, respectively. Since IRM threshold effec-

tively sets a minimum bound on acceptable IRI values, the minimum RI values pre-

sented do vary between experiments, but do not dip below 50.These are presented

in Table 5.2 Also, scenarios with static obstacles show higher minimum RI values;

however, these occur only several times throughout a(s) as nominal RI values are

closely packed around the median 90.81.

Scenarios RI(a(t)) mv mω

min min median max min median max
Figure Eight 59 0.1187 0.1546 0.2047 2.2193 2.4338 3.1156
Two Circles 56 0.1186 0.1546 0.2056 2.2294 2.4318 3.1151
Area Filling 52 0.1196 0.1592 0.2054 2.2230 2.4447 3.1234
Hilbert Curve 73 0.1192 0.1704 0.2043 2.2277 2.4943 3.1498
Circular Corridor 84 0.1186 0.1546 0.2056 2.2294 2.4318 3.1151
Narrow Pathway 71 0.1186 0.1656 0.2051 2.2259 2.4668 3.0602

Table 5.2: Scenario Reachability Data. See text and Fig. 5.5 for interpreting these values.

The TCPP algorithm utilised the metric of reachability to encapsulate the task-

consistency requirement and constrain its search. A desired property for the robot-
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base paths was found to situate the printing task in regions where the robot-arm

could still perform some small corrections or disturbance rejection as they occur

during printing. The metric of manipulability is better suited for this as it relates to

the volume of an ellipsoid defined by velocity-unit-response vectors of the robot-

arm. However, it is not obvious that high reachability correlates to high manipu-

lability and thus ability of the robot-arm to perform such desired disturbance re-

jection. Additionally, the translational mv(t) and rotational mω(t) manipulability

values of j(s) presented in Table 5.2 are difficult to interpret without a reference

point. For this reason, Fig. 5.5 presents a comparison between robot manipulability

across joint space and throughout j(s). Robot joint space is sampled uniformly ,and

mv(t) and mω(t) are computed. Then both values are computed for a j(s) trajectory

associated with a single Hilbert Curve solution. The choice of the scenario here is

not relevant as the manipulability ranges are very similar for all scenarios. All four

histograms are shown in the figure on comparable axes.

Comparing the translational manipulability histograms between Fig 5.5a and

Fig. 5.5b, it can be seen that j(s) lies almost entirely in the higher range of robot

manipulability. This means all median values from Table 5.2 can be interpreted to

be high in comparison to overall robot capabilities. Using the same argument would

imply a less favourable conclusion in the case of rotational manipulability. The me-

dian values here are in the middle-range of robot capability. However, this is not an

entirely fair comparison. Firstly, articulated robot arms are composed of all revolute

joints. The implication of this is that rotation manipulability at the end-effector will

always have high values as any joint rotation will produce an end-effector frame ro-

tation. Secondly, workspace regions close to the robot body were over-represented

in case of random sampling, as robot self-collisions were not accounted for. Such

regions are not useful for performing printing, but are likely to have high rotational

manipulability. Lastly, the printing application is far more concerned with transla-

tional disturbance rejection rather than rotational. The nature of disturbances expe-

rienced by the end-effector is likely to be small vibrations. The figure also shows

combined manipulability for further reference. This helps one convince themselves
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(a) Manipulability evaluated at uniformly sampled robot joint-space

(b) Manipulability evaluated at j(t) solution of Hilbert Curve scenario

Figure 5.5: Evaluation of joint-space solution manipulability
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that the solution found still leads to comparatively high robot arm manipulability

and indicates that the robot-base paths found by the TCPP algorithm would allow

leveraging robot-arm’s ability to respond to disturbance.

5.2.2 Qualitative Behaviours

Reflecting on the solutions found and exploration trees shown in Figures Fig. 5.3

and Fig. 5.4 some characteristic behaviours of the algorithm can be derived.

Interior Preference: It can be seen that the algorithm has a strong preference for

the interior side of a curve. This a desirable consequence of RRT* minimising the

robot-base path. This can be seen in a number of cases. The Two Circles scenario

shows that the tree exploration started on both sides of the task (task starts at (3,0)),

but as the task progresses, interior vertices are preferred as they are more cost-

optimal. This also appears in the Figure Eight scenario. As the task starts at (0,0)

and moves up, the tree explores both sides of the task. When the task turns at (0,3),

the interior tree segment propagates while the exterior one does not. Interestingly,

as the top right square is being completed, the future task poses a necessity for the

base to be outside of the top square. The tree at about (1.5,0.5) is seen to explore

the inside of the shape, but as this leads to the robot printing itself into a square, this

segment fails to propagate. Instead, a branch is created prior to shape closure and

all solutions consistently display a relatively smooth shift from the interior to the

exterior of the top square.

Self-Enclosure: Escaping the first closed geometry of the Figure Eight scenario il-

lustrates the desirable feature of being able to impose a solution validity check for

closed geometries. However, it is the task itself imposing the necessity to leave

the closed area in this case. As no explicit checks for leaving the workspace at the

end of the task were imposed, some solutions found for the Figure Eight scenario

still end inside the second closed geometry. A similar issue is seen in the Circular

Corridor scenario, where solutions end up trapped tightly between the task and an

obstacle. Imposing some validity check for the terminal robot-base pose is possible

and would disqualify any solutions that lead to self-enclosure, however, it is com-

putationally highly costly. Consider the Two Circles scenario. The decision point
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when the robot must ensure it is outside the shape is exactly half-way through the

task. Significant portions of the search tree would have to be rebuilt for a valid so-

lution to be discovered. Analytically this an example of the algorithm susceptibility

to a local minima.

Exploration and Exploitation: Reflecting on the straight line segments of the sce-

narios shown, illustrates how the algorithm is balancing between exploration and

exploitation. This is made most evident by the Area Filling scenario. Firstly, the

tree segment at the very top (1.5,3) corresponds to the end of the solution. At that

point, the task contains no more turns and the path can be a straight line. The tree

segment displays little exploration at this point as the algorithm progresses easily,

in turn moving the mean of the sampling bias smax along with the task. The tree

segment is in free space and thus propagates in a straight line with little branching.

In contrast, the areas covered by the tree at lower regions are much wider. Note

the three segments at heights y = 0.5,1,1.5, and so on. These segments span the

whole interval [0;3] along the x-axis. However, solutions found travel a more op-

timal range [0.5;2.5]. Looking closely at tree exploration as the task turns, it can

be noted that tree segments follow the task up to the turning point, say x = 3. But

as the algorithm starts to sample from further task points, which already loopback,

the earlier tree vertices become more optimal. The algorithm is able to validate that

the task at x = 3 is still reachable without having to travel so far. Branches are then

created from these earlier vertices at around x = 2.5 and the tree continues to grow

from them, abandoning suboptimal branches. However, this type of backtracking

takes some number of sampling integrations. The samples for qrand,s are drawn

throughout all of [0, l]. Thus the straight-line segments experience more branching

and widening as the algorithm is searching for an optimal place to branch and loop

the tree back around.

Foresight and backtracking: The Narrow Pathway scenario was specifically de-

signed to capture a situation where the algorithm might need to have a lot of fore-

sight. The task starts outside a wide corridor. The robot then travels into the corri-

dor, creating an obstacle in the middle before returning. This means it’s very easy
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for the robot to print the task in a wide corridor on the way in, but difficult to leave

the passage as it is now half as wide. Also, the robot must make sure it squeezes

through the top gap between the task and the obstacle as the later task turns upwards.

Examining the search tree for this task reveals this to be a challenging scenario for

the algorithm. There are three tree segments travelling in between the two static

obstacles. One at about y = 1 and two narrow ones below and above the task. The

former one, which overlaps the task, corresponds to a solution where the base com-

fortably goes into the passage, leading the arm and printing behind itself. Then the

algorithm struggles to turn around and squeeze through in between the task and ob-

stacles. The two narrower tree segments correspond to the tree attempting to leave

the passage. There are two segments as the passage is long enough, for the tree

growth not to be influenced by the eventual turn upwards. Thus both sides grow

equally until the lower segment fails to propagate. To a large extent, the algorithm

failings with this scenario are a matter of calibration. Specifically, svar value en-

courages the algorithm to progress along the path instead of exploring the space.

To summarise, the proposed algorithm exhibits a number of desirable quali-

ties. It seems to leverage the arm’s workspace well and the solutions found, allow

the arm to remain in a manipulable region throughout task execution. The solved

paths appear rational and optimise path length while maintaining manipulability

constraints. However, the nature of the problem in combination with the moving

biassed sampling around smax proposed, can be a disadvantage in cases of local

minima.

5.2.3 Task Discontinuity Detection

The last desirable feature raised by problem analysis in Sec. 4.1 was the ability of

the algorithm to detect when the print task needs to be discontinuous. Tackling this

can be done by modelling the discontinuity or interruption as a lack of valid graph

edges and then leveraging the sampling-based nature of RRT*. In other words, as

discussed in Sec. 4.2.4, the interruption is registered when the tree search stalls,

that is smax does not change value for a number stimeout = 300 times. To evaluate

this approach, two trials are performed. To confirm the positive case, a scenario is
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constructed where an interruption is necessary for task completion. Then, to under-

stand how the different parameters affect the stalling and interruption detection, a

large and complex scenario is run many times, under different parameters.

An example where task discontinuity is unavoidable was constructed by mod-

elling the letter P as shown in Fig. 5.6. The robot starts in the middle of the letter,

and proceeds along the arc and to the stem. The next layer is elevated above the first

one by 3cm and starts at the base of the letter proceeding towards the top. The al-

gorithm receives this trajectory as a single task, both layers combined. An obstacle

is deliberately situated in the environment to make it impossible for the task to be

executed in a single print. Fig.5.6 shows the search tree for this scenario and incre-

ments of the solution. A higher-quality visualisation is also shown to help illustrate

the scale and its self-imposed obstructions. The figure shows how the solution is

constrained by the environment and the evolving task obstacles. The base must nav-

igate in front of the arm and above the obstacle. Then as the robot continues to print

the second layer, it can successfully reach only the middle of the letter. The task

itself prevents the base from reaching the left side of the second layer. At this point,

the search stalls, an interruption is detected.

This 11.47m long task is much shorter than the previous scenarios, but it takes

significantly longer to plan for. The average planning time of 10 attempts is 116

seconds. This is because interruption detection relies on the RRT stalling. If the

stall threshold is decreased, an interruption can be detected more quickly. However,

this is less reliable. A false positive interruption can be detected as a small amount

of stalling might happen simply by navigating a narrow path. Such false positives

will not prevent the algorithm from completing but simply introduce an unneces-

sary interruption. The algorithm never failed to detect the required interruption

throughout the ten trials. Since RRT edges must be validated in small increments,

task infeasibility always means the tree fails to progress and stalls. The search tree

presented illustrates this. Two dense spots are visible. The bottom one is where the

solution must realise the base must lead and print behind itself. The top is where

the algorithm stalls to a halt.
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Figure 5.6: Robot-base path solution when task interruption is detected. Increments at 25%, 58%,
60% and 90% task completion are shown top to bottom. Static Obstacle (Black), Task being printed
(Blue oldest, Green newest). Base poses linked through relocation (Red dashed), RRT* tree is
omitted for presentation clarity.
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As the scenario presented is artificial, it only confirms that the true-positive

rate of detection is high while false-negative is analytically zero. A much more

complex Large Floorplan scenario, modelled after the wall perimeter of a two-

bedroom floorplan, is trialled next. This time, there are multiple turns and narrow

passages that the robot might struggle through. The task is 72 m long and spans a

much greater area than in previous trials. Figure 5.7 presents the task as well as a

sample exploration tree.

Figure 5.7: Large Floorplan Scenario

Figure 5.9, on the next page, shows four experiments that vary the values of

stimeout and εreach. The former parameter relates directly to stall detection, while the

latter governs tree progression. Each experiment is run 10 times. The solution paths

are made transparent and the interruptions planned by the algorithm are highlighted.

Here, Figure Fig. 5.8 shows a histogram of the number of interruptions the solutions

found contain in order to aid the discussion.

Although it is feasible to execute the task without interruptions, the initial pa-

rameter pair trialed stimeout = 500;εreach = 0.05 led to up to six interruptions. The
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Figure 5.8: Large Floorplan interruption count histograms. The trials themselves are seen in Fig. 5.9

top plot in Fig. 5.9, illustrating these trials, show interruptions even when the task

is simple. E.g. there are few interruptions at around (10,0) where the task simply

travels under another obstacle in a straight line. Observing the tree growth during

search, lead to the belief that this is caused by εreach. As the search tree grows in

size, progress is slowed down. If εreach is small, even when vertices close to qmax

are extended, they might not extend far enough to surpass qmax. In other words, the

algorithm makes many short increments at various points throughout the tree. This

hypothesis is confirmed as the effects of increasing stimeout and εreach were compara-

tively similar. Examining the second and third plot of Fig. 5.9 relating to parameter

pairs (stimeout = 2000;εreach = 0.05) and (stimeout = 500;εreach = 0.2) shows this.

Both interruption count histograms are shifted leftwards as only one or two inter-

ruptions are detected. Qualitatively, stimeout has the effect of reducing sensitivity to

stalling as most interruptions are in one, particularly difficult, spot. While εreach

reduces occurrences of stalling as the simpler task locations no longer have inter-

ruptions associated with them. Lastly, using both parameters, interruptions are kept

at most one, with one solution being found without any.

Qualitatively, comparing the second and third plot in Fig. 5.9, shows that

stimeout has the effect of reducing sensitivity to stalling as most interruptions are

in one, particularly difficult, spot. While εreach reduces occurrences of stalling as

the simpler task locations no longer have interruptions associated with them. Lastly,

using both parameters, interruptions are kept at mostly one, with one solution being

found without any.
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Figure 5.9: Five trials performed on Large Floorplan scenario for four different parameter pairs.
The number of interruptions,shown in red dashed lines, can be seen to decrease as stimeout and εreach
increase.
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5.2.4 Varying Task Orientation

All of the scenarios tested thus far constrained the printing orientation downwards

thoughout the entire task, i.e. r̂z = (0,0,−1)ᵀ. While this is commonly the case in

most printing applications, as discussed in Sec. 2.4, the algorithm can also handle

the case when r̂z varies. Sec. 4.2.2 convering the development of the IRM discussed

in detail how extracting r̂z from p(s) makes it possible to constrain the IRM data

structure in an online fasiong, i.e. during RRT search. To evaluate this function-

ality, the effects of varying r̂z are tested in three scenarios. Firstly, a base case is

established in Fig. 5.10a for comparison. A sine wave shaped task is solved for

(a) r̂z = (0,0,−1)ᵀ (b) Varying r̂z

(c) Varying r̂z (d) The rotations of r̂z about the x-axis as a
function of distance along x-axis

Figure 5.10: Effects of varying r̂z on robot-base path solutions. r̂z varies according to Fig. 5.10d

keeping r̂z constrained downwards. The five robot-base paths shown can be seen

following the geometry of the wave. Fig. 5.10a then shows how base-path solu-

tions contract towards the interiors of the waves as r̂z is varied. Here, r̂z is rotated

about the world frame x-axis similarly as in Fig. 4.11 in the previous Chapter. The

peaks of the wave point the end-effector outwards, while the nodes - downwards.

Additionally, Fig. 5.10d shows the Y-euler angle of the rotation r̂z underwent as a

function of x. Recalling Fig. 4.11 showed how the IRM changes shape to assure

better orientation-aware reachability. The effects of this, pushed robot-base path
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solutions towards y = 0. Furthermore, Fig. 5.10c shows a scenario where the same

r̂z profile is applied to a simple straight line task. In this case, the solutions can be

seen oscillating to opposite sides of the print task for the same reasons. This is the

expected behaviour and desired effect of r̂z on TCPP solutions.

5.3 Discussion and Performance Improvements
The previous Section has presented an evaluation of the TCPP path planner pro-

posed in Chapter 4. Based on RRT* and informed via an orientation-aware IRM,

the TCPP planner addresses the problem of finding viable robot-base paths needed

to perform larger-than-self printing as discussed initially in Sec. 2.4. Additionally,

Sec. 4.1 raised three main requirements that path planning for mobile 3D printing

ought to satisfy. How well these requirements were met will now be discussed by

referencing the evaluation carried out.

Accommodating Disturbance Rejection: It was argued that the nature of a Mo-

bile Manipulator (MM) platform is such that the mobile base is expected to have a

high state estimation error as well as be subjected to noise due to rough terrain and

controllability. These errors are expected to propagate to the end-effector and thus

it is desirable that when printing, the path the base takes allows the arm to perform

disturbance rejection. The proposed TCPP algorithm uses an IRM data structure

to impose a task-consistency constraint as well as impose a minimal bound on the

reachability values associated with the robot-base poses. Sec. 5.2.1 confirmed that

imposing a minimal bound on reachability also leads to high robot-arm manipula-

bility values throughout the resulting joint-space trajectory. This effectively means

the robot-base paths are such that the robot-arm does not need to be close to singu-

lar configurations in order to trace the printing path. However, whether or not this

is sufficient to allow accurate path tracing by a controller remains to be seen until

hardware validation is carried out in Chapter 7.

Dynamic and Evolving Obstacles: In Sec. 4.1, it was discussed how M3DP gives

rise to a non-standard path planning problem as the deposited material changes the

robot environment dynamically throughout path execution. The TCPP algorithm
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tackled this by extending algorithm search space with a process variable, thus allow-

ing such evolving obstacles to be respected. The chosen RRT* framework allowed

easy implementation of such extension via modification of an isolated subroutine.

In turn, the resulting algorithm can tackle problems that would be infeasible if the

print task is assumed to be a static obstacle before printing.

Discontinuous Printing: The initial discussion of M3DP related work in Chapter 3

identified that the environment or the printing geometry itself might create situations

such that printing an entire geometry continuously is infeasible. Since such situa-

tions might occur even in simple cases, see Appendix 9.2, coping with such cases

was deemed to be desirable in Sec. 4.1. The proposed TCPP algorithm allowed

implementing such interruption detection through monitoring solution progress.

However, as seen from the study in Sec. 5.2.3, by construction, this functionality

is highly susceptible to local minima. Combined with the types of goal (i.e. βgoal)

and progress (i.e. smax) biassing implemented, the false-positive rate of interruption

detection can be high.

Altogether, the proposed algorithm addresses the requirements raised and is

functional in tackling the specific M3DP path planning problem. However, there

are two severe limitations as to the usability of the TCPP planner for future testing

in hardware. Firstly, the computation times presented in Sec.5.2 are in order of 100

seconds. Considering 3D printing is a slow process, and the planner is tasked with

very long print tasks, such computation time is not unreasonable. But the quantity of

parameters, which govern algorithm behaviour and would likely need adjusting for

a particular problem, is large. Long planning times would slow down such tuning

processes and thus are a hindrance to usability. Secondly, one of the simplifications

made in the beginning of Chapter 4 was the holonomy of the robot-base and the fact

that robot dynamic constraints were not modelled. As a result of this, the solutions

found by TCPP tend to be jagged. Although, as discussed in problem formulation,

the exact pose of the robot-base is irrelevant to the printing process, smoother robot-

base paths are still required for informing the whole-body motion control strategy

proposed in the upcoming Chapter 7. Thus, even if the TCPP derived solutions are



5.3. Discussion and Performance Improvements 109

not intended to be adhered to precisely, the guidance they provide should be less

rough. The remainder of this Section, thus, proposes isolated improvements to the

TCPP algorithm addressing these two issues. These improvements mostly impact

only the computation time and not algorithm behaviour.

5.3.1 Computational Improvements

The computation times presented in table 5.1 are in order of 100s. Carrying out

a code profiling assessment revealed that unsurprisingly the major computational

load is taken up by the collision checking and nearest neighbour search. The near-

est neighbour search will be addressed first, followed by an evaluation of different

improvements proposed.

K-Nearest Neighbours (KNN) is a common computer science problem with

standard solutions. It is usually phrased in the following manner. Given a set of

points X and a distance function, find the set of k points in X that are closest to some

query point x [135, 136]. The TCPP planner makes tens of thousands of function

calls to a KNN routine during a search in order to link up the closest graph nodes. In

the initial implementation of the algorithm presented in the previous Section, these

function calls were not optimised and thus resulted in poor performance. The TCPP

algorithm was implemented in Matlab, which at the time did not offer off-the-shelf

efficient KNN search functionality for custom-defined distance functions. In the

case of TCPP, X is a set of all graph nodes currently in the tree and the distance

function, as defined in Eq. 4.6 or Eq. 5.1, includes an inequality and an angular

distance calculation. Therefore, a naive and costly method for computing KNN was

implemented. Namely, computing all pairwise distances between the query point x

and points in X . As this is highly costly, two alternative solutions were explored.

5.3.1.1 Nearest Neighbours via Ordered Array

Recall in Sec. 5.2, the distance measure used by the TCPP planner was altered. For

graph nodes q1 and q2 the initial distance measure, as seen in Eq. 4.6, used an L2

norm to compute the distance between the nodes ‖xb,1	xb,1‖2 only if s2 > s1. That

is, q2 is further along the process variable than q1. Otherwise, the distance between
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the nodes is deemed to be infinity. Let this initial measure be denoted d0. During

preliminary evaluation in Sec. 5.2, the inequality was made stricter, see Eq. 5.1.

Only q1,q2 such that s2 > s1 > s2− εd · l were considered. l here is the print path

length and thus, effectively, only graph nodes within the same 10% (εd = 0.1 was

used) of task progress are valid. Let this measure be d1.

Such distance measure alteration was necessary to ensure the algorithm could

tackle scenarios where the printing geometry overlaps itself. However, this also

meant that KNN search was extremely ineffective. When a new qrand node is being

added to the tree, all pairwise distances between qrand and q ∈ tree need to be com-

puted, but only a fraction will have non-infinite values. To make this more efficient,

an ordered-array-based improvement was implemented. The RRT nodes were kept

in a custom ordered-array data structure according to the qs component. When a

KNN request is made for a new node qrand , a binary search quickly finds the q with

the closest qs value. Then the array segment was extracted consisting only of nodes

q ∈ tree such that the inequality of d1 is satisfied. This results in far fewer pairwise

distance calculations being performed. Additionally, the custom implementation

allowed more careful handling of memory in order to avoid unnecessary memory

allocation at runtime.

5.3.1.2 Nearest Neighbours via KD-Tree

The inequality of d1 introduces another parameter εd into the algorithm. This is an

inelegant formulation of a distance measure as it relates the geometry of the print

path (e.g. distance between overlapping areas) to a distance measure. To resolve

this, yet another distance measure and a related KNN routine was implemented.

Instead of utilising the inequality of the distance measure, the process variable s

can be directly introduced into the calculation. The measures d0 and d1 computed

distance values from Lw norm of vector (∆qx,∆qy,∆
°qθ ), where ∆ denotes differ-

ence between q1,q2 and ∆° stands for angular difference. This was extended by

introducing the difference of qs as well as changing the representation of robot-base

orientation qθ . Instead of an angle in radians, qθ was internally stored as cos(qθ )

and sin(qθ ). Finally, the measure d3 is then:
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q = (qx,qy,cos(qθ ),sin(qθ ),qs) (5.2)

d3 :=

‖(q1−q2)�w‖2, if s2 > s1

∞,otherwise.
(5.3)

where � denotes element wise multiplication with a weight vector w. Throughout

this work the translational elements of w were set to 1, and the angular ones to 0.5,

i.e. w = (1,1,0.5,0.5,ws). This corresponds to 180◦ rotation being of equivalent

distance to 1 m travelled. The weight relating to dimension s will be discussed

shortly.

The additional change of qθ representation eliminates the non-linearity of an-

gular distance computations, thus allowing d3 to use simple subtraction along the

dimensions of q. In turn, this allows using an effective and common KNN tech-

nique - the KD-Tree. A KD-tree is a tree data structure which allows O(log(n))

search and insertion and is commonly used for KNN problems [137]. Since d3

still includes an inequality, a custom implementation of KD-Tree was written that

respects this. The KD-Tree was then used to store the RRT*-tree nodes q by ex-

tending the node structure to include separate members referring to RRT and KD

parent-child relationships.

To understand the effects of ws two scenarios were planned for using varying

ws. The Hilbert Curve scenario, which is described in Sec. 5.1.1 where no task-

overlapping occurs. And a Three Circles scenario, which is similar to the Two

Circles scenario in Sec. 5.2, but involved three overlaps and is scaled down to a

diameter of 1 m to increase the number of tree nodes concentrated in a small area.

50 trials were run for each scenario, and the results are shown in Table 5.3.

The data in Table 5.3 suggests that smaller ws lead to shorter computation

times. This is likely caused by the fact that qs denoting the task path integral is

of much larger order of magnitude than other dimensions of q. Large ws values

then dominate the distance calculation and cause the algorithm to only grow nodes
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ws Three Cicles Hilbert Curve
0.1 44.8 (10.1) 59.7 (20.9)

0.25 50.8 (13.4) 61.4 (24.3)
0.5 56.6 (14.0) 66.1 (19.1)

0.75 60.3 (12.9) 68.3 (25.7)
1.0 73.1 (14.8) 69.8 (24.0)

Table 5.3: TCPP performance using d3 distance measure and KD-Tree KNN search. The IRM
thresholding is kept at 20% percentile. The data shows mean (std) values over 50 trials

incredibly incrementally along the s dimension. For this reason, ws = 0.1 is further

used with measure d3 throughout this work.

5.3.1.3 Re-evaluation

To compare the Ordered Array and KD-Tree-based improvements to the nearest

neighbour computation, another set of trials was run. Trials were run using the

Hilbert Curve scenario as it is the richest in features, such as passing through a gap

and close obstacle proximity. Trials were run using d2 and d3 measures and their

associated KNN search implementations. The IRM thresholding is also varied to

show the effects contracting sample area. In case of d3, ws is kept at 0.1, while for

d2, εd = 0.1. Table 5.4shows mean (std) values over 50 trials. The IRM threshold-

ing value in the table determines the bottom percentile being discarded, i.e. 20%,

meaning top 80% of IRM voxels are considered valid.

Thresholding OA (d2) KD-Tree (d3)
(percentile %) (s) (s)

10 16.4 (4.1) 48.1 (20.6)
20 15.9 (2.9) 59.7 (20.9)
50 23.5 (12.5) 66.0 (26.3)

Table 5.4: TCPP performance using using d2 and d3 distance measures and their associated KNN
search implementations. In case of d3, ws is kept at 0.1. In case of d2, εd = 0.1.

Both methods show a drastic improvement over the original implementation

presented in Table 5.1 where the same scenario was solved in 156 s. The effects of

contracting IRM are consistent in both methods as the stronger constraint increased

the computation time. The Ordered Array implementation is seen outperforming

the KD-Tree-based one. A deeper study is required to confirm the cause of this,

but a highly likely cause is that the nature of the problem does not allow for util-
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ising the KD-Tree effectively. The RRT-type search grows a tree along the print

task. This means there is an inherent order with which nodes are added to the

KD-Tree. In such cases, KD-Tree performance degrades to O(n) as the tree is no

longer balanced [137]. Ways of circumventing this issue and how different than

RRT search methods could aid with this will be discussed in the Conclusions Chap-

ter 8. Meanwhile, despite the poorer performance the KD-Tree implementation was

deemed more comprehensible and was chosen for use throughout the remainder of

this work.

5.3.1.4 Collision Detection

Another cause of computational load was the collision detection routines. In the

implementation presented throughout this evaluation thus far, collision checking

was done using native Matlab geometry operations. The robot and static obstacles

were represented as a polygon in 2D. Collision with the task was performed by

checking if task points fall inside the robot polygon. In the later stages of the print,

a high number of such checks would need to be performed as many points of the

densely sampled task were printed. To improve this, 2D Occupancy grids were

implemented instead.

An Occupancy Grid is a 2D array of integers [138]. It discretises the space and

assigns occupancy values to each cell. In standard navigation applications it is used

to denote the probability of space being occupied. However, the variation in cell

value can also be used to denote occupancy along the process dimension in the case

of M3DP. Fig. 5.11 shows a segment of a print task overlapping a 2D occupancy

grid of cell size of 5cm. Cell value is set to be the path integral scell = s of each

point along p(s). In the figure, the darker voxels correspond to lower scell values,

while lighter - to higher. This way, for a given graph node q = (xb,s∗) checking if

any of the cells corresponding to the robot bounding box perimeter satisfy s∗ ≤ scell

allows to detect a collision with previously deposited material, but not with yet to

be deposited material.

Although this implementation is more versatile, it did not impact computation

time significantly. However, this approach allowed easier design of testing scenarios
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Figure 5.11: Evolving task obstacle in Occupancy Grid

as the 2D Occupancy Grid data structure is commonly used by localisation and

mapping software libraries to create a representation of a 2D environment. For this

reason, the approach was used throughout the remainder of the work.

5.3.2 Solution Smoothing

Mobile 3D Printing requires the robot to accurately follow a long end-effector tra-

jectory. However, M3DP does not dictate a precise robot-base pose throughout

printing. As long as the robot-base navigation supports the dynamic nature of the

evolving environment and maintains print path reachability, the print task can be

achieved successfully. However, if the robot-base paths found via the TCPP algo-

rithm are to be used with a control strategy that would allow the robot to execute

printing, they are still ought to be feasible and practical to execute or act as guid-

ance. Since the EXTEND routine of the algorithm proposed does not model any

dynamic constraints, the solutions found by the algorithm should thus be smoothed.

Smoothing was achieved via the following post-processing steps. Step 1), after

the TCPP algorithm reaches the goal and produces a robot-base path, the RRT*

loop is still run until the size of the underlying graph has doubled. This increases

the number of available samples and provides the opportunity for the RRT ∗ rewire

function to shorten the path xb(s). Step 2), the nodes which xb(s) is composed of
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are iterated through in random order and an attempt is made to bypass unnecessary

robot-base poses. This is a common path smoothing technique in literature [139].

Namely, qi is removed and qi−1 is connected directly to qi+1, if densely sampled

nodes along this connection all satisfy the validation function. Step 3), the robot-

base poses are relaxed as follows. The qi, except for the first and last nodes, are

iterated through again in random order. m random tuples q∗i = (x∗b,i,s
∗
i ) are sampled

in a small radius about qi. During sampling si−1 < s∗i < si+1 is assured. In this

work, considering nominal physical robot and task dimensions, a radius of 0.05 is

used and m = 15. Then, qi is replaced with qi,new by minimising a cost L(qi):

qi,new = argmin
q∗i ∪bi

L(qi),where

L(qi) =
δqi+1 +δqi

si+1− si−1
+
∣∣∣δqi+1

δ si+1
− δqi

δ si

∣∣∣ (5.4)

where δqi = d3(qi−1,qi) is computed using RRT ∗’s distance function. The min-

imised function L(bi) is similar to how dynamic constraints are imposed in [140].

As print speed is constant, the first term of L is related to the robot-base velocity

over the whole segment si−1 to si+1. Similarly, the second term of L is related to

acceleration. The new qi,new leads to lower and more constant velocity throughout

the segment. This relaxation step is carried out 10 times. Figure 5.12 shows the

effects of post-processing on a solution found for Hilber Curve scenario.

5.4 Summary

The overarching goal of this thesis is to develop a path and motion planning method-

ology that enables Mobile 3D Printing (M3DP). The challenge that M3DP poses to

path planning was distilled and defined into a tangible problem. Specifically, this

was coping with the task-consistency constraint imposed by the printing process and

meeting some desirable characteristics such as assuring manipulability or avoiding

the printed material. The IRM informed RRT* algorithm proposed in the previous

Chapter and evaluated extensively in this Chapter, does indeed provide a frame-

work for finding an adequate solution, even if it relies on some simplifications and
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Figure 5.12: TCPP robot-base path solution after each step of post-processing. The paths are plotted
on top of each other. The environment and the task are slightly desaturated for presentation clarity.

assumptions. The approach was shown to find robot-base path solutions for a range

of different M3DPscenarios. The relationship between minimal bound on robot

reachability and resulting manipulability was established. And algorithm features

like support for non-planar printing trajectories or printing with interruptions and

relocations were demonstrated. Ultimately, the evaluation of the Task-Consistent

Path Planning (TCPP) algorithm presented in this Section shows that it addresses

the M3DP path planning problem to a sufficient degree to enable further work along

the pipeline of mobile 3D printing. In particular, to complete the M3DP pipeline,

Chapter 7 will present a predictive control formulation that utilises the outcome of

TCPP planner. However, before motion control is addressed, a reliable M3DP robot

prototype must be developed. This is presented in the next Chapter.



6. ArmStone: Mobile 3D Printing

Robot

The validation of the TCPP approach presented in the last Chapter was limited to

simulation only. To assess if the results hold in practice, the TCPP planner must

be combined with a motion controller and hardware. Therefore, to bring together

the contributions of this thesis and provide a demonstrator platform for carrying

out system-level validation — this Chapter presents a final M3DP robot prototype

Armstone. Armstone has been designed and developed by building upon the lessons

learnt from the MAP and Youwasp systems discussed in Chapter 3. Armstone was

built from scratch and attempts to address the limitations of the previous robots.

This Chapter is hardware focussed and covers Armstone design and development

in detail. Armstone mechanical and electrical design is covered first, followed by a

description of low-level base controllers. Lastly, several experiments were carried

out in order to identify hardware-related end-effector positioning error sources. The

Armstone robot was also presented in a publication [124] in International Confer-

ence on Intelligent Robots and Systems (IROS) 2022.

6.1 Armstone Design
The Armstone design requirements emerge from addressing the limitations of the

MAP and the Youwasp robots. The hardware of each of these robots is briefly

presented in Appendix 9.2. The iterative development of these two robots can be

summarised as follows. MAP was built as a rugged, rough-terrain tolerant om-

nidirectional MM platform. It facilitated the initial proof of concept exploration of
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M3DP in this work, but the mechanical complexity and low stiffness of the wheeled-

legged base meant that it was not a practical platform for research. Additionally, it

was a tethered system and its Kuka Iiwa manipulator control interface made com-

bining robot-base and manipulator control difficult. In response, minimising the

necessity for custom hardware development, Youwasp was based on an off-the-

shelf Kuka Youbot MM robot. While this meant the robot was more robust, it also

led to difficulties meeting the M3DP requirements. In spite of various hardware

modifications, including limiting manipulator active joints to 4, the Youwasp could

not robustly carry a flange-mounted extruder due to payload limitations. This led

to the occurrence of joint motor over-current errors and impacted printing quality

beyond aesthetics. As a result, the path and motion planning aspects of this thesis

could not be reliably validated via the Youwasp platform.

Consequently, Armstone sought to mobilise an articulated manipulator with

sufficient payload, DoF and an accessible control interface. As Youwasp mobile

base was holonomic and this assumption persisted over the development of the

TCPP planner, it was also required that Armstone continue allowing for holonomic

base motion. These requirements as well as budget constraints, led to the decision of

acquiring a uFactory xArm articulated robot arm and building a bespoke holonomic

base for carrying the arm and the material deposition system.

Figure 6.1: Armstone robot and it’s major components.
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Armstone, shown in Fig. 6.1, is material and power independent low-cost MM

robot. It is based on and derives its name from a 6-DoF and 5 kg payload xArm

manipulator and StoneFlower3D material extruder. The robot base footprint is

0.84m× 0.6m allowing it to fit through standard doorways while accommodat-

ing all the necessary components. This also means Armstone is not a small robot

and consists of many heavy elements creating a necessity for careful consideration

when designing load-bearing parts and planning robot mass distribution.

Furthermore, as Armstone was designed from scratch, this provided an oppor-

tunity for maximising the manipulator’s reach at ground level. Fig. 6.2 shows how

the xArm manipulator reach contracts below the mounting plane due to the length of

the first two arm links. For this reason, the manipulator was mounted at the bottom

side of the chassis and towards the front of the robot.

Figure 6.2: Mounting the xArm at the bottom side of the chassis increases reach at ground level

As the xArm, weighing 12.2 kg, is one of the heaviest components, it has a

great effect on the robot centre of mass (CoM). Mounting the arm in the very front

could lead to the mecanum wheels, which are rated for 10kg, becoming overloaded.

Therefore, the arrangement of all major components was modelled prior to manu-

facturing as portrayed in Fig. 6.3. This allowed predicting robot CoM and wheel

load at different arm joint configurations. In turn, the xArm mounting position was

pushed as far forward as possible while keeping the front two wheel loads under

10kg. This resulted in the xArm being placed 0.1335m above floor level and offset

from the centre of the base by 0.175m towards the front of the robot. To confirm

this would lead to sufficient printing area, a Reachability Map (RM) was computed

for the final Armstone model. As described in Sec. 4.2.2, the computation took
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(a) Major Armstone component mass estimates

(b) CoM(red), while fully stretched out forward (c) CoM(red), while fully stretched out sideways

xArm pose Front Left Front Right Back Left Front Right
Forwards 9.9 9.7 8.7 8.9
Zero pose 9.6 9.4 9.1 9.3
Leftwards 8.9 10 9.7 8.6

Rightwards 10 8.6 8.5 9.9

(d) Wheel load under different arm configurations in kg

Figure 6.3: Armstone mass distribution and wheel load under different arm configurations.

into account self-collisions. The RM of the nominal downwards facing TCP case is

shown in Fig. 6.4. The slight asymetry about the x-axis is due to the extrusion sys-

tem collision box placements. An approximately 0.3m wide band (yellow-green re-

gion) around the robot had a reachability index above 0.5. Higher above the ground

the outer edge of this region contracts as it becomes more difficult to orientate the

end-effector downwards. However, the reachable region was deemed sufficient to

facilitate the width of a printed wall or other components.

Figure 6.4: Armstone Reachability Maps at ground level and 0.2 m above ground level.
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6.1.1 Chassis Assembly and Electronics

Armstone’s total weight of approximately 40kg required a robust base construc-

tion. A 20mm× 20mm aluminium extrusion was chosen as adequate material to

construct most of the chassis, but double profile (40mm×20mm ) extrusions were

used along the sides of the robot to decrease bending and increase the strength of

main attachment points. A custom laser cut 8mm thickness aluminium mounting

plate spans the front and side beams of the chassis in order to provide a rigid mount-

ing point for the xArm manipulator. Custom acetal panels were laser-cut to create

surfaces for mounting lighter components and wiring. An overview of the chassis

and its major components is presented in Fig. 6.5a.

(a) Armstone base chassis and its major compo-
nents

(b) Armstone motor-wheel assembly

Figure 6.5: Armstone chassis and motor-wheel assembly overviews.

The robot is powered by a 48V,20Ah lithium-ion battery. In testing, the bat-

tery provided roughly 3h of continuous printing time. The small footprint of the

xArm DC control box allowed for it to be placed onboard alongside two Intel Nuc

(2-cores and 4-cores at 4GHz) computers. A 100Mbps network switch and a sepa-

rate onboard wireless router provide internal and external network communication.

To accommodate the different voltage requirements from onboard electronics, three

step-down DC converters providing 24V and 12V power were used. Lastly, the

robot was driven via four BLDC Maxon EC45 70W motors with a 91:1 reduction

gearbox. The motors are run using VESC motor controllers and are powered di-

rectly from the battery to allow for a large current draw. To simulate the required

rated voltage of the motors (24 V), the power duty cycle was limited to 50%.
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The motor-wheel assembly, seen in Fig. 6.5b, was a challenging part of the

Armtone base design due to load-bearing connections. The motor gearbox was not

rated for high radial loads, and so, to assure this, the 12mm diameter wheel axle

is held by two pillow bearings, which are in turn, fixed to the chassis. This way,

no forces perpendicular to the axle, are exerted on the motor. The motor mount-

ing bracket and shaft coupler were custom designed and 3D printed using the Mark

Forged Mark Two in carbon fibre reinforced nylon (onyx) with glass fibre strength-

ening. However, the weight of the robot still meant that the wheel axle would

experience slight buckling over a prolonged period of time. To counteract this, a

1.7° angled flexible polyurethane mounting pad was printed and placed between

the mounting bracket and the chassis.

6.1.2 Control and Localisation

The Armstone base and arm used the ROS Control [141] framework. A com-

bined hardware interface was written to group up all VESC motor controllers

and the xArm drivers for synchronous control. The hardware interface al-

lows dynamically loading robot-base-level and arm-level controllers. The Arm-

stone base runs a holonomic base controller at 50Hz, translating robot-base lo-

cal frame velocities (vx,vy,ωb) to wheel angular velocities. The controller im-

poses a 0.8ms−1 velocity and 0.5ms−2 acceleration limits, which were deter-

mined empirically. The controller was written by expanding and modifying the

ROS mecanum-controller package available as part of ROS ecosystem. The

xArm manipulator was setup up with a group joint velocity controller, accepting de-

sired joint velocity inputs, for all 6 joints, at 100Hz. Both base and arm controllers

would provide online state estimates for their respective hardware elements. In the

case of the base controller, this was an odometry estimate determined via mecanum

wheel forward kinematics. While the BLDC motors did not have dedicated external

encoding, the VESC motor controller provided an RPM estimate via hall sensors.

Another source of robot base pose estimation are on-board planar laser scanners.

Armstone features two Hokuyo 04lx LiDAR sensors mounted on the sides of the

robot. As this is not a focus of this work, localisation and mapping were achieved



6.1. Armstone Design 123

via the use of open-source ROS ecosystem software packages. The laser scans are

merged using the ira-laser-tools package [142] and virtualized into a sin-

gle 360° scan. These scans are constructed at 10Hz and fed into a Simultaneous

Localisation and Mapping software package slam-toolbox [143]. This resulted

in Armstone being capable of constructing 2D occupancy maps and localise with

respect to them.

In the case of xArm, the state estimate was more challenging. The xArm

drivers provided a smooth and accurate 10Hz joint position, velocity and effort

reading based on arm encoders. This was deemed to be far too low-frequency esti-

mate for performing 3D printing. After a discussion with xArm developers, a slight

modification was made to the xArm driver to allow polling joint state at 100Hz in

the same loop as control commands. However, this came at the cost of noise on the

joint velocity estimate. This is seen in the angular joint velocity control step input

response presented in Fig. 6.6. The purple line shows the angular velocity estimate

derived from the original 10Hz signal. While it is much smoother, it was also found

to lag behind the faster 100Hz signal shown in light red. However, the noise seen

around the 0.1 rads−1 setpoint is significant and could cause instabilities in the con-

trol approach presented in the next Chapter. The noise is caused by a digitisation

error arising as the xArm DC control box computes the derivative of joint encoder

readings.

(a) xArm joint velocity step input response (b) xArm joint velocity during printing

Figure 6.6: xArm joint velocity estimates and filtering under different conditions.
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For this reason, a basic Finite Impulse Response type filtering was introduced

to arm joint velocity estimates. The current joint velocity φ̇ was set to a weighted

sum of the latest three joint velocity estimates b0 · ˆ̇
φ [n]+b1 · ˆ̇

φ [n−1]+b2 · ˆ̇
φ [n−2].

Here ˆ̇
φ [n− 1] stands for joint velocity estimate with single timestep delay. The

window size and weights were picked empirically, aiming to not introduce any delay

into the system. The gains b0,b1,b2 picked were 0.25,0.5,0.25, respectively. The

resulting filtered signal is portrayed in dark red and dampens the noise amplitude by

about 95%. Filter performance under printing conditions is also shown in Fig. 6.6.

6.1.3 Material Deposition System

As covered in the literature review in Chapter 2, there have been very few M3DP

robots developed to date and none have featured an onboard material deposition sys-

tem for clay or cementitious materials. Therefore the development of such a system

was an iterative hardware development challenge carried out via the different robots

built during this project. For this reason, before presenting the material deposition

system as implemented on the Armstone robot, earlier iterations, i.e. MAP and

Youwasp, are covered first.

The MAP mobile base was designed to hold and power a 3DPotter 5500 ml

extruder system. This is a large syringe-type system, usually mounted directly on

an industrial planar robot arm. It is driven by a high-torque stepper motor with a

high-reduction gearbox and a long screw which doubles the total length of the ex-

truder. The extruder can be seen in Fig. 6.7. While the length of the extruder was

Figure 6.7: 3DPotter Extruder system and clay propagation issue.

impractical, the MAP mobile base was designed to accommodate it. The design

intended for a hose to deliver the material from the extruder mounted on the robot

base to the arm end-effector. However, it was discovered that the friction experi-
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enced by the clay inside the hose is much too great for the motor to overcome. Clay

could only travel about 20 cm through the hose which was insufficient to reach the

end-effector. Attempts were made to reduce clay viscosity, but the syringe container

was not designed for this and would leak. Failing to propagate the clay through a

feeding hose, a working deposition system on MAP was never deployed.

Youwasp takes its name from the WASP desktop 3D printer which forms the

basis of its material deposition system. The WASP system consists of a 3 l material

container driven by air pressure and a woodscrew-based flow regulator that weighs

1 kg, see Fig.6.8. This was the lightest extruder system that was commercially

available at the time.

(a) The WASP 3D printer pressure system. Air pressure
drives a divider inside a material cylinder which pushes
material out via a teflon tube.

(b) The WASP extruder consists of
a screw driven by a stepper motor
and a sideways material intake.

Figure 6.8: WASP 3D printer components.

An onboard compressor was used to generate the pressure needed to drive ma-

terial to the extruder. However, the low weight and footprint requirements for the

compressor also lead to a low 5% rated duty cycle. This meant the compressor

could only operate 5% of the time without overheating. As material leaves the noz-

zle, the pressure in the material cylinder drops, meaning that the compressor would

have to operate almost continuously to keep air pressure constant. To alleviate this

a 1 l air container was introduced to act as a pressure buffer. This way, less frequent

compressor use was needed. This arrangement is illustrated in Fig 6.9. The WASP

pressure system also used a low-friction PTFE tube to deliver material to the ex-

truder. This arrangement proved to be much better suited for the application, but

not without challenges.
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(a) Youwasp material deposition system
mounted on the robot

(b) A diagram of main Youwasp pressure system
components showing the two working pressures
used.

Figure 6.9: Youwasp material deposition system

The extruder intake angle and tube stiffness lead to major workspace con-

straints. When the arm was printing close to the base, the tube would collapse

as seen in Fig. 6.10. When the arm was extended further, the tube would exert ten-

sion forces on the arm, which led to over-current issues. Furthermore, the WASP

extruder was designed for low-volume printing applications. Increasing the nozzle

size from the rated 1 mm diameter to a more suitable 6 mm diameter led to ex-

tremely low-quality deposition as the woodscrew-based extruder could not provide

enough pressure to push the material out. To address these issues, Youwasp sys-

(a) Arm at low extension creates bend in the
teflon tube that material cannot flow through

(b) Teflon tube under tension exerts forces on the
end-effector

Figure 6.10: PTFE material feeding tube

tem was also tested with a different setup. The extruder was replaced with a much

lighter end-effector that only held the material feeding tube in place. This holder

also allowed the feeding tube to rotate freely about the end-effector Z-axis. The
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PTFE tube was replaced with a more flexible and longer silicone hose. As this in-

troduced more friction, the diameter of the hose was increased and hose couplings

were drilled out to reduce obstruction, see Fig 6.11. To control the flow to the noz-

(a) Blue motorised ball valve seen immediately to the
right from the material cylinder

(b) Friction reduction by customising
hose couplings couplings

Figure 6.11: Challenges mobilising WASP extruder

zle, a motorised ball valve was introduced immediately after the material cylinder.

Closing the ball valve would stop the material flow from the cylinder. However, the

pressure trapped inside the hose would still force material out for a period of time

which led to spills and overflows, as shown in Fig. 6.12b.

(a) Youwasp deposition using WASP extruder (b) Youwasp deposition without extruder

Figure 6.12: Material deposition quality using both Youwasp extruder configurations.

Ultimately, neither of the setups trialled led to sufficient printing fidelity to

allow further research to be deployed via the Youwasp platform. Due to the under-

extrusion when using the WASP extruder or spills when not using an extruder, 3D

printing multiple stacked layers was not feasible. The robot needed to be able to
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wield a sufficiently capable extruder so that the deposited material could be rea-

sonably compared to the intended print trajectories and this way allow qualitative

assessment of motion and path planning approaches proposed in this work.

The payload requirements that emerged when developing Youwasp dictated the

choice of manipulator used in Armstone. The 5 kg xArm payload allowed mounting

a heavier (1.4 kg) StoneFlower3D, auger-screw based extruder. The auger screw

has a higher volumetric output, and the extruder was rated for nozzle sizes up to

7 mm. As xArm reach, at 762mm was almost double that of Youwasp, there were

concerns that the pressure-driven WASP material delivery system would not be able

to provide sufficient clay pressure to feed the extruder. For this reason, the design

reverted to the lower friction PTFE tube option. To alleviate the issues caused by

the tube collapsing or being pulled by the arm, the tube was heat treated and bent by

hand into a shape following the manipulator’s joints. This way, the arm stretching

and contracting would not lead to the collapse of the tube as seen in Fig. 6.13.

(a) xArm in a stretched out pose (b) xArm in a contracted pose

Figure 6.13: Armstone material feeding tube behaviour in different xArm configurations. The heat-
treated feeding tube bends along with the manipulator.

Additionally, work with Armstone was carried out using Porcelain with added

paper fibre. Empirically, this allowed lowering the viscosity of the material to ease

passage through the feeding tube while having a lower impact on buildability.

The rest of the Armstone material deposition system remained mostly the same

as that of Youwasp. The compressors, material cylinder and other pressure system

components were mounted on the robot body as seen in Fig. 6.14. The compressor

weighing at 1.1 kg vibrates during operation. To minimise transmission of this vi-
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(a) End-effector assembly (b) On-board pressure system

Figure 6.14: Armstone material deposition system diagrams

bration to the robot body, the compressor was mounted via a compliant 3D printed

polyurethane fixing. Additionally, the top of the chassis was covered with an acrylic

sheet to prevent any material spillage from reaching the electronics. The extruder

was mounted on-axis with the xArm flange. To prevent TCP inaccuracies caused by

mounting component deformation the fixings were 3D printed in reinforced nylon

and glass fibre inserts.

The resulting improvement in material deposition fidelity from Youwasp to

Armstone was significant. The clay reached the end-effector with high pressure

and the extruder allowed for controlled material flow. While overlapping single line

layers of material was still difficult, it was no longer caused by printing fidelity,

but rather a question of calibration, localisation and control. A crosshatching infill

pattern could be used to increase layer overlapping tolerance. This way, Armstone

proved capable of 3D printing multi-layered structures as seen in Fig. 6.15.

Figure 6.15: Armstone material deposition performance allows printing of multi-layered structures
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6.2 Hardware Error Sources
In spite of the increased quality of construction compared to MAP and Youwasp,

Armstone still exhibits hardware defects that affect printing quality. To help iden-

tify and estimate the effect of hardware-related end-effector error sources several

experiments were performed. Firstly, while the robot is stationary, the xArm was

commanded to trace straight-line paths along its local x, y and z axes. These paths

can be seen spread out in robot’s local workspace in Fig. 6.16a. For each axis, three

(a) End-effector paths. (b) Motion along x-axis.

Figure 6.16: ArmStone end-effector oscilation test. End-effector moving along x,y,z axes in the
robots local frame. Fig 6.16a shows paths along x-axis(red),x-axis(green),z-axis(blue) at different
end-effector speeds. Fig 6.16b shows oscillations when moving at 5cms−1

different end-effector velocities were used, 1 cms−1, 2.5 cms−1, 5 cms−1 and the

line trace was repeated three times. The velocities were chosen in the range of ex-

pected printing speed supported by the stoneflower3D extruder. An external motion

tracking system, Optitrack, was used to independently measure the pose of the end-

effector during the experiments. For each path, a line was fitted to the associated

data so an error can be computed against it.

The findings of this test were twofold. First, as the Armstone manipulator

stretches away from the robot base, mechanical components, e.g., aluminium ex-

trusion frame and front wheel axles, experience increased load. In turn, this causes

a slight drop in the end-effector position. This was seen most clearly as the arm

was moving along the local x-axis in Fig. 6.16b. Throughout the full reach of the

arm, the end-effector gradually drops about 4 mm. The second finding was that the
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xArm exhibits small vertical oscillations when travelling at these, relatively low,

end-effector velocities. For all the different path traces, the mean error and standard

deviation were approximately 0.6mm and 0.4mm, with little variance between the

axes or TCP velocities trialled. However, the maximum error was much greater and

more pronounced along the x-axis as seen in table 6.17. Following an investiga-

tion, including payload calibration and a conversation with xArm developers, the

cause of this oscillation was found to be that, at the time of writing, the xArm ma-

nipulator firmware struggles to render smooth motion at low joint velocities. This

effect is most pronounced and visible as vertical oscillations in cases when the arm

is stretching out away from its point of mounting.

max (mm) 1cms−1 2.5cms−1 5cms−1

x-axis 2.19 1.89 2.4
y-axis 1.84 1.71 2.13
z-axis 1.94 1.85 1.98

Figure 6.17: Maximum deviations form line of best fit during motions along different axes.

6.3 Summary
The Armstone robot presented in this Chapter shows a drastic improvement in qual-

ity of build, robustness and ease of use compared to the MAP and the Youwasp

platforms. The hardware-related sources of end-effector error are in order of 2 mm-

3 mm. This is significant but within reasonable expectations of a custom-built robot

platform. The experiments carried out in this Chapter thus serve as a baseline for

comparison in future experiments. Ultimately, Armstone is mobile, holonomic and

capable of 3D printing multi-layered structures and therefore is a suitable hard-

ware platform for the embodiment and validation of the contributions of this thesis.

The next Chapter thus utilises Armstone in a series of real in-hardware printing-in-

motion experiments.



7. Base-path informed whole-body

control for M3DP

Chapter 4 presented the TCPP approach for tackling the unique M3DP planning

problem that arises from the relationship between the printing task and the robot-

base pose. In Chapter 5, the base paths found by the TCPP algorithm were shown to

lie in regions such that the task remains reachable and, in turn, joint-state solutions

for the manipulator are likely to exist. To further validate the work, the previous

Chapter presented the development of a prototype robot capable of mobile material

deposition, Armstone.

To bring these elements together and realise a complete M3DP robot system,

this Chapter seeks to develop a viable control approach for tracking long end-

effector trajectories required by many M3DP applications. The desired characteris-

tics of such a control approach can be derived by recalling the initial explorations

carried out via the MAP and Youwasp robots in Section 3.2.The recurrent shortcom-

ing of these mobile printing systems discussed is the lack of both synchronised and

closed-loop base-arm motion of the mobile manipulator system. A control and mo-

tion planning methodology for M3DP ought to generate synchronous model-aware

control input utilising both base and arm motion simultaneously while showing high

fidelity in following the prescribed end-effector print path, and additionally, being

able to successfully navigate the robot base during printing. Therefore, this Chapter

proposes how the base-path solutions found by the TCPP algorithm can be used

together with a whole-body motion controller to achieve these desired characteris-

tics. This Chapter follows on from the literature overview of whole-body control
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presented in Sec. 3.4, and proposes base-path informed MPC formulation. Finally,

extensive physical printing experiments are performed, allowing for a system-wide

assessment of the overall contributions of this thesis. Most of the work in this

Chapter is published [124] at International Conference on Intelligent Robots and

Systems (IROS) 2022.

7.1 SLQ-MPC for M3DP

As established in Section 3.4, the WBC control approach based on SLQ-MPC

implementation suffers from a relatively short horizon compared to the expected

lengths of print paths arising from the M3DP application. Therefore, in this Chap-

ter, the SLQ-MPC controller is supplemented with a TCPP-derived robot-base ref-

erence trajectory in order to provide foresight and allow the tracking of very long

print paths. Such an approach is, thus, globally informed while benefiting from

locally optimal combined base-arm motion planning and control. The SLQ-MPC

framework used in this Chapter is built upoint an open-source implementation pro-

vided by Pankert et al. This implementation itself is based on the OCS2 [108, 115]

library for optimisation, RobCoGen [144] library for kinematics and CppAD library

for auto differentiation.

7.1.1 Armstone Modelling and Tuning

The Armstone robot model for formulating the optimal control problem closely fol-

lows that of Pankert et al. [113]. However, in this Chapter, only the basic framework

is used and the collision avoidance, admittance control and other additional features

present in the work by Pankert et al. are disabled.

The robot state is modelled as a vector x which consists of the manipulator

joint values xa = (φ1, ..,φ6) and the robot-base pose, xb ∈ SE(3), expressed as a

position and a quaternion in the world frame. The robot input u is composed of

the robot-base translational velocities vx,vy (in the robot-base frame), robot-base

rotational velocity ωb, and manipulator joint velocities as seen in Eq. 7.1.



7.1. SLQ-MPC for M3DP 134

x = [xb,xa]
ᵀ

u = [vx,vy,ωb, φ̇1, .., φ̇6]
ᵀ

(7.1)

The print path is modelled as an array of time-stamped end-effector poses p̂ ∈

SE(3) expressed as a translation and a quaternion in the world frame. The entire

print trajectory is thus p̂ and the end-effector tracking cost function Cee is defined

as follows:

Cee(t,x, x̂) = [exyz,erpy]
ᵀQee[exyz,erpy]

exyz(x, p̂xyz) = FK(x)xyz− p̂

erpy(x, p̂q) = FK(x)q	 p̂q

(7.2)

where, p̂ is contained within reference signal x̂, which will later on also include

robot-base reference trajectory. Cee is computed as the weighted sum of squared

translational and rotational end-effector pose (as provided by forward kinematics)

errors exyz and erpy. The quaternion distance error is computed as in [145] and Qee

is a diagonal matrix of weights.

Manipulator joint position and velocity limits as and velocity limits are imple-

mented as soft constraints by penalising constraint penetration zi ≥ 0 via a relaxed

barrier function [122] as described in Eq. 3.4. These functions are plotted in Fig. 7.2

later in this Chapter. In this work, the default tuning parameters µ = 5 · 10−3 and

δ = 10−4 are used.

The optimal control framework exposes many penalty weights as part of the

various costs present in the value function. As the task at hand is tracing print path

trajectories, a systematic empirical tuning was carried out to find the approximate

ratio between the end-effector translational error weights Qee,xyz and manipulator

joint velocity command penalties Rarm. Firstly, based on empirical experimentation

with the maximum StoneFlower3D extruder, maximum expected printing speed is

assumed to be 10 cms−1. A simple filling curve print path was generated and time-

stamped to reflect expected printing speed. Then, a kinematic simulation based
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on SLQ-MPC state progression prediction rollout was performed using different

Qee,xyz and Rarm values. As seen in Fig. 7.1, optimising the value function over a

horizon tI can lead to performance resembling a moving-average filter when Qee,xyz

is not significantly dominating over Rarm. This is simply caused by the transla-

tional error (expressed in m) being of different order of magnitude than the joint

velocity commands (expressed as rads−1). Furthermore, the prediction horizon

Figure 7.1: Kinematic simulation results for tuning end-effector translational error penalties Qee,xyz
and xArm desired joint velocity penalties Rarm

was empirically chosen to be tI = 4s. This was determined by observing that the

robot-base motion was smoother when the entire print-path repeating pattern was

visible within the horizon. Finally, the SLQ-MPC framework used allowed for

asynchronous optimisation solving and control input evaluation. Therefore, the op-

timisation was run at 30 Hz while the control policies were evaluated at 100 Hz and

control input passed to the low-level controllers. The final penalty weights used

in this work were diag(Qee,xyz) = 250, diag(Qee,roll,pitch) = 1 and diag(Earm) = 0.1

while diag(Qee,yaw) was set to zero since extruder z-axis rotation is irrelevant. The

high diag(Qee,xyz) value was determined empirically in a subsequent tuning after

base-reference trajectory and its corresponding penalties were introduced.
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7.1.2 SLQ-MPC Robot-Base Reference Trajectory

To begin exploring how the robot-base trajectory can be embedded in the MPC

optimisation value function, it must first be formulated appropriately and included

in the state reference trajectory x̂. For a given print path, the robot-base paths bi =

(xb,i,si) were found via the TCPP planner as presented in Chapter 4 and smoothed

as described in Sec. 5.3.2. Recall that xb,i = (xi,yi,θi) ∈ SE(2) and si represents

the process variable that helps associate xb,i with a specific pose along the print

path. bi are then added to the reference trajectory x̂ in the following way. First,

xb,i ∈ bi elements are transformed to SE(3) and stored as positions and quaternions

assuming that the robot base motion is constrained to the xy plane. Using the process

variable si, xb,i is interpolated and time-stamped to match the print trajectory p̂.

Finally, x̂ is extended to include both the print task and the robot-base reference

x̂(t) = (p̂(t), x̂b(t)).

However, prescribing both robot-base and end-effector reference trajectories

to follow over-constrains the optimisation problem so that, effectively, the SLQ-

MPC only solves for the manipulator inverse kinematics. However, as discussed

previously, the M3DP application does not explicitly prescribe an exact desired

robot-base path. While the manipulator must trace its prescribed print path as accu-

rately as possible, the robot-base must only navigate the environment in a way that

is collision-free and assures sufficient reachability for printing to occur. For this

reason, several ways were explored that would allow loosely including x̂b(t) into

the optimisation value function.

Quadratic tracking functions The base tracking cost Cb can be computed the same

way as the end-effector tracking costs Cee (Eq. 7.2), but only penalising the x,y and

yaw elements of the robot-base state error:

Cb(t,x, x̂) = [exy,eyaw]
ᵀQb[exy,eyaw] (7.3)

The shortcoming of this approach is that Cb directly competes with Cee. If the

weights Qb are of comparable size to the Cee weights Qee, the optimisation will
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be overly constrained, and the SLQ-MPC will effectively only solve the inverse

kinematics problem as mentioned previously. To avoid this, Qb can be set to be

several orders of magnitude lower than Qee. While this could allow the controller to

leverage robot-base for increased agility it has undesirable consequences.The base

costs Cb will still be competing against Cee, which could lead to compromising the

end-effector error over robot-base path error when print path involves small end-

effector motions. Additionally, if Qb is small the robot-base trajectory would be

followed with a large steady-state error or lag. As collision with the print task is

taken into account only by the TCPP-derived base path, this would lead to losing

collision-free base-path assurances and the robot driving over the structure.

Time-varying soft constraints The base reference trajectory can also be modelled

as a soft constraint. The TCPP framework allows to validate the base path poses

bi = (xb,i,si) via the IRM. Therefore, for each bi in the base-path, the base poses

in a surrounding region could be checked for validity. The robot-base can then be

constrained to these regions using the RBF functions described previously.

To derive the feasible regions around each bi the following procedure is per-

formed. For each bi, the base pose xb,i = (xi,yi,θi) is perturbed incrementally along

the positive and negative SE(2) axes. E.g. xb,i perturbed along the x-axis for some

n is xb,i = (x±nε,y,θ ,si). At each increment, the perturbed xb,i is validated using

the TCPP isValid routine and the largest total increment ri = n · ε along each axis

is stored. That is, if the robot-base is not in collision and the print path at si is

reachable. For example:

rx,i = max
N

(N) · ε, such that,

isValid((x±nε,y,θ ,si))∀n≤ N
(7.4)

where the increments ε = 0.03 are determined based on computational load. This

procedure is repeated for all SE(2) axes and the maximum deviations rxyθ ,i =

(rx,i,ry,i,rθ ,i) effectively define an ellipsoid around bi in SE(2) of feasible robot

poses. rxyθ is interpolated and time-stamped along with bi and added to the refer-

ence trajectory x̂ = (p̂, x̂b,rxyθ ). In turn, the penetration value of leaving this region
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z is then:

z = σ cdot(rxyθ (t)−|xb(t)− x̂b(t)|) (7.5)

Leaving this region is penalised using a RBF function Bb(z) alongside other

constraints as in Eq. 3.4. In this way, a robot-base reference pose is provided as

a moving region, which still carries assurances from TCPP, but does not force the

controller to compromise between competing tracking costs. The tuning parame-

ter σ is used for scaling the total cost of penetration. Here, σ = 25 is used which

was determined experimentally during initial runs of experiments described in the

upcoming Section 7.2. The shortcoming of this approach is that costs Bb are zero

within the bounding region. Thus, the robot-base would have to be penetrating the

control barrier for non-zero Bb values to appear in the optimisation value function.

This, in turn, leads to difficulty tuning as well as the potential for numerical insta-

bility as the robot-would would commonly lie at the steep section of Bb.

Hybrid constraint Quadratic cost draws the robot-base to a nominal pose, whereas

soft constraints allow unrestricted movement within a feasible region. These are

complementary behaviours. Therefore, a hybrid method which sets the base track-

ing cost to be the sum of the quadratic and soft constraint terms could be synergetic.

As seen in Fig. 7.2, combining both quadratic costs Cb as well as soft constraint

Bb creates a region with small attraction towards nominal value but steep penalty

for breaching a constraint. Here, to allow comparison, the appropriate weights

were set to the same value diag(Qb) = σ = 25. However, both diag(Qb) and σ

can be tuned independently, allowing more detailed behaviour design. The over-

all robot behaviour then benefits from bounded flexibility as the robot-base is only

gently drawn towards the TCPP-derived path, but leaving the feasible region where

collision-free motion is guaranteed is penalised heavily.
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Figure 7.2: Comparison of RBF, quadratic and hybrid cost function profiles. Boundary, seen in red,
set at ±0.5.

7.2 Evaluation

To evaluate the effectiveness of the TCPP-informed SLQ-MPC control approach,

as well as the combined contributions developed throughout this thesis, four sets

of printing experiments were carried out. Firstly, the three different ways that the

robot-base trajectory can be integrated into SLQ-MPC are evaluated via a long-

trajectory printing experiment. Secondly, the control approach is additionally com-

pared to the Youwasp system via a large-area spanning virtual printing experiment.

Here, virtual printing refers to a robot operating mode when the extrusion system is

disabled. Thirdly, as both TCPP algorithm for finding the robot-base path as well

as the SLQ-MPC controller allow for print path specification in SE(3), a small non-

planar printing experiment is performed to validate these features. Lastly, a printing

experiment is performed using robot-base pose estimates derived from an onboard

localisation system as well as robot odometry. While robot localisation is out of

scope for this thesis, this experiment helps quantify the limitations of this evalu-

ation imposed by the consistent use of an external tracking system for robot state

estimation.
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7.2.1 Experimental Setup

All experiments were performed using the same experimental setup. The Armstone

robot carried out this print in a large level floor arena. The robot-base as well

as the end-effector were independently tracked via an Optitrack external motion

tracking system. The Optitrack system consisted of 18 Prime22 cameras which

tracked retro-reflective markers attached to both the robot-base and the end-effector.

The Optitrack system was calibrated to ≈ 0.2mm marker tracking accuracy. A

desktop computer was used to receive pose estimates of the tracked objects and

pass them along to a Robot Operating System (ROS) [146] network environment.

The ROS network was shared between the desktop computer and the two Intel Nuc

Computers on the robot. Communication between the devices took place over a

wireless network hosted by a router on the robot. An overview of the setup and

main software components is presented in Fig. 7.3.

Figure 7.3: Experimental setup diagram showing the main software elements and information flow.

The internal clocks of all machines on the network were synchronised against

the desktop computer using chrony [147] software to roughly 10−4s accuracy. The

Optitrack calibration matching reflective marker distribution to a rigid body frame

was performed within the Optitrack software by manually moving the robot-base

and arm independently. In the case of the end-effector, this was done by minimising

the tracking error against the encoder-measured forward kinematics. To reduce
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latency, data recording was carried on one of the onboard computers which also ran

the Simultaneous Localisation And Mapping (SLAM) software when carrying out

experiments in Sec. 7.2.5.

The SLQ-MPC controller software also hosted a ROS action server that pub-

lished status messages at 5 Hz reporting the percentage of task completion as well

as controlling whether or not the extruder is turned on. The pose tracking data gath-

ered via the Optitrack was then synchronised against this stream of status messages.

However, as the status messages were published at a relatively slow rate, this caused

a time delay when attempting to compare the recorded data against the desired print

path trajectory. For this reason, in this Section, when subtracting the measured end-

effector trajectory from the desired print path, the measured data is shifted in time

such that the shift minimises the overall summed L2 error. An investigation of this

synchronisation is presented in the Appendix 9.1.
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7.2.2 Long-Trajectory Printing

In Sec. 7.1.2 three ways to integrate the robot-base trajectory into SLQ-MPC were

introduced: the quadratic cost Cb, the time-varying constraint Bb, and a hybrid ap-

proach which summed both together. Here, these three approaches are compared

in a long-trajectory printing experiment where the robot is tasked to print a large

bowtie-shaped geometry. The task trajectory is presented in Fig. 7.4. It is formed

of 5 layers of 6cm wide cross-hatching in-fill patterns following a 2m×1m bowtie

shape. The shape was chosen as it has inside and outside corners as well as straight

segments. Each layer is 51.93m long and is sampled at 2.5mm intervals along the

path integral. Therefore, the total path is approximately 260 m.

(a) First layer of the bowtie print task. (b) Zoomed in view of layers one (top) and
two(bottom).

Figure 7.4: The Bowtie print task used for long-trajectory printing experiment. The cross-hatching
pattern is seen alternating between even and off layers.

The printing speed was set to 3cms−1 experimentally by balancing the capa-

bilities of the StoneFlower3D extruder and material viscosity. At this rate, each

layer took 28 min to print and the reference trajectory x̂ was sent to the controller

one layer at a time to allow the material cylinder to be refilled after each layer.

When Cb was used alone, the weights Qb were set to 20 in order to assure close

following of the base-path reference. When Cb was used together with Bb, values

of Qb were reduced to 2. The tuning parameters µ,σ ,δ of Bb were kept constant as

in Sec. 7.1.1, specifically the scallig factor was σ = 25. The end-effector tracking

costs Cee were active at all times and were weighted as in Sec. 7.1.1.
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The single Cb and Bb cost formulations lead to several occurrences of controller

instability or occasional collision with the printed material. One implication of this,

is that the data gathered when Cb and Bb were active individually comes from a

mix of physical and virtual printing, while all the data for hybrid-cost formulation

comes from physical printing. Fig. 7.5, shows the robot performing printing of the

first three layers of the bowtie task.

Figure 7.5: Armstone robot printing the first 3 layers of the bowtie task. Full video of experiments,
which is associated with publication [124], is available at https://youtu.be/6H_myB6mVt0

https://youtu.be/6H_myB6mVt0
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7.2.2.1 Base Reference Tracking

The different robot behaviour prescribed via the robot-base reference trajectory

tracking cost formulations are most pronounced when comparing actual robot-base

motion against the planned base path x̂b. Fig. 7.5 shows the first three layers of the

task solved by the TCPP algorithm. The figure also shows the planar components

of the bounding ellipsoids rxyθ ,i (light green) that are captured by the soft constraint

Bb. The regions are more generous during the first layer as the robot prints behind

itself and has more obstacle-free space to move. This is reflected in the robot-base

path as well. Subsequently, the space gradually becomes obstructed as the material

is being deposited. When printing subsequent layers, the print geometry is effec-

tively a static obstacle. In turn, the robot-base path can be seen travelling outside

(a) Layer 1

(b) Layer 2
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(c) Layer 3. Highlighted region is the source of Fig. 7.6

Figure 7.5: Armstone-base motion when printing the bowtie task. Base path reference x̂b and base
paths as followed by the controller. Light green region illustrates the barrier function tolerance
region rxyθ

the geometry. When printing the first layer, the Bb-only cost formulation exploits

larger rxyθ ,i by allowing the robot-base to deviate further from the reference trajec-

tory. However, as the reference trajectory makes a turn and rxyθ follows, Bb-only

paths make a sharp adjustment. This is seen in the upper left region in Fig. 7.6a.

The combined Bb and Cb paths deviate further from the reference trajectory than a

Cb-only, but rarely come close to Bb constraint boundary. This indicates that Qb

could be reduced further.

Fig. 7.6 shows a closeup segment of layer 3 and illustrates the behaviour of the

different cost function formulations. In Fig. 7.6a the robot-base pose falls behind the

(a) Robot-base position (b) Robot-base orientation

Figure 7.6: A segment of robot-base paths when printing layer 3 of the bowtie task.
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reference trajectory when only Bb is used. The purple line outside the dashed green

boundary,seen in Fig. 7.6b, is a small constraint violation that is pushing the robot-

base as the boundary rxyθ ,i moves. The robot travels around the print geometry

results in a small persistent orientation constraint violation. Using Cb costs alone

forces the robot-base to follow x̂b more strictly. The small oscillations seen in all

three cases illustrate how combined base-arm motion is used to perform the task.

These oscillations also appear least present in the Cb-only formulation. The hybrid

formulation leads to the base path following the reference trajectory closely, while

still allowing deviations within the moving rxyθ region.

The observation of persistent constraint violation along the rθ boundary is also

strongly illustrated in Fig. 7.7. The rotational rotation tracking error under Bb-only

can be seen to be spread out along the far right side of the histogram. In both trans-

lational and rotational plots, the effects of cost formulations manifest as Cb, Bb and

hybrid cost histograms cover area in the same sequence. The Cb-only formulation

leads to very close following of the base-reference and the errors are highly concen-

trated on the far left-hand side of the plot. As hypothesised, the hybrid-costs appear

to provide bounded relaxation of base-reference tracking compared to Cb-only ap-

proach. This results in an increased variance of base-reference tracking errors and

a mild shift towards a higher error mean. Finally, the Bb-only formulation leads to

a more spread out distribution of errors up until the maximum saturations of rxyθ .

7.2.2.2 End-Effector Trajectory Tracking

The end-effector error was computed using the pose ground-truth measurements p̃

obtained via the OptiTrack motion tracking system. The Optitrack system was mea-

suring end-effector pose at at 100 Hz internally while samples of p̃ were recorded at

50 Hz by one of the robot onboard computers. Assuring the same sampling density

along the time dimension, the pose measurements p̃ were then time-aligned with the

prescribed print path trajectory p̂. This way, an L2 norm of their difference results

in the end-effector tracking error. However, as described previously in Sec. 7.2.1,

there were difficulties synchronising the two arrays of poses. Therefore, a time-shift

sweep was performed to find a time offset δ t such that the error computed against
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(a) Translational robot-base tracking error.

(b) Rotational robot-base tracking error.

Figure 7.7: Histograms of translational and rotational robot-base tracking error under different cost
functions. Note, the plots use different histogram bin sizes for clarity of presentation. The y-axes
are normalised to correspond to bin probability density.

p̃(t−δ t) is minimised. This is shown in Eq. 7.6.

δ t = 0.02 · argmin
δ i=0,1..20

∑
i
‖p̂(i)xyz− p̃(i−δ i)xyz‖2 (7.6)

Note, that Eq. 7.6 explicitly uses the array indices i as the data is in discretised

via sampling at 0.02 s intervals. Furthermore, performing such time alignment via

minimisation would inevitably eliminate any steady-state errors present in the data.

Therefore, an additional Iterative Closest Point (ICP) based end-effector tracking

error estimation is used. ICP is a common method of finding an SE(2) or SE(3)

transform that aligns two sets of 2D or 3D points by minimising the root-mean-

square error between subsets of the points considered [148]. As in this context, end-

effector poses are in SE(3), matching their translational components via ICP results

in a transform in SE(3). The rotational component of this transform is ignored and

the norm of the translation that aligns p̃xyz to p̂xyz is considered to be print path

tracking error. Note that using the ICP error does not address the issue of ignored
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steady-state errors in the data. However, considering that the fidelity of the path

traced is more important for 3D printing than the exact trajectory in time, both error

calculations can be considered a reasonable assessment metric.

Fig. 7.8 shows a close-up of the traced print path when both cost terms are ac-

tive. The distance between step-function-like infill lines seen in Fig. 7.8 is 1cm. In

the region shaded in grey, the end-effector is occasionally seen missing the line and

overlapping a previous one. Otherwise, there does not appear to be any systematic

pattern to the way translational error manifests during printing.

Figure 7.8: Close up of end-effector path when Cb and Bb are active

Table 7.1 presents layer-by-layer data for translational end-effector L2 norm

and ICP-derived error over all experiments. The time shift δ t is presented as well

and is seen to be either close to 0 or to 0.2, which is consistent with the suspected

cause of 5 Hz controller status frequency as described in the Appendix. The data

suggests that the overall performance of the print-path tracking was not significantly

affected by the different base-reference cost formulations.

Slightly higher ICP and L2 values are seen when using the Cb-only formula-

tion. This is likely related to the limitations of the way TCPP algorithm derives

the robot-base path. As described in Chapter 4, the isValid function and the under-

lying IRM data structure uses a 30° cone around the desired task pose orientation
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when validating the associated robot-base pose. This could mean that in certain

situations, for example, close to full manipulator extension, the IRM overestimates

the reachability index associated with the base pose. Therefore, Cb-only formula-

tion requiring the robot to strictly adhere to the prescribed base pose could lead to

competition between the end-effector translation, rotation and base-pose tracking

costs.

ICP rmse (mm) δ t mean (std) (mm) median (mm) max (mm)
L1, Cb 2.37 0.2 2.75 (1.24) 2.6 23.11
L2, Cb 2.73 0.22 3.26 (1.4) 3.14 15.83
L3, Cb 2.68 0.2 3.24 (1.47) 3.08 15.5
L1, Bb 2.39 0.22 2.8 (1.38) 2.54 11.66
L2, Bb 2.47 0.22 2.91 (1.43) 2.66 20.14
L3, Bb 2.61 0.02 2.7 (1.25) 2.51 11.04

L1, Cb,Bb 2.09 0.22 2.92 (1.26) 2.75 14.4
L2, Cb,Bb 2.6 0.22 2.98 (1.4) 2.75 25.38
L3, Cb,Bb 2.46 0.02 2.96 (1.31) 2.8 13.22
L4, Cb,Bb 2.47 0.04 2.96 (2.32) 2.77 28.5
L5, Cb,Bb 2.5 0.22 2.89 (2.33) 2.7 13.4

Table 7.1: End-effector translational error. The average roll and pitch error throughout all experi-
ments was about 0.03rad.

A qualitative observation regarding the relative instability of both Cb-only and

Bb-only cost formulations was made when carrying out the printing experiments.

Initial attempts were made to physically print all five layers using all three cost for-

mulations. However, over several days of printing and tuning of the cost function

weights, this goal was not achieved. The SLQ-MPC controller would occasionally

become unstable when using single-term cost formulations during the printing of

the third or fourth layer. Since physical printing is highly time and resource inten-

sive, it was decided to limit the single-term cost experiments to three layers. With

one exception, such instability did not occur when using hybrid costs. When print-

ing layer 4 using hybrid costs, the end-effector made a small aggressive motion

penetrating the print. This is seen in the 28.5mm maximum error. In spite of this,

printing was able to continue. The hypothesis that hybrid-costs leads to fewer occur-

rences of instability could also be arguably supported by the consistency of Cb+Bb

mean error compared to single-term costs. However, a much more thorough inves-
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tigation is ought to be carried out in order to support any strong conclusions.

The final result of physically printing the bowtie task is presented in Fig. 7.9.

Total volume of clay used was about 10L. As fine tuning material viscosity, ex-

trusion rate and layer height is out of scope for this work, these parameters were

adjusted experimentally. The layer height was set to 6mm and the print path was

elevated by 1cm above the layer to allow for inaccuracies in nozzle motion.

7.2.3 Large Area Trajectory Tracking

The Youwasp system discussed in Section 3.2 exhibited an end-effector positioning

error of up to 5 cm. These positioning errors were most pronounced at the begin-

ning of the printed trajectories or at the corners of the geometry. In the beginning

of this Chapter, this error pattern was connected to the lack of closed-loop control

with respect to the end-effector in the Youwasp system. As the SLQ-MPC control

approach presented in this Chapter was designed to address this issue, a compara-

ble experiment was designed. The Armstone robot was tasked with virtual (without

extrusion) printing of a large-area floorplan-type geometry. As the Armstone exper-

iments were performed several years after the Youwasp ones, the workspace of the

motion tracking arena has decreased. Therefore, the floorplan geometry scale was

reduced from 5m× 5m (Youwasp) to 3.5m× 3.5m (Armstone). Using a printing

speed of 5 cms−1, the Armstone experiment was carried out three times, and the

data gathered was presented in a format comparable to that of the Youwasp exper-

iments. Fig. 7.10 shows a spatial distribution of end-effector translational tracking

errors for both Armstone and Youwasp robots. In both cases, the end-effector po-

sition tracking data of all trials is superimposed and the data points are coloured

according to the translational error against the desired print path.

The spatial error distribution present in the Youwasp system is shown in

Fig. 7.10b. Such a pattern is no longer exhibited by the Armstone system in

Fig. 7.10a. The improvement in Armstone performance against Youwasp is also

highlighted by the colour scale difference between the plots. Furthermore, other

than a slight increase in error along the left-hand side of the Fig. 7.10a, there does

not appear to be a strong spatial correlation to the end-effector positioning error. The
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(a) Top view

(b) Close up side view

(c) Angled view

Figure 7.9: Final result of printing the 5 layer, 2m×1m spanning bowtie geometry.

increase in error along the left wall of the floorplan geometry in case of Armstone

is likely caused by measurement noise. Due to limitations of the motion tracking

arena, the left wall of the 3.5m× 3.5m scale floorplan task was at the edge of the

trackable area, such that the end-effector was in view of only several cameras. Ad-

ditionally, the robot printing pose led to the robot body obstructing the end-effector.
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(a) Armstone system printing large area floorplan geometry

(b) Youwasp system printing large area floorplan geometry

Figure 7.10: Comparison of Youwasp and Armstone performance when tracing large area spanning
trajectories. The colour scale of the plots indicate absolute translational error.

Additionally, the floorplan geometry was also used to assess the Cartesian ve-

locity of the Armstone end-effector. The same experiment was repeated using print-

ing speeds up to 15cms−1. Fig. 7.11 shows a histogram of measured end-effector

velocities at different printing speeds. The measured velocities were obtained via

numerical differentiation of position tracking data. The weights of all tuning param-

eters were kept the same as in Sec 7.2.2. The figure reveals a substantial increase

in velocity error as printing speed increases. Even at 5cms−1 printing speed, the

standard deviation in velocity was 8.8 mm. This is significant as Additive Manufac-
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turing applications require precise velocity control and coordination between end-

effector velocity and material extrusion rate. However, the SLQ-MPC controller did

not explicitly control the end-effector Cartesian velocity. This was done implicitly

by using a timestamped pose trajectory to prescribe the print path. An explicit cost

penalty for maintaining constant Cartesian velocity could be implemented.

Figure 7.11: Histogram of measured Cartesian end-effector velocities at different printing speeds.

The positioning error data when printing at different speeds is also presented in

Table 7.2. A similar increase in error at higher printing speeds is seen. However, the

error only grows beyond the nominal 2mm−3mm values presented in Sec. 7.2.2.2

as the printing speed is increased above the speed used for tuning the end-effector

tracking costs in Sec. 7.1.1.

ICP rmse (mm) δ t mean(std) (mm) median max
5cms−1 2.23 0.22 2.6 (1.27) 2.45 10.85

7.5cms−1 2.56 0.22 3.19 (1.65) 2.92 15.23
10cms−1 2.83 0.22 3.84 (2.08) 3.46 19.31

12.5cms−1 3.26 0.2 4.81 (2.25) 4.53 17.66
15cms−1 4.12 0.2 6.38 (3.19) 5.8 24.61

Table 7.2: End-effector translational error when printing at different speeds.

7.2.4 Non-Planar Trajectory Printing

The physical material deposition fidelity achieved in this work and presented in

Sec. 7.2.2.2 is relatively low when compared to static Additive Manufacturing sys-

tems. Specifically, the physical printing experiments involved raising the print paths

slightly above the previously deposited material in order to account for oscillations
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of the extruder nozzle. In addition to this, the lack of extrusion rate and end-effector

velocity control means that depositing material with pressure against previously de-

posited layers is not yet achievable. Unfortunately, printing complex 5 DoF trajec-

tories rely on such capability in order to create cohesion. Despite this, a simpler

4 DoF non-planar printing experiment was designed to assess the combined TCPP

and SLQ-MPC capacity for tracing print paths with varying desired end-effector

orientation.

Fig. 7.12 shows the x-z plane of the printing task. It is composed of three sepa-

rate segments, each coloured blue (start) to green (end) to illustrate the process. The

first two segments are printed in a planar fashion with the extruder z-axis pointing

down. These segments build a convex sinusoidal surface for printing the third non-

planar segment. The sinusoidal shape was picked as it provides both convex and

concave curvatures along its surface. The third segment follows the surface while

aligning the extruder z-axis to the surface normal. The cost weights for this experi-

ment were kept the same as in Sec. 7.2.2.2 and the tracking data is synchronised via

the use of δ t as well.

Figure 7.12: The Non-Planar printing task is composed of two planar convex volume-building
segments and third non-planar segment following the surface. Segments are colored blue (start) to
green (end). Small arrows indicate the desired end-effector z-axis following the surface normal of
the third segment.

The Armstone robot can be seen printing the non-planar task segment in

Fig. 7.13. As multiple layers of clay are deposited on top of each other, the lower

layers begin to compress. Also, the cross-hatching pattern used can lead to sub-

sequent clay deposition falling in-between previously deposited paths. Therefore,

after the two convex shapes were printed, the height of the final sinusoidal non-
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Figure 7.13: The Armstone robot printing a non-planar layer following the surface normal of the
previously deposited material. Video of the experiment is available at https://youtu.be/
o1VoPU7y2v4

planar layer was adjusted manually to fit the surface of the printed structure.

The end-effector tracking data is presented in Table 7.3. The translational er-

rors are presented in mm while the angular error is shown in degrees. The angular

error was computed as the angle between the desired and measured end-effector z-

https://youtu.be/o1VoPU7y2v4
https://youtu.be/o1VoPU7y2v4
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mean(std) median max
Segment 1(mm) 2.04 (1.0) 1.88 11.1
Segment 2(mm) 2.07 (1.0) 2.00 7.8
Segment 3(mm) 2.80 (1.2) 2.70 9.68

Segment 3(°) 0.52 (0.52) 0.39 2.70

Table 7.3: End-effector tracking data for non-planar printing experiment.

axis. Comparing the translational error between the first two segments and the third,

a small increase in error can be seen. The angular error appears to be comparable

to the translational one in terms of magnitude. For further evaluation, the resulting

print was scanned using the Creaform HandySCAN 3D scanner. Fig. 7.14 shows the

3D mesh of the scan as well as the printing path taken by the extruder. The mesh

Figure 7.14: Scanned non-planar printing results
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vertices are colourised using the distance to the closest point along the end-effector

trajectory. While this cannot capture the overall volumetric error of the printed ge-

ometry, it helps visualise several regions of planar expansion. Such expansion is

likely caused by unsteady material flow, as well as vertical material compression.

The figure also shows measured end-effector paths in red. The continuous curved

print path is seen to be lower than the planar path used to build up convex volume.

This is due to the aforementioned third-segment height adjustment. Furthermore,

the printed structure was left to dry in room-temperature for a week and the scan

helped to visualise the contraction that the material underwent.

7.2.5 Printing with On-Board Localisation

High accuracy nozzle localisation is crucial for 3D printing. While SLAM is not

the focus of this work, the system developed provides an opportunity to highlight

the importance of end-effector localisation for future research. To examine how

printing fidelity is affected when using on-board localisation or wheel odometry, a

fourth set of physical printing experiments were carried out. The task used was a

36.8 m long, 2.5m× 0.3m scale, two-layer sine wave composed of the same infill

pattern as the bowtie task. Printing was carried out using the hybrid cost formulation

and associated tuning weights.

The task was printed once for each localisation method used. These are on-

board localisation, wheel odometry and Optitrack motion tracking system. All

methods provided the robot-base pose estimate only. The on-board localisation was

carried out using two on-board LiDAR sensors and the slam-toolbox [143] software

package. For more details, see Chapter 6. Fig. 7.15 shows the end-effector error

remains bounded to about 0.1m when printing using onboard localisation. This is

appropriate given the map resolution and Armstone’s LiDAR error are 3cm. The

physical printing shown in Fig. 7.16 mirrors this. When printing with SLAM, lay-

ers remain barely overlapping; however, the infill pattern has little integrity. As the

localisation estimate is updated, the pattern stretches and shifts. In contrast, the

odometry print drifts gradually, maintaining the print pattern, but fails to overlap

entirely as the print loops back.
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Figure 7.15: End-effector error when printing using different localisation sources.

(a) Localisation using external tracking

(b) Localisation using wheel odometry

(c) Localisation using LiDAR

Figure 7.16: Comparison of printing performance using different localisation sources. Printed task
is 2.5m×0.3m scale. Task starts on the left, proceeds right and comes back.
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7.3 Discussion and Summary
This Chapter presented a whole-body motion controller formulation that utilises

the output of the TCPP planner presented in Chapter 4. Section 7.2.2.1 described

how robot-base reference trajectories could be embedded in the motion controller

cost function as time-varying soft constraints, quadratic cost terms or a mixture of

both. A series of in-hardware printing experiments were performed in Section 7.2,

validating the motion control approach adopted.

Large-Scale Printing: The experiments covered printing of long trajectories of

larger-than-robot scale. The translational TCP error achieved throughout these ex-

periments was around 2mm–3mm. As the nozzle diameter of the extruder used was

6mm, this was sufficient for consecutive print layers to overlap and multi-layered

printing to be demonstrated. Qualitatively, the robot exhibited smooth combined

robot base and arm motion throughout printing. There was no obvious propaga-

tion of disturbances from robot-base motion to the end-effector, although a de-

tailed analysis on dominating source of error was not performed. Furthermore, the

short time horizon of the MPC fashion controller did not lead to infeasible states as

the robot successfully navigated long horizon tasks according to the TCPP-derived

base-references provided. Additional experiments also highlighted how the effects

of localisation error characteristics, such as drift and upper bound, are mirrored by

the resulting TCP translational error.

Varying End-effector Orientation: The print geometries featured both constant

and varying end-effector orientation throughout the print trajectory. This demon-

strated the desired capability to handle 5 DoF print trajectory inputs. However, ma-

terial deformation and fine extrusion rate controls are needed to adequately judge if

the control performance is sufficient for printing complex 5 DoF trajectories.

The experiments carried out in this Chapter have demonstrated the sought-

after printing-in-motion AM modality and, thus, holistically substantiate the path

and motion planning approach presented in this thesis. A further critical discussion

of the entire body of work carried out throughout this thesis is presented in the next

Chapter.



8. Conclusions

This work in applied robotics examines a novel form, or mode, in which robotic

systems can be utilised within construction and manufacturing. The work tackles

Mobile 3D Printing (M3DP), or printing-in-motion, which is a unique capability

of Mobile Manipulator (MM) type robots. The core research goal of this thesis

to tackle Mobile 3D Printing specific Path and Motion Planning Challenges. The

work began by first examining the feasibility of printing-in-motion using traditional

methods. The exploration carried out in Chapter 3 tackled this by building two robot

prototypes and composing together common path and motion planning methodolo-

gies. The insight gained during this exploration was that while M3DP is feasible, it

creates unique challenges in the path and motion planning domain. This gave rise

to subsequent research questions.

• Firstly, given only the printing task and a kinematic model of a MM type

robot, how can the robot-base path be derived such that it adheres to task-

consistency and evolving obstacles created by the first layer of printing.

• Secondly, what control strategy can utilise the mobile robot-base and the agile

manipulator simultaneously to achieve robust end-effector trajectory tracing

for long horizon printing tasks.

The contributions of this thesis thus focussed on addressing these subsequent ques-

tions.

8.1 Summary of Contributions
This thesis has three main contributions which are as follows.

• The proposal and development of a novel Task-Consistent Path Planning

(TCPP) methodology that tackles the M3DP-derived path planning problem.
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The work is carried out in Chapter 4 and involves 1) extensive work on devel-

oping an Inverse Reachability Map (IRM) data structure specifically designed

for 5Degree of Freedom (DoF) printing poses 2) development sampling-

based RRT* planner formulation which utilises the IRM for solving the task-

constrained planning problem. Extensive performance, behaviour and pa-

rameter effect evaluation of this algorithm are carried out in Chapter 5. This

includes exploration of M3DP-specific requirements like print discontinuity

detection or manipulability assurance.

• The development of a low-cost M3DP-capable robot system Armstone, pre-

sented in Chapter 6. While this is not a direct contribution to the knowledge

base, it is useful to the Digital Fabrication and Construction Robotics com-

munities. The costs of Armstone development were around £12,000. Simi-

larly capable robot systems, at the time of writing, cost in excess of £50,000.

Thus, presentation of Armstone lowers the entry barrier and enables further

and wider research in M3DP.

• Proposal and development of the methodology to globally inform a Whole-

Body Control (WBC) approach with robot-base paths, which allows success-

fully performing long-horizon end-effector trajectory tracking tasks. To the

best of the author’s knowledge, while several works examine mixing sam-

pling and optimisation-based motion planning, none use similar varying soft

constraint implementation as was proposed in Chapter 7.

Ultimately, the aggregated contributions of this work, resulted in significant

advantages over existing published systems that demonstrated printing-in-motion in

hardware. In contrast to other works [91, 149], the Armstone robot did not require

human-prescribed robot-base paths and utilised simultaneous whole-body motion to

achieve 2mm−3mm nominal error printing-in-motion. Compared to most similar

work [91], the geometry printed involved a 5 times longer print trajectory and was

larger in scale, utilising the mobility of the robot to a greater extent. Furthermore,

the Armstone robot demonstrated non-planar printing capability, which, to the best

of the author’s knowledge, has not been done previously using a printing-in-motion
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approach. Therefore, the aggregated contributions of this work do indeed meaning-

fully tackle Mobile 3D Printing specific Path and Motion Planning Challenges.

8.2 Limitations and Recommendations
The limitations of this work can be broadly categorised into two categories. Limi-

tations of implementation, where the methodology was chosen or work undertaken,

fail to sufficiently exhaust the problem being studied. And limitations of scope,

where problem formulation or assumptions made likely overlook significant con-

nections between two related problems.

8.2.1 Limitations of Implementation

8.2.1.1 Robot-base Path Planning

The path planning approach presented and evaluated in chapters 4 and 4 has a num-

ber of shortcomings. Perhaps most prominent is the treatment of the process vari-

able s and the distance metrics discussed in Sec. 5.3. The study of parameter effects

and different metrics presented in this Section was functional in aiding the empirical

choice of parameters with respect to computation time. However, more work could

have been done looking at in-depth algorithm performance. For example, studying

the balance of the underlying KD-Tree used for nearest neighbour computations, or

the asymptotic optimality that the RRT* framework is ought to have.

Additionally, the work carried out was not satisfactory in answering in-depth

questions about the relationship between different distance metrics and other as-

pects of algorithm performance, e.g. susceptibility to local minima. Retrospec-

tively, the RRT-based framework chosen for this algorithm might not have been

most suitable. The RRT methods have an inherent directionality as a tree grows

from starting nodes to goal nodes. Planning over a process dimension creates a rela-

tionship between task progress and tree exploration. This is perhaps an unnecessary

complication. More advanced methods such as Fast Marching Trees (FMT) [150]

could be used to pre-explore the configuration space while still allowing a similar

approach of constraint imposition onto the problem.

Furthermore, some recent works in path and motion planning propose low-
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level coupling of optimal control and sampling-based planning methods [151,152].

A hierarchical approach to whole-body motion planning utilises sampling-based

methods for global planning, while locally, the graph edges are solved for using

optimal control methods. Similar ideas of hierarchy are also seen in very long

horizon task planning where key-frames, or system state snapshots, are used to

decompose problems into disjoint subgoals and thus help extend the othwerwise

short time horizon of optimal motion planning [153].

8.2.1.2 Robot Motion Control

The work on WBC methodology, presented in Chapter 7 is limited in two key ways.

Firstly, the hardware experiments only presented real printing of only the combined

hybrid-cost constraint formulation. This was mostly due to issues occurring when

only the quadratic or only the soft constraint formulation was used. However, the

root cause of these instabilities was not examined in depth. Determining the cause

would likely be instrumental in designing a more robust control system or at least

understanding the properties of constraint formulation that lead to fewer computa-

tional issues.

The time-varying soft constraint approach used to globally inform the WBC

controller was demonstrated to be functional. However, the hybrid formulation of

quadratic and control barrier costs is an inelegant one. A further exploration of a

variety of barrier functions used or design of a suitable barrier function that consists

of all the modelled information could have been carried out. It is likely, this would

lead to more intuitive tuning parameters.

8.2.1.3 Hardware Calibration

The presentation of the Armstone robot includes a discussion of several hardware-

related issues or sources of error. These are discussed in Sec. 6.2. Additionally,

Sec. 7.2.1 describing the experimental setup discusses how rigid bodies tracked by

the Optitrack system were manually calibrated to fit the marker location on the real

robot, thus introducing some systematic error. While such sources of error were

stated, minimal effort was made to circumvent them or propose methodologies for

doing so. A hand-eye-like automatic optimisation was ought to be used to cali-
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brate the motion tracking system. Also, mechanical compliance could have been

introduced into the robot model used by the WBC controller. On the other hand,

achieving multi-layer printing in the presence of calibration shortcomings suggests

robustness in the overall path planning and control strategies developed.

Perhaps most significantly, Sec. 6.2 discusses the issue of end-effector vibra-

tion at low joint velocities and high arm extensions. While this is likely caused by

xArm manipulator hardware drivers, it had a significant impact on the experiments

carried out in Chapter 7. When performing printing, the print trajectories were arti-

ficially raised to ensure that such vibrations did not lead to the extruder penetrating

the material being deposited. In turn, the printing relied on overfeeding the extruder

and allowing the clay to drop slightly onto the surface below. It is likely that the

printing quality achieved might have been far higher if this was not the case. Also,

more information could potentially be derived from the deposited material about

the trajectory tracking process.

8.2.2 Limitations of Scope

8.2.2.1 Tool Path Planning

In this work, the printing trajectories were manually created and prescribed for ex-

ecution. An assumption was being made that these trajectories are known, prior to

path planning and that their execution is feasible. This feasibility was assured by

another assumption of only considering wall-like printing geometries, which do not

fill large areas of space and mostly leave the environment around it as navigable.

While this was a necessary assumption to make in order to isolate the path and mo-

tion planning problems of M3DP, upon reflection, this assumption is a very strong

one. It drastically limits the set of possible geometries that the path and motion

planning methodologies presented in this work can tackle.

Larger-than-self printing inherently couples the print path with the robot-base

motion and thus the process of tool-path planning. Tool-path planning is the deriva-

tion of print trajectories from the desired (volumetric) geometry. Therefore, in order

to print general geometries in M3DP fashion, robot navigation and tool-path plan-

ning is ought to be a coupled problem. For example, consider the case of printing a
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2× 2× 0.1× metre solid cuboid. A MM is ought to be able to print it as it would

not breach height constraint, and MM systems have an unlimited planar workspace.

However, suppose the print trajectories are derived via vertical slicing. In that case,

that is each print layer fills in 1 m area on the X-Y plane, this task is infeasible to

achieve if the manipulator reach is < 1m. On the other hand, if the printing trajec-

tories were derived by slicing the geometry at an inclined plane,e.g. 45°, it would

be feasible as the occupancy of the X-Y plane would grow more gradually with

printing.

This illustrates how the definition of the derivation of the print-path itself is an

underexplored degree of freedom in this work. Significantly, this means that using

the methods proposed in this work, the unlimited planar workspace of a MM type

robot can only be achieved for a subset of printable geometries. Further work should

be carried out on how the robot-base navigation problem could be solved in parallel

to the tool-path planning problem. Existing works in literature are beginning to

look at this via brute force search [154] or highly artificial discretisation of the print

geometries [155]. However, none yet look how the full 5DoF printing trajectory

could be automatically designed with a MM robot in mind.

To some extent, the work on detecting necessary printing interruptions in this

thesis begins to explore this problem. It suggests that the TCPP planner could be

used as part of task sequencing. Detected discontinuous print points, can then lead

to an insight into how to segment a long trajectory so that it is printable. Alas, this

was not explored in depth and the computing time of the planner proposed does

not lend itself to efficiently trialling large quantities of print trajectories in order to

inform task-sequencing (slicing) process.

8.2.2.2 Simultaneous Localisation and Additive Manufacturing

The control systems developed throughout this thesis consistently relied on external

motion tracking of the robot-base. This was done to help narrow down the focus of

the thesis. However, in doing so, an opportunity was missed. Uniquely, Additive

Manufacturing (AM) applications involve the creation of the robot’s environment.

This may potentially allow coupling of the printing task description and robot lo-
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calisation problems. There are two ways this could be achieved.

Recall that, as discussed in Sec. 4.1, MM type robots have a two-fold na-

ture. The articulated arm is usually accurately controllable and provides robust

joint state feedback. Meanwhile, the mobile-base may suffer from controllability

issues and uncertainty of their pose estimates provided via some onboard localisa-

tion system (GPS, Visual-Inertial, other forms of Simultaneous Localisation And

Mapping (SLAM)). Utilising the certainty of robot-arm motion, a MM could create

its own landmarks. It could then localise with respect to these landmarks. This

could take the form of simply printing fiducial markers or embedding information

into the print-task itself.

Alternatively, since the exact pose of the robot-base is irrelevant, printing could

be carried out with respect to the surface or previously deposited material. Espe-

cially end-effector mounted sensors, e.g. depth cameras, could be used to impose

local constraints for trajectory tracking, e.g. distance to surface or material adja-

cency. Additionally, a local view of the print pattern deposited could be compared

to the desired geometry and adjustments made to the future desired trajectory to

make corrections in a sliding window fashion. Although, care would need to be

taken to ensure that small local corrections do not create drift along the print task.

There is some recent work [156] that begins to explore such simultaneous lo-

calisation and additive manufacturing ideas. Additionally, global-local planning

and control hierarchy is becoming increasingly prevalent in industry [157]. And the

printing-in-motion modality creates a great platform for such research themes.

8.2.2.3 System-wide Evaluation

Finally, the in-hardware-printing evaluation carried out in Chapter 7, was limited in

scope. Only a few geometries were printed and only in several trials. The reason

for this is, of course, hardware experimentation’s time and resource-costly nature.

However, a much broader study of a range of different geometries being printed

on different surfaces or under different conditions would be invaluable to the Dig-

ital Fabrication and Robotic Manufacturing research communities. As the M3DP

manufacturing mode is a novel one, it is not yet well understood. Creating an ex-
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tensive data set of printable or unprintable geometries and conditions, would aid

further research on this topic as well as help increase the granularity with which the

contributions of this thesis were evaluated.

8.2.3 Future Work

Building upon the printing-in-motion system developed in this work opens up excit-

ing opportunities for future research. One area that warrants further exploration is

the relationship between task generation and robot navigation. Robot navigation is

an online process that emerges in response to environmental uncertainty. Similarly,

print task generation should also be adaptable and responsive. By dynamically re-

planning the print task in response to environmental stimuli, such as the presence

of dynamic obstacles or real-time measurements of printed structure stability, the

capabilities of mobile printing can be further enhanced. This integration of adaptive

task generation and robot navigation would leverage the full potential of the system.

Furthermore, the natural progression to advance this research would involve

scaling up and enhancing technological readiness. Deploying this work on a signif-

icantly larger mobile robot, potentially with tracked capabilities, and enabling 3D

printing in concrete would provide a platform for showcasing large-scale printing.

Such an approach would not only allow for further demonstration of the capabili-

ties of large-scale printing but also facilitate the exploration of new challenges and

opportunities in the field.

8.3 Closing Discussion
Additive Manufacturing carried out via Mobile Manipulator robots has profound

potential. It might help bring the efficiency of traditional AM to new applications,

especially the construction industry, where the scale of structures hindered the de-

ployment of AM. It could help expand the design domain of products and buildings,

e.g. on-site printing of wind-turbine blades or increased complexity of architectural

elements. Most importantly, M3DP and the emerging printing-in-motion modality

might finally bring high levels of automation to the construction industry.

At the start of this thesis, very few mobile manufacturing systems existed and
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almost none had studied printing-in-motion specifically. Throughout the course of

the project, however, this has changed. Works in both the development of this tech-

nology and applications of it have begun to emerge [24, 69, 91, 149, 158, 159, 160].

This trend helps affirm the significance of the potential impact Mobile 3D Printing

might bring to a number of applications. Ultimately, it confirms the relevance of the

contributions of this thesis for a new, thrilling field of research.



9. Appendix

9.1 Optitrack Data Synchronisation

When performing printing experiments described in Chapter 7 a discrepancy was

noticed between qualitative observations and computed end-effector tracking error.

The end-effector error was computed by comparing the Tool Center Point (TCP)

position, as measured by the Optitrack motion tracking system, to the desired print

task trajectory. The error found was about 2cm, which is inconsistent with the high

quality of clay deposition as presented in Fig. 7.9. This prompted an investigation

into the source of this issue, which found that TCP position measurement was not

synchronised well against the desired print task trajectory. This Appendix section

presents this investigation and, in turn, justifies the re-synchronisation of the data

presented in Table 7.1 in Chapter 7.

As described in Section 7.2.1, the robot controller published status messages at

5 Hz, which were used to turn the extruder on or off. The pose tracking data gathered

via the Optitrack was then synchronised against this stream of status messages.

Therefore, it is likely that the source of poor data synchronisation is the 0.2s time

interval where the robot might already be printing but is not registered as such. For

this reason, the data was re-synchronised as follows. First, the measured data was

incrementally shifted in time in small increments of 0.02 s until the L2 norm of

the translational error over the entire trajectory was minimised. The time shift that

resulted from this optimisation was called δ t; please see Eq. 7.6 for details.

To confirm the existence of a synchronisation issue and to justify the time

adjustment made, first consider the expected implications of a timestamp mismatch.
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If there is an untraced 0.2s period of time in the measured TCP position signal, the

discrepancy in error measurement should get worse as end-effector speed increases

as more untraced distance would be covered. Also, suppose there is a fixed time-

mismatch between measured and prescribed TCP position. In that case, the error

should have a spatially oscillating nature when the prescribed task makes repeating

turns, such as the space-filling pattern used throughout most experiments. On the

other hand, if the error is caused by control performance, it should be less systematic

and such patterns should be significantly less prominent. Fig. 9.1 shows a spatial

distribution of print task segments where the TCP error was less than (shown in

blue) or greater than (shown in red) the median of the overall trajectory error. A

clear and significant spatial pattern is seen when no timestamp adjustment is made,

suggesting that data points are being compared against the wrong references. A

more sporadic and irregular distribution is seen when the data is time-shifted by δ t.

(a) Unadjusted TCP translational error (b) Time-shifted TCP translational error

Figure 9.1: Spatial plot of TCP translational error being under and over the median. Data presented
is when end-effector velocity is set to 15 cms−1

Furthermore, when investigating the histograms of the TCP error at different

end-effector velocities. A pattern can be observed where the unadjusted error de-

velops a dual-modality as the end-effector velocity increases. This further suggests

that the print trajectory curvature creates error oscillation as one signal leads the

other. When a time shift is introduced, the histograms shift left and do not exhibit

dual-modality, suggesting a less systematic source of error.
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(a) Unadjusted TCP translational error (b) Time-shifted TCP translational error.

Figure 9.2: Histograms of TCP translational error with and without re-synchronisation. As in the
legend’s greyed entries, two histograms are hidden in the right plot for presentation clarity.

Table 7.2 in Chapter 7 shows TCP translational errors at different end-effector

velocities. Table 9.1 is the extended version that includes not time-shifted data. It

Time-shifted error Unadjusted error
ICP δ t mean(std) median max mean(std) median max

(mm) (s) (mm) (mm) (mm) (mm) (mm) (mm)
5cms−1 2.23 0.22 2.6 (1.2) 2.45 10.85 11.18 (1.6) 11.3 16.86

7.5cms−1 2.56 0.22 3.19 (1.6) 2.92 15.23 16.25 (2.2) 16.62 31.69
10cms−1 2.83 0.22 3.84 (2.0) 3.46 19.31 21.22 (2.9) 21.73 36.13

12.5cms−1 3.26 0.2 4.81 (2.2) 4.53 17.66 25.19 (3.9) 25.59 40.8
15cms−1 4.12 0.2 6.38 (3.1) 5.8 24.61 29.18 (5.2) 29.46 54.09

Table 9.1: End-effector translational error at different end-effector velocities with and without
adjustment.

can be noticed that δ t found for all trajectories were either close to zero (seen in

Table 7.1) or close to 0.2. This observation is consistent with the hypothesis and

controller implementation details. The two concurrent processes involved in print-

ing were the controller (100 Hz) and the status messages (5 Hz). Say the controller

receives a trajectory to be printed at time t0. The controller prepends the print tra-

jectory with an intermediate pose so that the robot has enough time to position itself

at the beginning of the print task. In a separate, parallel thread, it then starts sending

status messages at (5 Hz). The controller begins printing at time t0 +k, where k is a

whole number of seconds. Therefore, the status messages would indicate that print-
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ing has started immediately after k seconds have passed or after k+ 0.2 seconds,

depending on how the operating system scheduler prioritises the threads.

The adjusted time-shifted TCP error is in order of few millimetres, which is

consistent with the qualitative observations of the deposited material. It is also

consistent with the ICP error (see Sec. 7.2.2.2). Therefore in this work, the adjusted

error is considered the more accurate and representative measure.

9.2 MAP and Youwasp Robot Prototypes

Two experimental robot platforms, the Mobile Agile Printer (MAP) and the

YouWasp, were developed at the very early stages of this project. These robots,

shown in Fig. 9.3, included hardware and software prototyping that facilitated an

initial exploration of M3DP. This early and exploratory work took place as part

of the narrowing down of the scope of this thesis as discussed in Sec. 2.4. It thus

covered several aspects of M3DP, which are selectively presented in this thesis.

Fig. 9.3c summarises the inquiries carried out via the two robots and how these

topics are presented in this work. Firstly, both robots involved a prototypical devel-

opment of Planning and Control (1) approaches for the printing-in-motion modal-

ity. This inquiry, summarised in Chapter 3 allowed highlighting how traditional

methodologies fall short when tackling the M3DP problem and thus gave rise to

subsequent research questions tackled by the contributions of this thesis. In this sec-

tion, the planning and control prototyping for MAP and Youwasp robots are covered

in detail. Secondly, both MAP and Youwasp robots included the development of an

Onboard Material Deposition System (2). Since acquiring an off-the-shelf printing-

capable mobile manipulator was not feasible at the time of writing, this was a crucial

hardware development step necessary to facilitate and validate the work presented

in this thesis. Chapter 6, presents the development of such a deposition system, as

well as how the MAP and Youwasp prototypes informed the final MM robot used

for hardware validation in this thesis. Next, an inquiry into Multi-Robot printing

and Task Processing (3) is noted here only for context. It was presented in a publi-

cation [87], but is excluded from this thesis. And lastly, this work does not present
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(a) Mobile Agile Printer(MAP) robot (b) Youwasp robot

(c) Venn diagram of inquiries carried out via the two prototype robots built

Figure 9.3: MAP and Youwasp robots were used to explore several aspects of M3DP

the omnidirectional robot-base development of the MAP robot.

MAP and Youwasp took slightly different path planning and control ap-

proaches. MAP aimed to validate that printing-in-motion is feasible and that the

path traced by the end-effector can be expected to have a comparable error to when

the robot is stationary. Youwasp, on the other hand, attempted to explore some of

the planning and interaction with the environment challenges as well as multi-robot

system deployment. However, the robots shared a similar experimental setup as fol-

lows. OptiTrack [161] motion capture system (calibrated to 0.3mm error) was used

to provide both mobile robots with their base pose estimation and in turn fed into the

base controllers. This served as a placeholder localisation system and helped nar-

row down the scope to planning and control. OptiTrack was also used for ground

truth end-effector position tracking during system validation experiments. Also, the

evaluation of the printing pipeline algorithms was limited to the execution of a sin-
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gle layer of trajectories. MAP and YouWasps being ground robots, a single layer

was deemed sufficient to evaluate the trajectory fidelity and robot interaction with

deposited material. The work carried out with these robots is presented in turn,

starting with MAP.

9.2.1 MAP Control Architecture

The MAP robot consists of a custom-built Omni-directional platform and a mounted

7-Degree-of-Freedom (DoF) Kuka Iiwa7 R800 articulated arm. It is a tethered sys-

tem as power, and Iiwa control signal comes from an off-board source. The phys-

ical design parameters of MAP were influenced by desirable characteristics of an

on-site construction system laid out by the aforementioned in-situ fabricator [70].

This included capacity for high payloads and traversal of rough terrain. Since the

authors of the in-situ fabricator have also identified the non-holonomic constraints

of the tracked vehicle to be a limitation when positioning the robot on-site. There-

fore, MAP explored the feasibility of omnidirectional motion over rough terrain

and its usefulness when tracking larger-than-self trajectories. This was done by de-

signing and developing the custom mobile base based on the Active Split Offset

Caster (ASOC) design [89]. It consisted of four legs, each with two individually

actuated wheels. This allowed independent control of each leg’s orientation and

consequently enabled omnidirectionally. As a result, MAP was shown to be kine-

matically isotropic (although not holonomic), meaning velocity control response is

constant in every direction. However, the MAP robot was an inconvenient research

platform due to the compliant nature of the wheeled-legged robot-base mechanics

and cumbersome Kuka Iiwa control interface.

The MAP robot treated the printing task as a queue of points and used a decou-

pled approach where the base and the arm were controlled independently. The Kuka

Iiwa arm was controlled using Kuka Sunrise joint position controller at 500 Hz via

the KUKA FRI Interface. The controller was hosted on the KUKA control box,

which was too large to mobilise and thus was not mounted onboard the robot, mak-

ing MAP tethered. In contrast, the base controller was custom written and ran

onboard. Each leg had a Single Board Computer (SBC) capable of controlling the
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motors to orientate the legs and control robot-base velocities.

The base controller was based on PID control and would take a setpoint b̂ =

(x,y,θ) ∈ SE(2) of the desired base pose. The feedback loop was closed using the

base pose estimates measured via OptiTrack. Similarly, the arm planner would take

p̂ = (x,y,z) ∈ R3 (single point or a list of waypoints) as input and would generate a

7-DoF joint-space trajectory φ(t) for the arm. The planner was constrained to keep

the end-effector orientated towards the ground to simulate printing, hence p̂ ∈ R3.

Planning was carried out using the Moveit Motion Planning Framework [127] and

RRTConnect [90] path planner. A custom-written plugin allowed MoveIt to use

Kuka inverse kinematics solvers. The arm planner was run at 50 Hz and would

replan, considering the latest robot-base pose estimate. This frequency was possible

as the motions planned for were very small. The custom plugin allowed the current

joint-space trajectory that the arm is executing to be smoothly overwritten. Thus the

printing robot arm can change course at a rate of up to 50 Hz to account for outside

disturbances or mobile base oscillations. An overview is shown in Fig.9.4.

Figure 9.4: MAP control architecture

The print path was modelled as a queue of setpoints. Firstly, the arm would

attempt to reach the first point on the queue if it is feasible, that is if inverse kine-

matics solutions exist given the current robot-base pose estimate. Once it did, the

planner would create a sliding window of the next ten queue points. This subpath

would then be planned for and executed. During execution, when the first point in

the queue is reached, it is removed from the queue, and the sliding window is shifted

further along. A point would be removed when the end-effector position estimate

p (internally computed via base pose estimate and forward kinematics) would be

within distance d = 2.5mm from that point. The motion plan is continually updated
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with the latest position of the mobile platform so that the arm can account for any

disturbances.

During system development, the question of robot-base path arose. It was not

immediately obvious how the robot-base path could be computationally derived

from the print task. To circumvent this issue and help to keep the print path in

reach of the arm, the mobile base had a separate human-prescribed path to follow.

The base path had a corresponding pose for each of the points in the print path.

Whenever the first print queue point is updated, the setpoint of the base controller

is changed to the corresponding pose from the base path.

To test this control architecture, an experiment was carried out where the arm

traced a spiral-like trajectory whilst the base was stationary. The ground truth tra-

jectory of the end-effector was tracked externally, and the maximum absolute error

throughout the trajectory was 0.012 m. This sets an expected order of magnitude for

when the base is stationary. A four-phase experiment was set up to test a print path

requiring simultaneous base and arm motion. MAP robot was sent a piecewise con-

tinuous print geometry spanning a large area. The robot carrying out the experiment

can be seen in Fig. 9.5. The shape of this print trajectory, as well as the experiment’s

data, is shown in Fig. 9.6, where the quarters of the four quarters making up the tra-

jectory are labelled Q1, Q2, Q3, Q4. The first two quarters (Q1, Q2) traced a 0.05m

Figure 9.5: MAP carrying out the Multi-phase experiment. The trail is highlighted by tracing the
end-effector in video. It is an inaccurate visual indicator of the path taken for illustration purposes.
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amplitude wave on a 3m radius circular arc. The prescribed robot-base path during

Q1 employed the omnidirectionally of the platform by maintaining a π

4 heading.

During Q2, the mobile platform was maintained outwards facing heading, normal

to the print arc. The last two quarters printed straight-line segments, but the mobile

base was tasked to turn in place at the beginning and end of the segments as the

arm joined the neighbouring quarters. In the fourth quarter (Q4), a 0.05m wave was

introduced into the mobile platform’s path.

Throughout the experiment and especially in Q1, the extruder error was within

0.015 m. The TCP position error was seen to increase in Q2 and around the tran-

sition between Q3 and Q4. These segments of the print task exclusively involved

robot-base rotations. The MAP robot-base was not holonomic, thus rotation in-

volved first reconfiguring its leg-wheels, which caused perturbations throughout the

robot body. Additionally, the rotation motion is aggressive and acting over the ex-

tended manipulator arm leads to large swings at the end-effector. As in this control

architecture, the robot-arm planner only responded to perceived disturbances (e.g.

no feed-forward terms), it failed to respond quickly enough. In turn, these segments

of robot-base rotation led to significantly higher TCP error than the 0.012 m station-

ary baseline. Furthermore, the data illustrates the print-leading property of the sys-

tem. The robot-base translational error is seen to grow and oscillate in the latter two

quarters (Q3, Q4). This was due to the mobile platform falling behind its setpoints

since the straight-line print trajectory requires minor printing arm adjustments. This

way, the arm was effectively dragging the base behind itself by constantly resetting

the robot-base’s setpoints b̂ as new print points p̂ are being reached. For this reason,

the mobile platform appears to not even follow its path in Q4 as seen in Fig. 9.6.

Summary The nominal printing-in-motion end-effector path error 0.015 m was of

the same order of magnitude as the established base case when the mobile platform

is stationary 0.012 m. Although this confirms that it is feasible to perform printing-

in-motion without severe degradation in accuracy, much work is still needed to as-

sure satisfactory trajectory tracing fidelity. As seen in Q2, base orientation correc-

tions, or otherwise aggressive motions, significantly impact the end-effector error.
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Figure 9.6: Experiment of tracing a multi-segment (quarters Q1-4) path. Top: shows 2D path
traced.Bottom: shows the corresponding absolute Cartesian errors for the robot-base and end-
effector. A video of the experiments is available here: https://youtu.be/ZDWArH0ajdg

https://youtu.be/ZDWArH0ajdg
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While the arm controller was aware of the robot-base pose estimates, it did not have

any feed-forward terms or otherwise information on the robot-base control input.

This suggests that the arm and base motions ought to be more strongly coupled via

a combined trajectory planner or feed-forward terms. Furthermore, the robot con-

trol was structured like composed basins of attraction. The base would carry the arm

to the proximity of the trajectory being executed, and the arm would trace the end-

effector with much greater accuracy. This behaviour resulted in large robot-base

errors that do not correlate that do not propagate to the end-effector. This highlights

that following the robot-base path exactly is irrelevant to the printing process as

long the arm can reach the desired print path.
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9.2.2 Youwasp Control Architecture

The Youwasp robot is a heavily modified Kuka Youbot platform designed to be

a more convenient research platform. The 5-DoF Youbot arm was reduced to 4-

DoF to increase the payload and allow an extruder system to be mounted. Unlike

MAP, it is untethered, power-wise and computationally independent. Additionally,

as Youwasp is a smaller and simpler system, a second Youbot robot was also mod-

ified in order to allow experiments involving a multi-robot system to be carried

out. These included the development of printing task decomposition and alloca-

tion algorithms as well as simulation experiments that examined robot utilisation

in a multi-robot printing scenario [87]. However, printing parallelisation was not

pursued in depth in this thesis and thus is not presented.

Iterating on MAP, the Youwasp system modelled the MM robot as a redun-

dant manipulator. This approach allowed for tackling key issues of the MAP sys-

tem. Firstly, the robot-base path could be found as a result of the path planning

problem in combined base-arm configuration space when solving for the printing

path. Therefore, there would be no need for a human-prescribed robot-base path.

Secondly, planning for the robot-base and manipulator motions together means the

manipulator joint trajectory already takes into account the path the robot-base is

following. Implementing this approach was done by using existing path planners as

provided by the ROS Ecosystem and specifically MoveIt motion planning frame-

work [127,146]. Using existing solvers allowed a slightly deeper exploration of the

relationship between the robot, the environment and the printing task, which in turn,

helped understand what would be desired behaviours of a M3DP-type robot.

The holonomic Youwasp-base was modelled as two prismatic and a revolute

joint, and the path planning for the print trajectory was carried out in a combined

base-arm joint space. The robot-base and arm controllers were still separate. The

existing Youbot interface [162] provided a 5-DoF arm trajectory controller and the

robot-base used a PID controller. The base controller was calibrated for quick re-

sponse and used the OptiTrack motion tracking for loop closure with respect to

robot-base pose. Youwasp control diagram can be seen in Fig. 9.7
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Figure 9.7: Youwasp control architecture

Youwasp treated the print path as a long continuous trajectory. Segments of the

print path would be sent to the planner as requests for execution. The MoveIt Carte-

sian trajectory planner was used to process these print paths and find a joint-space

solution for the combined base-arm redundant manipulator. Thus planning was

a much slower process and once a base-arm trajectory was found, the controllers

would attempt to execute it independently. Meaning, while the robot-arm joint-

space trajectory was derived in relation to the robot-base trajectory, the robot-arm

controller would only follow its joint-space reference trajectory without any knowl-

edge of true current robot-base pose estimate. Furthermore, the high dimensionality

of the problem meant that Cartesian planning for the trajectory was difficult. The

Moveit task-space planner at the time of development worked as follows. It would

interpolate the task-space trajectory. Call Inverse Kinematics (IK) routine for each

of the points and attempt to link solutions together. It would terminate if any of

the solutions are too far apart in joint-space (determined via internal tolerance of

1 ·10−3) or the joint configuration is invalid (e.g. in collision). This means the plan-

ner did not not explore the configuration-space to find a solution, but just validated

a path through the joint-space until the first invalid point. Since the robot configura-

tion space included the base pose, this meant the planner could not explore different

base starting poses either.

Starting Poses: To circumvent limitations arising from the Cartesian planner used,

the planner was wrapped in several custom routines. Firstly, a (re)positioning rou-

tine was written so the robot picks a good starting pose to perform printing. After

the robot is given a print segment to trace, it starts by populating the planning scene

with the full print path as a static obstacle. This way, the robot would avoid driving

on top of the material during printing. Then it samples IK solutions for the first
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point on the print path. Using the resulting joint configuration (of both base and

arm) as the starting state, it makes a task-space planning request. If the plan is suc-

cessful, the routine returns it. Otherwise, IK is sampled again, and the print path

is replanned in a loop while keeping track of the most successful plan(by the per-

centage of print path planned for). The use of this routine, effectively, helped pick

a robot-base pose such that the robot is able to execute the prescribed print path.

Static Obstacles: However, initial testing of the positioning routine in different sce-

narios revealed that some configurations of obstacles in the environment as well as

the print paths themselves, might not be feasible to print in a single execution. Con-

sider a three-box scenario where a print path is situated between three boxes on

alternating sides as seen in Fig. 9.8. By design, the middle segment of the print

path can only be achieved by repositioning the robot. By invoking the positioning

routine multiple times until the whole print is executed, the robot is able to tackle

such a scenario.

Figure 9.8: The three-box scenario where a robot must discontinue the print and reposition around
static obstacles.

Closed Geometries: Another consideration that emerged from early testing was the

end state of the robot after print execution. Since the planning scene is populated

with the print task as a collision object, printing enclosed geometries can lead to the

robot being stuck inside them. To avoid this, an additional validation routine was

added. When task-space planning requests are made, solutions are discarded if the

end-state of the robot is such that the robot cannot leave the workspace (to some

arbitrary far-away point).
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Youwasp system’s path planning and control approach was evaluated via a

large-scale virtual printing (i.e. printing without depositing material) experiment.

This was carried out using a two-robot team. The two robots were tasked with print-

ing a 5m×5m floor-plan resembling geometry. The robots were given segments of

the floor plan to print, determined by the task decomposition and allocation strategy

described in the associated publication [87]. Each robot performed its path planning

while modelling the current pose of the other robot as an obstacle. A total of three

trials were conducted using the 2-robot team that autonomously navigated the space

and tracked print segment trajectories. RGB LED end-effectors were used to help

visualise the process and indicate when the robot is printing and when it is simply

travelling or repositioning. Visualisation of trials can be seen in Fig.9.9.

Figure 9.9: Virtual printing using two robots. Blue and green paths show simulated printing by the
two robots. Smaller red and pink paths show non-printing travelling. Video of the experiments is
available at https://youtu.be/ddpIzF5h_Fg

Paths traced by the end effectors were compiled over the three trials and plotted

on the same axes for comparison. This is seen in Fig.9.10. The average error,

across 3 trials and all print segments, was 0.0091 m (std.0.0087 m). The figure

shows a clear pattern of significant errors occurring in concentrated regions. The

plot indicates a consistent presence of errors as high as 0.05 m near corners and

endpoints of the geometry. This error pattern was found to be consistent with the

starting locations of the print segments. When plotting the error of a few print

segments against time, it can be seen that the robot fails to position itself accurately

at the start of the printed segment and then converges closer to the desired path later.

This is due to the robot-base controller PID loop not tracking commanded trajectory

https://youtu.be/ddpIzF5h_Fg
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well enough. Especially, when stopping at a precise pose or starting to move from

a full stop. The data also showed an oscillatory behaviour of the error. This was
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Figure 9.10: Top: Cartesian error of the printed geometry. Three sets of data superimposed with
points of the highest error value on top. Bottom: A 100s time segment throughout three trials of
end-effector position error whilst printing.

due to the Youbot Omni-wheels having parasitic compliance at low velocities and

in turn, shows how base controllability issues can propagate into end-effector error

when the manipulator is not performing any compensation.

Summary: The Youwasp control architecture modelled the robot as a redundant

manipulator. The joint-space solution, including the robot-pase path, was found as

part of a single task-space planning problem using an off-the-shelf method. There-
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fore, unlike the MAP system, Youwasp did not require a human-prescribed robot-

base path to be provided alongside the print path. However, the planner was naive

and did not explore the configuration space meaningfully. Instead, it simply val-

idated intermediate joint-space points. Additionally, considering the entire print

segment as a static obstacle prior to printing is a very strong assumption. Also, it

did not consider multiple robot-base starting poses. These shortcomings necessi-

tated inelegant and slow replanning-based routines to be implemented. Although,

having done so led to the discovery of nuances of the mobile 3D printing problem. It

appears that the ability for the robot to be able to print with relocations is desirable,

as even simple scenarios such as the three-box problem is unfeasible otherwise. Ad-

ditionally, the print path tracing experiments showed that as the arm controller did

not take into account online base pose estimates, the arm’s agility could not be used

to respond to disturbances caused by robot-base controllability issues.
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[37] Gyöngy Orsi. Europe’s largest 3D printer prints a two-story

house. https://hypeandhyper.com/en/europes-largest-3d-printer-prints-a-

two-story-house/.

[38] D-shape. D-Shape. https://d-shape.com/.

[39] Brittney Sevenson. Shanghai-based WinSun 3D Prints 6-Story Apartment

Building and an Incredible Home. https://3dprint.com/38144/3d-printed-

apartment-building/, 2015.

[40] Paul Bosscher, Robert L. Williams, L. Sebastian Bryson, and Daniel Castro-

Lacouture. Cable-suspended robotic contour crafting system. Automation in

Construction, 17(1):45–55, nov 2007.

[41] Apis Cor. Apis Cor - we print buildings. http://apis-cor.com/, 2017.
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M. Suppa, T. Wimböck, F. Zacharias, and G. Hirzinger. A humanoid two-arm

system for dexterous manipulation. In Proceedings of the 2006 6th IEEE-

RAS International Conference on Humanoid Robots, HUMANOIDS, pages

276–283, 2006.

[105] Franziska Zacharias, Wolfgang Sepp, Christoph Borst, and Gerd Hirzinger.

Using a model of the reachable workspace to position mobile manipulators

for 3-d trajectories. In 9th IEEE-RAS International Conference on Humanoid

Robots, HUMANOIDS09, pages 55–61, 2009.

[106] Nikolaus Vahrenkamp, Tamim Asfour, and Rudiger Dillmann. Robot place-

ment based on reachability inversion. In 2013 IEEE International Conference

on Robotics and Automation, number 2, pages 1970–1975. IEEE, may 2013.

[107] Tim Welschehold, Christian Dornhege, Fabian Paus, Tamim Asfour, and

Wolfram Burgard. Coupling Mobile Base and End-Effector Motion in Task

Space. IEEE International Conference on Intelligent Robots and Systems,

pages 7158–7163, 2018.

[108] Farbod Farshidian, Michael Neunert, Alexander W. Winkler, Gonzalo Rey,

and Jonas Buchli. An efficient optimal planning and control framework for



Bibliography 199

quadrupedal locomotion. In Proceedings - IEEE International Conference

on Robotics and Automation, pages 93–100, 2017.

[109] Arturo Laurenzi, Dimitrios Kanoulas, Enrico Mingo Hoffman, Luca Mura-

tore, and Nikolaos Tsagarakis. Whole-Body Stabilization for Visual-Based

Box Lifting with the COMAN+ Robot. In Proceedings - 3rd IEEE Interna-

tional Conference on Robotic Computing, IRC 2019, pages 445–446. Insti-

tute of Electrical and Electronics Engineers Inc., mar 2019.

[110] IEEE Robotics and Automation Society. Scope: Whole-Body Control.

https://www.ieee-ras.org/whole-body-control.

[111] G. Jorhabib Eljaik, Ryan Lober, Antoine Hoarau, and Vincent Padois.

Optimization-based Controllers for Robotics Applications (OCRA): The

case of iCub’s whole-body control. Frontiers Robotics AI, 5(MAR):24, 2018.

[112] Eiichi Yoshida, Fumio Kanehiro, and Jean-Paul Laumond. Whole-Body

Motion Planning. In Humanoid Robotics: A Reference, pages 1575–1599.

Springer Netherlands, 2019.

[113] Johannes Pankert and Marco Hutter. Perceptive model predictive control for

continuous mobile manipulation. IEEE Robotics and Automation Letters,

5(4):6177–6184, oct 2020.

[114] Alessio Rocchi, EM Hoffman, Edoardo Farnioli, and NG Tsagarakis. A

Whole-Body Stack-of-Tasks compliant control for the Humanoid Robot CO-

MAN. Walk-Man.Eu, 2014.

[115] Farbod Farshidian. OCS2: Framework for Optimal Control of Switched Sys-

tems. https://leggedrobotics.github.io/ocs2/.

[116] Farbod Farshidian, Michael Neunert, Alexander W. Winkler, Gonzalo Rey,

and Jonas Buchli. An efficient optimal planning and control framework for

quadrupedal locomotion. In Proceedings - IEEE International Conference



Bibliography 200

on Robotics and Automation, pages 93–100. Institute of Electrical and Elec-

tronics Engineers Inc., sep 2017.

[117] N. G. Tsagarakis, D. G. Caldwell, F. Negrello, W. Choi, L. Baccelliere, V. G.

Loc, J. Noorden, L. Muratore, A. Margan, A. Cardellino, L. Natale, E. Mingo

Hoffman, H. Dallali, N. Kashiri, J. Malzahn, J. Lee, P. Kryczka, D. Kanoulas,

M. Garabini, M. Catalano, M. Ferrati, V. Varricchio, L. Pallottino, C. Pa-

van, A. Bicchi, A. Settimi, A. Rocchi, and A. Ajoudani. WALK-MAN: A

High-Performance Humanoid Platform for Realistic Environments. Journal

of Field Robotics, 34(7):1225–1259, oct 2017.

[118] Kenneth R. Muske and James B. Rawlings. Model predictive control with

linear models. AIChE Journal, 39(2):262–287, feb 1993.

[119] A. Sideris and J.E. Bobrow. An efficient sequential linear quadratic algorithm

for solving nonlinear optimal control problems. In Proceedings of the 2005,

American Control Conference, 2005., pages 2275–2280. IEEE, 2011.

[120] Farbod Farshidian, Michael Neunert, Alexander W. Winkler, Gonzalo Rey,

and Jonas Buchli. An efficient optimal planning and control framework for

quadrupedal locomotion. In Proceedings - IEEE International Conference

on Robotics and Automation, pages 93–100. Institute of Electrical and Elec-

tronics Engineers Inc., sep 2017.

[121] Michael Neunert, Cédric De Crousaz, Fadri Furrer, Mina Kamel, Farbod

Farshidian, Roland Siegwart, and Jonas Buchli. Fast nonlinear Model Predic-

tive Control for unified trajectory optimization and tracking. In Proceedings

- IEEE International Conference on Robotics and Automation, volume 2016-

June, pages 1398–1404. Institute of Electrical and Electronics Engineers Inc.,

jun 2016.

[122] Christian Feller and Christian Ebenbauer. Relaxed Logarithmic Barrier Func-

tion Based Model Predictive Control of Linear Systems. IEEE Transactions

on Automatic Control, 62(3):1223–1238, mar 2017.



Bibliography 201

[123] Julius Sustarevas, Dimitrios Kanoulas, and Simon Julier. Task-Consistent

Path Planning for Mobile 3D Printing. In 2021 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (IROS), pages 2143–2150. IEEE,

sep 2021.

[124] Julius Sustarevas, Dimitrios Kanoulas, and Simon Julier. Autonomous Mo-

bile 3D Printing of Large-Scale Trajectories. In 2022 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS), pages 6561–

6568. IEEE, oct 2022.

[125] KUKA Robotics. YouBot Documentation. Youbot-store.com, 2018.

[126] Franka Emika. Franka Panda. https://www.franka.de/technology.

[127] I A Sucan and S Chitta. MoveIt Motion Planning Framework.

http://moveit.ros.org/about/, 2018.

[128] KDL. KDL wiki — The Orocos Project. http://www.orocos.org/kdl, 2013.

[129] Patrick Beeson and Barrett Ames. TRAC-IK: An open-source library for im-

proved solving of generic inverse kinematics. In IEEE-RAS International

Conference on Humanoid Robots, volume 2015-Decem, pages 928–935,

Seoul, Korea, nov 2015.

[130] Peter I. Corke. A robotics toolbox for MATLAB. IEEE Robotics and Au-

tomation Magazine, 3(1):24–32, 1996.

[131] Abhijit Makhal and Alex K. Goins. Reuleaux: Robot base placement by

reachability analysis. In Proceedings - 2nd IEEE International Confer-

ence on Robotic Computing, IRC 2018, volume 2018-Janua, pages 137–142.

IEEE, jan 2018.

[132] Anton Semechko. Suite of functions to perform uniform sampling of a

sphere. https://github.com/AntonSemechko/S2-Sampling-Toolbox, 2020.

[133] Abhijit Makhal. ROS package: reuleaux. http://wiki.ros.org/reuleaux.



Bibliography 202

[134] Sertac Karaman, Matthew R. Walter, Alejandro Perez, Emilio Frazzoli, and

Seth Teller. Anytime motion planning using the RRT. Proceedings - IEEE

International Conference on Robotics and Automation, (June 2011):1478–

1483, 2011.

[135] Jerome H. Friedman, Jon Louis Bentley, and Raphael Ari Finkel. An Algo-

rithm for Finding Best Matches in Logarithmic Expected Time. ACM Trans-

actions on Mathematical Software (TOMS), 3(3):209–226, sep 1977.

[136] Mathworks. Matlab Implementation of Nearest Neighbors Algorithm.

https://www.mathworks.com/help/matlab/ref/graph.nearest.html.

[137] Jon Louis Bentley. Multidimensional Binary Search Trees Used for Associa-

tive Searching. Communications of the ACM, 18(9):509–517, sep 1975.

[138] Mathworks. Matlab Implementation of 2D Occupancy Map.

https://www.mathworks.com/help/nav/ref/occupancymap.html.

[139] Masatomo Kanehara, Satoshi Kagami, James J. Kuffner, Simon Thompson,

and Hiroshi Mizoguhi. Path shortening and smoothing of grid-based path

planning with consideration of obstacles. In Conference Proceedings - IEEE

International Conference on Systems, Man and Cybernetics, pages 991–996,

2007.
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