958 research outputs found

    Optimization of large-scale offshore wind farm

    Get PDF

    Optimal Power Control in DFIG Turbine Based Wind Farm Considering Wake Effect and Lifetime

    Get PDF

    Mathematical Optimization and Algorithms for Offshore Wind Farm Design: An Overview

    Get PDF
    Wind energy is a fast evolving field that has attracted a lot of attention and investments in the last dec- ades. Being an increasingly competitive market, it is very important to minimize establishment costs and increase production profits already at the design phase of new wind parks. This paper is based on many years of collaboration with Vattenfall, a leading wind energy developer and wind power operator, and aims at giving an overview of the experience of using Mathematical Optimization in the field. The paper illustrates some of the practical needs defined by energy companies, showing how optimization can help the designers to increase production and reduce costs in the design of offshore parks. In particular, the study gives an overview of the individual phases of designing an offshore windfarm,andsomeoftheoptimizationproblemsinvolved. Finally it goes in depth with three of the most important optimization tasks: turbine location, electrical cable routing and foundation optimization. The paper is concluded with a discussion of future challenges

    Stochastic optimization of offshore wind power plants operation for maximizing energy generation: focusing on the electric power system optimization and cost minimization

    Get PDF
    It is a reality that nowadays the demand for energy is increasing in the world, but at the same time conventional energy resources are becoming expensive, rare, and more pollutant. All these facts are leading the countries to focus on renewable energy sources, as they are cleaner and abundant. In this field Offshore Wind Power Plants (OWPPs) are becoming increasingly relevant in Europe, and worldwide mainly due to space limitations constraints (possibility of using larger wind turbines), the fact wind speeds are potentially higher and smoother at sea (leading to higher power generation), lower visual and noise impact than onshore farms, and finally because of the progressive saturation of propitious onshore sites. Currently, and because of the environmental and social legislation, OWPPs are forced to be constructed further from shore. There are three main factors to be covered when designing AC electric system of OWPPs: investment cost of components, system efficiency, and system reliability. The present project is focus on the first two key factors, and also considers a stochastic optimization of the electric system of an OWPP operation in order to minimize the investment and operational cost, and in this way try to get the best scenario obtaining the most of benefits. GAMS and MATLAB softwares have been used to implement the main program, obtaining a basic engineering tool to design and take decisions for the electric power system applied to real offshore wind farm

    Advanced wind farm control strategies for enhancing grid support

    Get PDF
    Aplicat embargament des de la data de defensa fins al maig 2020Nowadays, there is rising concern among Transmission System Operators about the declining of system inertia due to the increasing penetration of wind energy, and other renewable energy systems, and the retirements of conventional power plants. On the other hand, by properly operating wind farms, wind generation may be capable of enhancing grid stability and ensuring continued security of power supply. In this doctoral thesis, new control approaches for designing wind farm optimization-based control strategies are proposed to improve the participation of wind farms in grid support, specially in primary frequency support.Hoy en día, existe una significativa preocupación entre los Operadores de Sistemas de Transmisión sobre la cresciente penetración de le energía eólica y la tendiente eliminación de las centrales eléctricas convencionales que implica la disminución de la inercia del sistema eléctrico. Operando adecuadamente los parques eólicos, la generación eólica puede mejorar la estabilidad de la red eléctrica y garantizar la seguridad y un continuo suministro de energía. Esta tesis doctoral propone nuevas estrategias para diseñar controladores basados en optimización dinámica para parques eólicos y mejorar la participación de los parques eólicos en el soporte de la red eléctrica. En primer lugar, esta tesis doctoral presenta los enfoques clásicos para el control de parques y turbinas eólicas y cómo los conceptos de control existentes pueden ser explotados para hacer frente a los nuevos desafíos que se esperan de los parques eólicos. Esta tesis doctoral asigna un interés especial a cómo formular la función objetivo de que la reserva de potencia sea maximizada, para ayudar por el suporte de frequencia, y al mismo tiempo seguir la potencia demandada por la red. Sin embargo, el impacto de la estela de viento generada por una turbina sobre otras turbinas necesita ser minimizado para mejorar la reserva de potencia. Por lo tanto, a lo largo de esta tesis se proponen estrategias de control centralizado para parques eólicos enfocadas en distribuir óptimamente la energía entre las turbinas para que el impacto negativo de la estela en la reserva de potencia total se reduzca. Se discuten dos técnicas de control para proporcionar los objetivos de control mencionados anteriormente. Un algoritmo de control óptimo para encontrar la mejor distribución de potencia entre las turbinas en el parque mientras se resuelve un problema iterativo de programación lineal. En segundo lugar, se utiliza la técnica de control predictivo basada en modelo para resolver un problema de control multi-objetivo que también podría incluir, junto con la maximización de reserva de potencia, otros objetivos de control, tales como la minimización de las perdidas eléctricas en los cables de la red de interconexión entre turbinas y un controlador/supervisor. Además, la investigación realizada resalta la capacidad de las estrategias de control propuestas en esta tesis para proporcionar mayor reserva de potencia respecto a los conceptos comúnmente usados para distribuir la potencia total del parque eólico. La idea principal detrás del diseño de una estrategia de control de parques eólico es de encontrar una solución óptima dentro de un cálculo computacional relativamente bajo. Aunque los controladores centralizados propuestos en esta tesis reaccionan rápidamente a los cambios en la potencia de referencia enviada desde el controlador, algunos problemas pueden ocurrir cuando se consideran parques eólicos de gran escala debido a los retrasos existentes por el viento entre turbinas. Bajo estas circunstancias, la producción de energía de cada turbina está altamente acoplada con la propagación de la estela y, por ende, con las condiciones de funcionamiento de las otras turbinas. Esta tesis doctoral propone un esquema de control de parques eólicos no centralizados basado en una estrategia de partición para dividir el parque eólico en sub-conjuntos independientes de turbinas. Con la estrategia de control propuesta, el tiempo de cálculo se reduce adecuadamente en comparación con la estrategia de control centralizado mientras que el rendimiento en la distribución óptima de potencia es ligeramente afectado. El rendimiento de todas las estrategias de control propuestas en esta tesis se prueba con un simulador de parque eólico que modela el comportamiento dinámico del efecto de estela mediante el uso de un conocido y consolidado modelo dinámico de estela y, para un análisis más realista, algunas simulaciones se realizan con software avanzado basado en la técnica de Large Eddy Simulation.Postprint (published version

    Advanced wind farm control strategies for enhancing grid support

    Get PDF
    Nowadays, there is rising concern among Transmission System Operators about the declining of system inertia due to the increasing penetration of wind energy, and other renewable energy systems, and the retirements of conventional power plants. On the other hand, by properly operating wind farms, wind generation may be capable of enhancing grid stability and ensuring continued security of power supply. In this doctoral thesis, new control approaches for designing wind farm optimization-based control strategies are proposed to improve the participation of wind farms in grid support, specially in primary frequency support.Hoy en día, existe una significativa preocupación entre los Operadores de Sistemas de Transmisión sobre la cresciente penetración de le energía eólica y la tendiente eliminación de las centrales eléctricas convencionales que implica la disminución de la inercia del sistema eléctrico. Operando adecuadamente los parques eólicos, la generación eólica puede mejorar la estabilidad de la red eléctrica y garantizar la seguridad y un continuo suministro de energía. Esta tesis doctoral propone nuevas estrategias para diseñar controladores basados en optimización dinámica para parques eólicos y mejorar la participación de los parques eólicos en el soporte de la red eléctrica. En primer lugar, esta tesis doctoral presenta los enfoques clásicos para el control de parques y turbinas eólicas y cómo los conceptos de control existentes pueden ser explotados para hacer frente a los nuevos desafíos que se esperan de los parques eólicos. Esta tesis doctoral asigna un interés especial a cómo formular la función objetivo de que la reserva de potencia sea maximizada, para ayudar por el suporte de frequencia, y al mismo tiempo seguir la potencia demandada por la red. Sin embargo, el impacto de la estela de viento generada por una turbina sobre otras turbinas necesita ser minimizado para mejorar la reserva de potencia. Por lo tanto, a lo largo de esta tesis se proponen estrategias de control centralizado para parques eólicos enfocadas en distribuir óptimamente la energía entre las turbinas para que el impacto negativo de la estela en la reserva de potencia total se reduzca. Se discuten dos técnicas de control para proporcionar los objetivos de control mencionados anteriormente. Un algoritmo de control óptimo para encontrar la mejor distribución de potencia entre las turbinas en el parque mientras se resuelve un problema iterativo de programación lineal. En segundo lugar, se utiliza la técnica de control predictivo basada en modelo para resolver un problema de control multi-objetivo que también podría incluir, junto con la maximización de reserva de potencia, otros objetivos de control, tales como la minimización de las perdidas eléctricas en los cables de la red de interconexión entre turbinas y un controlador/supervisor. Además, la investigación realizada resalta la capacidad de las estrategias de control propuestas en esta tesis para proporcionar mayor reserva de potencia respecto a los conceptos comúnmente usados para distribuir la potencia total del parque eólico. La idea principal detrás del diseño de una estrategia de control de parques eólico es de encontrar una solución óptima dentro de un cálculo computacional relativamente bajo. Aunque los controladores centralizados propuestos en esta tesis reaccionan rápidamente a los cambios en la potencia de referencia enviada desde el controlador, algunos problemas pueden ocurrir cuando se consideran parques eólicos de gran escala debido a los retrasos existentes por el viento entre turbinas. Bajo estas circunstancias, la producción de energía de cada turbina está altamente acoplada con la propagación de la estela y, por ende, con las condiciones de funcionamiento de las otras turbinas. Esta tesis doctoral propone un esquema de control de parques eólicos no centralizados basado en una estrategia de partición para dividir el parque eólico en sub-conjuntos independientes de turbinas. Con la estrategia de control propuesta, el tiempo de cálculo se reduce adecuadamente en comparación con la estrategia de control centralizado mientras que el rendimiento en la distribución óptima de potencia es ligeramente afectado. El rendimiento de todas las estrategias de control propuestas en esta tesis se prueba con un simulador de parque eólico que modela el comportamiento dinámico del efecto de estela mediante el uso de un conocido y consolidado modelo dinámico de estela y, para un análisis más realista, algunas simulaciones se realizan con software avanzado basado en la técnica de Large Eddy Simulation

    Control and operation of wind power plants connected to DC grids

    Get PDF
    Remote offshore wind power plants (WPPs) are being linked through high-voltage de voltage-source converter (VSC-HVdc) transmission to the main grids. The current deployments of HVdc grid connections for offshore WPPs are point-to-point transmission systems. Moreover, WPPs connected to the offshore VSC-HVdc form an offshore ac grid which operates non­ synchronously to the main grids. lt is characterized by extensive submarine cabling and, in the case offull-scale power converter-based wind turbines, by being purely converter-based. This thesis goes into two main aspects regarding the operation of HVdc-connected WPPs: i) reactive power and voltage control and ii) fault ride through (FRT) in the ac offshore grids. Optimization-based reactive power control strategies are enhanced to the application of an ac grid consisting ofone grid-forming and several grid-connected converters. A reactive power and voltage control method is introduced which aims to increase the annual energy production from a single WPP. In the industrial application, several WPPs might be clustered which leads to multi-layered controllers and operation boundaries. Taking this into account, an operation strategy with reasonable communication requirements is suggested and evaluated against conventional methods . The work further propases a control framework for the grid-form ing offshore VSC-HVdc. Special emphasis is put on the FRT of unbalanced faults in the offshore grid and the provision of controlled currents for ease of fault detection. Furthermore, the internal variables of the offshore modular multi-level VSC-HVdc are analyzed. Moreover, tour FRT strategies for the grid­ connected converters are evaluated for unbalanced faults in the offshore grid. This consequently implies that control strategies in symmetrical components are considered. Furthermore, the reduction of over-modulation and over-voltages by the power converters in the offshore grid is dealt with.Los parques eólicos marinos suelen conectarse a redes eléctricas terrestres a través de corriente continua de alta tensión (siglas en inglés: HVdc) utilizando convertidores de fuente de tensión (siglas en inglés: VSC) cuando la corriente alterna de alta tensión (siglas en inglés: HVac) resulta tecnológicamente e económicamente desfavorable. Los parques eólicos conectados al convertidor HVdc marino crean redes eléctricos marinas de corriente alterna que operan asíncronamente a las redes terrestres. Dichas redes se caracterizan por tener cables submarinos, y, en el caso de aerogeneradores con convertidores de plena potencia, resultan en redes constituidas únicamente por convertidores de potencia. Esta tesis investiga dos de los aspectos principales de la operación de parques eólicos marinos conectados en corriente continua de alta tensión: i) la regulación de potencia reactiva y tensión y ii) la operación durante faltas eléctricas en las redes marinas. Se han propuesto estrategias de optimización del control de reactiva para su aplicación a una red ac con varios convertidores conectados. Se ha introducido un método de regulación de potencia reactiva y tensión cuyo objetivo es incrementar la generación eléctrica del parque eólico. En la implementación práctica, varios parques eólicos podrían pertenecer a la misma red lo cual conduce a reguladores multicapas y a la consideración las interfaces entre los operadores. Teniendo esto en cuenta, se propone una estrategia de regulación de potencia reactiva asumiendo unos tiempos de comunicación razonables, y se compara a conceptos convencionales. La segunda parte de la tesis sugiere un método de control para el convertidor marino en secuencia directa e inversa. Está diseñado para la operación normal y la operación durante faltas asimétricas y permite la inyección de corrientes reguladas para la detección de la falta. Además, se analizan las variables internas del convertidor modular multinivel (siglas en inglés: MMC) en estas situaciones. Asimismo, se han evaluado cuatro estrategias de respuesta a faltas asimétricas por parte de los convertidores de los aerogeneradores. Estas estrategias también incluyen el control en secuencia directa e inversa. Finalmente, se investiga la reducción de sobremodulación en los convertidores y sobretensiones en la red marina.Hochspannungs–Gleichstrom–Übertragung (HGÜ) stellt eine effiziente Lösung zur Netzanbindung weit entfernter Offshore–Windkraftanlagen dar. Die derzeit verwendeten Punkt–zu–Punkt–Anbindungen basieren dabei auf spannungsgeführten Umrichtertopologien. Das seeseitige Wechselstromnetz verbindet die Windkraftanlagen mit der netzbildenden HGÜ–Umrichterstation. Es charakterisiert sich im Vergleich zu gewöhnlichen Netzen durch das ausschließliche Verwenden von Seekabeln und, im Fall einer Verwendung von Windkraftanlagen mit Vollumrichtern, durch das Fehlen gewöhnlicher, direkt gekoppelter Synchrongeneratoren. Die vorliegende Dissertation behandelt zwei Kernaspekte bezüglich dem Betrieb HGÜ–angebundener Windparks: i) die kontinuierliche Regelung der Blindleistung und Spannung und ii) das Umrichterverhalten bei Spannungseinbrüchen aufgrund von Netzkurzschlüssen [engl. fault ride through (FRT)] im seeseitigen Wechselspannungsnetz. Hierfür werden Blindleistungsoptimierungsverfahren präsentiert, die für die Anwendung in Wechselstromnetzen mit einem netzbildenden Umrichter und weiteren netzsynchronen Umrichtern geeignet sind. Die vorgeschlagene Blindleistung– und Spannungsregelungsmethode verringert die Energieverluste im seeseitigen Netz und erhöht damit die Energieausbeute des Systems. Häufig werden verschiedene Windparks zu Clustern zusammengeschlossen, die mehrschichtige Regelungsansätze fordern. Hierfür wird ein weiteres Verfahren vorgeschlagen, das ähnliche Kommunikationsanforderungen wie herkömmliche Betriebsverfahren aufweist, jedoch geringere Verluste verursacht. Die Arbeit untersucht ferner ein dynamisches Regelungsverfahren für den seeseitigen HGÜ–Umrichter. Dabei wird speziell das Verhalten während unsymmetrischer Kurzschlüsse im seeseitigen Netz berücksichtigt. Darüber hinaus wird der Betrieb des modularen Mehrpunktumrichters (engl. MMC) für diese Anwendung analysiert. Bezüglich des Verhaltens netzsynchroner Umrichter während asymmetrischer Spannungseinbrüche im seeseitigen Netz werden weiterhin vier Verfahren untersucht. Diese zielen unter anderem auf die Verringerung von möglicher Übermodulation der Umrichter und Überspannungen im seeseitigen Netz ab

    Technical-economic analysis, modeling and optimization of floating offshore wind farms

    Get PDF
    The offshore wind sector has grown significantly during the last decades driven by the increasing demand for clean energy and to reach defined energy targets based on renewable energies. As the wind speeds tend to be faster and steadier offshore, wind farms at sea can reach higher capacity factors compared to their onshore counterparts. Furthermore, fewer restrictions regarding land use, visual impact, and noise favors the application of this technology. However, most of today's offshore wind farms use bottom-fixed foundations that limit their feasible application to shallow water depths. Floating substructures for offshore wind turbines are a suitable solution to harness the full potential of offshore wind as they have less constraints to water depths and soil conditions and can be applied from shallow to deep waters. As several floating offshore wind turbine (FOWT) concepts have been successfully tested in wave tanks and prototypes have been proven in open seas, floating offshore wind is now moving towards the commercial phase with the first floating offshore wind farm (FOWF) commissioned in 2017 and several more are projected to be constructed in 2020. This transition increases the need for comprehensive tools that allow to model the complete system and to predict its behavior as well as to assess the performance for different locations. The aim of this thesis is to analyze from a technical and economic perspective commercial scale FOWFs. This includes the modeling of FOWTs and the study of their dynamic behavior as well as the economic assessment of different FOWT concepts. The optimization of the electrical layout is also addressed in this thesis. The first model developed is applied to analyze the performance of a Spar type FOWT. The model is tested with different load cases and compared to a reference model. The results of both models show an overall good agreement. Afterwards, the developed model is applied to study the behavior of the FOWT with respect to three different offshore sites. Even at the site with the harshest conditions and largest motions, no significant loss in energy generation is measured, which demonstrates the good performance of this concept. The second model is used to perform a technical-economic assessment of commercial scale FOWFs. It includes a comprehensive LCOE methodology based on a life cycle cost estimation as well as the computation of the energy yield. The model is applied to three FOWT concepts located at three different sites and considering a 500MW wind farm configuration. The findings indicate that FOWTs are a high competitive solution and energy can be produced at an equal or lower LCOE compared to bottom-fixed offshore wind or ocean energy technologies. Furthermore, a sensitivity analysis is performed to identify the key parameters that have a significant influence on the LCOE and which can be essential for further cost reductions. The last model is aimed to optimize the electrical layout of FOWFs based on the particle swarm optimization theory. The model is validated against a reference model at first and is then used to optimize the inter-array cable routing of a 500MW FOWF. The obtained electrical layout results in a reduction of the power cable costs and a decrease of the energy losses. Finally, the use of different power cable configurations is studied and it is shown that the use of solely dynamic power cables in comparison to combined dynamic and static cables results in decreased acquisition and installation costs due to the avoidance of cost-intensive submarine joints and additional installation activities.El sector eólico marino ha crecido significativamente durante las últimas décadas impulsado por la creciente demanda de energía limpia. Los parques eólicos en el mar pueden alcanzar factores de capacidad más altos en comparación a los parques eólicos en la tierra debido a que las velocidades del viento tienden a ser más altas y constantes en el mar. Ademas, existen menos restricciones con respecto al uso de la tierra, el impacto visual y el ruido. Sin embargo, la mayoría de los parques eólicos actuales utilizan subestructuras fijas que limitan su aplicación factible a aguas poco profundas. Las subestructuras flotantes para turbinas eólicas marinas (FOWTs en inglés) son una solución adecuada para aprovechar todo el potencial de la energía eólica, ya que tienen menos restricciones para las profundidades del agua y el fondo marino. Dado que varios prototipos de FOWTs se han probado con éxito en el mar, la industria ahora esta entrando a la fase comercial con el primer parque eólico flotante (FOWF en inglés) operativo y se proyecta que se pondrán en marcha más en los próximos anos. Esta transición aumenta la necesidad de herramientas integrales que permitan modelar el sistema completo y predecir su comportamiento, así como evaluar el rendimiento para diferentes lugares. El objetivo de esta tesis es analizar desde una perspectiva técnica y económica los FOWFs a escala comercial. Esto incluye el modelado de FOWTs, el estudio de su comportamiento dinámico, y la evaluación económica de diferentes conceptos. La optimización del diseño eléctrico también se aborda en esta tesis. El primer modelo desarrollado se aplica para analizar el rendimiento de un FOWT tipo Spar. El modelo se prueba con diferentes tipos de carga y se compara con un modelo de referencia. Los resultados de ambos modelos muestran una buena concordancia. Posteriormente, el modelo se aplica para estudiar el comportamiento con respecto a tres lugares diferentes. Los resultados muestran que incluso en el sitio con las condiciones más severas, no se mide ninguna pérdida significativa en la generación de energía, lo que demuestra el buen rendimiento de este concepto. El segundo modelo se utiliza para realizar una evaluación técnico-económica de los FOWF a escala comercial. Esto incluye una metodología integral del costo nivelado de energía (LCOE en ingles). El modelo se aplica a tres conceptos de FOWTs ubicados en tres lugares diferentes y considerando un parque eólico de 500MW. Los resultados indican que los FOWTs son una solución altamente competitiva y que la energía se puede producir con un LCOE igual o inferior en comparación con los parques eólicos con subestructuras fijas o las tecnologías de energía oceánica. Asimismo, se realiza un análisis de sensibilidad para identificar los parámetros claves que tienen una influencia significativa en el LCOE y que pueden ser esenciales para reducciones de costos. El último modelo se aplica para optimizar el diseño eléctrico en función de la teoría de optimización por enjambre de partículas. Inicialmente el modelo se valida contra un modelo de referencia y luego se utiliza para optimizar la conexión de los cables entre los FOWTs. El diseño eléctrico obtenido da como resultado una reducción de los costos de cables y una disminución de las pérdidas de energía. Finalmente, se estudia el uso de diferentes configuraciones de cables y se demuestra que el uso de cables únicamente dinámicos en comparación con los cables dinámicos y estáticos combinados da como resultado una disminución de los costos de adquisición e instalación debido a que evitan la necesidad de juntas submarinas costosas y costos adicionales de instalación.Postprint (published version
    corecore