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Abstract

Nowadays, there is rising concern among Transmission System Operators (TSOs) about
the declining of system inertia due to the increasing penetration of wind energy, and other
renewable energy systems (RES), and the retirements of conventional power plants. On
the other hand, by properly operating wind farms, wind generation may be capable
of enhancing grid stability and ensuring continued security of power supply. In this
doctoral thesis, new control approaches for designing wind farm optimization-based con-
trol strategies are proposed to improve the participation of wind farms in grid support,
specially in primary frequency support.

Firstly, an overview about the classical approaches for controlling wind farms and wind
turbines discusses how the existing control concepts can be exploited to provide the new
challenges expected from wind farms. Therefore, the classical concept of controlling
wind farms through two-level hierarchical control structure is adopted and improved to
optimally regulate the active power for both the wind farm and the wind turbine levels.
In this regards, this dissertation assigns special interest on how the overall objective
function can be formulated such that the power demanded by the grid is continuously
tracked. On the other hand, as long as the power demand is below the wind farm
available power, there is some extra power, known as power reserve, that can be used
to enhance frequency support. One of the main challenges of this dissertation is to
maximize this power reserve, while also ensuring the tracking of the power reference.
However, the impact of the wake generated by an upstream turbine on the wind faced
by the downstream turbines needs to be minimized in order to improve the power reserve.
Therefore, throughout this thesis centralized wind farm control strategies are proposed
to optimally dispatch the power among the turbines so that the negative impact of the
wake effect on the overall power reserve is reduced.

Basically, two control techniques are discussed to provide the aforementioned control
objectives. Firstly, it is proposed an optimal control algorithm to find the best power
distribution among the turbines while solving an iterative linear-programming prob-
lem. This approach provides a significant improvement in terms of power reserve, while
keeping the computational burden to find the optimal solution low enough for ensuring
on-line control. Secondarily, the model predictive control technique is used to solve a
multi-objective control problem that could also include, along with the maximization of
power reserve, other control objectives. For instance, the minimization of the electrical
cable losses in the inter-array collection grid. Furthermore, a dedicated investigation is
carried out in order to highlight the capability of the proposed control strategies to pro-
vide higher value of power reserve with respect the more common concepts of distributing
the overall wind farm power reference.

The main idea behind the design of a wind farm control strategy in order to provide grid
support should be to guarantee an optimal solution within relatively low computational
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burden. In fact, the power reference, and/or frequency or voltage references, sent by the
TSO must be provided by the wind farm controller within almost 1 second (or even lower
time when a frequency-voltage event affects the grid stability). Although the proposed
centralized controllers reacts quickly to the changes in the input reference, some issues
may occur when considering large-scale wind farms.

Large wind farms can include more than hundred turbines, in this circumstance the
power production of each turbine is highly coupled by the wake propagation to the
operating conditions of the other turbines. Thus, centralized control approaches may
demand large information sharing between turbines and the central controller. Complex
communications and large information exchange result difficult to process over times
suitable to satisfy the current power generation requirements and the high communica-
tion dependency make the system exposed to failures. In order to deal with these issues,
this thesis proposes a non-centralized wind farm control scheme based on a partitioning
approach to divide the wind farm in independent subsets of turbines. With the pro-
posed control approach the computation time is consistently reduced compared to the
centralized control strategy meanwhile the performance on optimal power distribution
is slightly affected.

The performance of all the proposed control strategies are tested using a wind farm simu-
lator that models the dynamic behavior of the wake effect by using the common dynamic
wake meandering model and, for a more realistic analysis, some tests are performed with
advanced software based on Large Eddy simulations.

Keywords: wind farm control, centralized control, model predictive control, non-
centralized control, partitioning algorithms, frequency control, wind farm power reg-
ulation, de-loading operation, power reserve maximization, wake effect
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Resumen

Hoy en d́ıa, existe una creciente preocupación entre los Operadores de Sistemas de Trans-
misión (TSO) sobre la cresciente penetración de le enerǵıa eólica y de otros sistemas de
enerǵıa renovable (RES) y la tendiente eliminación de las centrales eléctricas conven-
cionales que implica la disminuciónde la inercia del sistema eléctrico. Por otro lado,
operando adecuadamente los parques eólicos, la generación eólica puede mejorar la esta-
bilidad de la red eléctrica y garantizar la seguridad y un continuo suministro de enerǵıa.
Esta tesis doctoral propone nuevas estrategias para diseñar controladores basados en op-
timización dinámica para parques eólicos y mejorar la participación de los parques eólicos
en el soporte de la red eléctrica, especialmente pensados para maximizar la provisión de
soporte de frecuencia primaria.

En primer lugar, esta tesis doctoral presenta los enfoques clásicos para el control de par-
ques y turbinas eólicas y cómo los conceptos de control existentes pueden ser explotados
para hacer frente a los nuevos desaf́ıos que se esperan de los parques eólicos. Por lo
tanto, los conceptos clásicos de controlar los parques eólicos a través de una estruc-
tura de control jerárquico de dos niveles se adoptan y mejoran para regular de manera
óptima la potencia activa de las turbinas eólicas para cumplir con lor requerimientos de
los TSOs. En este sentido, esta tesis doctoral asigna un interés especial a cómo formular
la función objetivo de que la potencia demandada por la red sea continuamente regulada
a los valores deseados considerando el impacto de los efectos estela. Por otro lado, en
caso de que la potencia demandada estuviera debajo de la enerǵıa disponible del parque
eólico, hay una parte de enerǵıa potencial sobrante, definida como power reserve, que se
puede usar para ayudar a la red eléctrica por ejemplo, el soporte de frecuencia, en caso
de necesidad. Uno de los principales desaf́ıos de esta tesis es maximizar esta reserva de
potencia, y al mismo tiempo seguir la potencia de referencia.

Sin embargo, el impacto de la estela de viento generada por una turbina sobre otras
turbinas necesita ser minimizado para mejorar la reserva de potencia. Por lo tanto, a lo
largo de esta tesis se proponen estrategias de control centralizado para parques eólicos
enfocadas en distribuir óptimamente la enerǵıa entre las turbinas para que el impacto
negativo de la estela en la reserva de potencia total se reduzca.

Se discuten dos técnicas de control para proporcionar los objetivos de control menciona-
dos anteriormente. En primer lugar, se propone un algoritmo de control óptimo para
encontrar la mejor distribución de potencia entre las turbinas en el parque mientras se
resuelve un problema iterativo de programación lineal.

Este enfoque proporciona una mejoŕıa significativa en términos de reserva de potencia,
mientras que mantiene la carga computacional para encontrar la solución óptima lo
suficientemente baja para garantizar control on-line.

En segundo lugar, la técnica de control predictivo basada en modelo se utiliza para
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resolver un problema de control multi-objetivo que también podŕıa incluir, junto con
la maximización de reserva de potencia, otros objetivos de control, tales como la mini-
mización de las perdidas eléctricas en los cables de la red de interconexión entre turbinas
y un controlador/supervisor. Además, la investigación realizada resalta la capacidad de
las estrategias de control propuestas en esta tesis para proporcionar mayor reserva de
potencia respecto a los conceptos comúnmente usados para distribuir la potencia total
del parque eólico.

La idea principal detrás del diseño de una estrategia de control de parques eólico es
de encontrar una solución óptima dentro de un cálculo computacional relativamente
bajo. De hecho, las consignas requeridas para proveer soporte a la frecuencia son de
tiempos muy cortos en el orden de segundos para la provisión del servicio. Aunque
los controladores centralizados propuestos en esta tesis reaccionan rápidamente a los
cambios en la potencia de referencia enviada desde el controlador, algunos problemas
pueden ocurrir cuando se consideran parques eólicos de gran escala debido a los retrasos
existentes por el viento entre turbinas.

Los grandes parques eólicos pueden incluir más de cien turbinas. Bajo estas circunstan-
cias, la producción de enerǵıa de cada turbina está altamente acoplada con la propagación
de la estela y, por ende, con las condiciones de funcionamiento de las otras turbinas.
Por lo tanto, los enfoques de control centralizado pueden exigir un gran intercambio
de información entre las turbinas y el controlador central. Sistemas de comunicaciones
complejos y el gran intercambio de información resultan dif́ıciles de gestionar a lo largo
del tiempo adecuado para satisfacer los requisitos actuales de generación de enerǵıa.
Adicionalmente, la alta dependencia en la comunicación entre turbinas y la necesidad de
sincornización entre el control y las turbinas hace que el sistema pueda estar expuesto a
fallos. Para hacer frente a estos problemas, esta tesis doctoral propone un esquema de
control de parques eólicos no centralizados basado en una estrategia de partición para
dividir el parque eólico en sub-conjuntos independientes de turbinas. Con la estrategia
de control propuesta, el tiempo de cálculo se reduce adecuadamente en comparación
con la estrategia de control centralizado mientras que el rendimiento en la distribución
óptima de potencia es ligeramente afectado.

El rendimiento de todas las estrategias de control propuestas en esta tesis se prueba con
un simulador de parque eólico que modela el comportamiento dinámico del efecto de
estela mediante el uso de un conocido y consolidado modelo dinámico de estela y, para
un análisis más realista, algunas simulaciones se realizan con software avanzado basado
en la técnica de Large Eddy Simulation.
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Chapter 1

Introduction

1.1 Motivations

Since the early 2000s, renewable power has been the driver of a global energy trans-

formation largely due to the commitment of industrialized countries to both endorse

global environmental concern on pollution and greenhouse gases emission and lessen the

nation’s dependence on fossil fuels. A third of global power capacity is now based on

renewable energy sources (RES) with an installed capacity of 2351 GW at the end of

2018. Starting from less than 20 GW of annual growth in 2001, in the last four years

the installed capacity witnessed unprecedented growth of about 160 GW per year, which

enabled the renewable generation capacity to improve from 22% to 63% of the worldwide

power capacity, see Figure 1.1. The 20-20-20 target set by the European Commission

has drove the European countries to install even more RES by retiring or converting the

conventional power plants to fulfill the expectation of covering more than 40% of the

worldwide electrical consumption in 2040 [2]. Specifically, solar and wind power are the

fastest growing sources of electricity and, up to 2016, have counted of more than 11%

and 16, 7% of the shared installed capacity, see Figure 1.2. As Europe, also North Amer-

ica and Oceania have experienced a significant replacement of conventional generation,

while in Asia and Middle East the increasing of RES installation has been almost of the

same amount as the conventional one.

Among the RES, hydropower accounts for the largest share with an installed capacity

of 1172 GW, i.e., around half of the total. Wind and solar energy account for most of

the remainder with capacities of 564 GW and 480 GW, respectively. Meanwhile, the
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other RES include 121 GW of bio-energy, 13 GW of geothermal energy and 500 MW of

marine energy according to IRENA’s data [82].

Wind energy represents today one of the leading energy generation thanks to the ad-

vanced wind turbine technologies, commercially available. Wind turbine capacity has

reached more than 8 MW, and to the recently fall of the manufacturing and maintenance

costs. Nevertheless, in Europe, the installation of large wind power plants (WPPs) with

nominal capacities close to the one of fossil-fuel plants has overtaken coal-based energy

generation, making wind energy the second largest power source for installed capacity.

Moreover, in 2018 wind energy was the largest investment opportunity in the power

sector in Europe; several investors have purchased wind power plants in operation or

under construction for doubled in value respect to 2017 [164]. The low interest rates

were beneficial especially for the offshore market, which has seen financed more than

double of the offshore projects with respect to 2016, with a consistent growth of offshore

wind generation especially in Germany, Belgium and Denmark, see Figure 1.3. Such an

increasing trend has characterized also the global offshore market grew by 0.5% in 2018,

reaching an installation of 23 GW, making China the first country for annual installation

of both offshore and onshore WPPs (see Figure 1.3).

The massive penetration of wind generation in the energy market shall be supported by

a wider and innovative research work to push forward the deployment of wind systems

for reducing the costs of installation and production as well as for providing the grid

services typically relied on conventional power systems. For instance, these objectives

can be achieved by

• Improving the turbine’s lifetime by investigating innovative structural designs.

• Increasing the turbine’s energy extraction by properly designing turbine’s con-

trollers.

• Placing the turbines close each other, i.e., in a wind farm, to reduce the mainte-

nance costs and electrical interconnection.

• Regulating the wind farm generation taking into account power system stability

issues.
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If in the past years, the wind farms were basically operated to deliver into the grid

the maximum power available from the wind conditions, nowadays the high penetration

of wind energy is affecting the role of WPPs in providing power system stability issues.

Nevertheless, one crucial downside of the massive presence of wind power generators (and

other RES) in the electrical networks is the reduction of the system inertia to maintain

nominal operating conditions under disturbances, which affect the system stability (e.g.,

load changes, fault events, etc.).

Unlike conventional power plants, based on synchronous generation, modern wind tur-

bines (type 3 and 4) are decoupled from the grid frequency through power electronics,

hence they are unable to automatically restore the nominal frequency of the grid after

that a change in active power demand or production generates a frequency excursion,

and/or to keep the voltage within acceptable limits. Therefore, nowadays, different grid

codes established by the Transmission System Operators (TSOs) require WPPs to be

able to provide frequency and voltage controls, and fault ride-through capabilities [35].

To do this, WPPs need to be controlled through active and reactive power controls,

which aim to control the active power output and the injected/absorbed reactive power

of a wind farm in order to assess (among with conventional plants) the stability of the

grid. Some studies also show that there is an economical potential benefits for WPPs

operators to participate in the ancillary services market [89], which may encourage the

WPPs owners to provide grid requirements. Especially, significant steps forward to the

integration of new grid codes for WPPs have been made in those countries where the

wind generation covers a high part of the electrical consumption, such as Germany, Den-
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mark, China and the state of California, among others. Specifications are imposed at

the large wind farms (i.e., with a capacity close to the one of conventional systems) in

order to: 1) provide tolerance for the rate of frequency change, 2) follow common oper-

ation modes for frequency response and automatic voltage control. However, although

significant harmonization of national grid codes has been made, a general guideline for

power systems to make full harmonization among the countries is still missing [115].

The new grid codes are pushing researchers and industries for providing innovative op-

erating strategies for WPPs. Over the last years, advanced control strategies have been

proposed to achieve active power control to allow wind turbines to help in frequency

support. Changes in power supply or demand lead to a temporary imbalance of the

system frequency and affect operating conditions of power plants as well as consumers.

Large drops in frequency can trigger a cascade tripping of power stations and generate a

complete shutdown of electricity supply. Hence, the maintenance of frequency involves

additional active power that should be delivered into the grid by WPPs to smooth the

frequency droop.

Four power reserve levels can be defined according to the timescale necessary to deliver

these powers, see Figure 1.4. Inertia and primary reserves, which act on time scale

between 0.01 − 1 s to stop the initial frequency drop, secondary and tertiary reserves

that draw back the frequency at the nominal value and replace the secondary reserves,

to manage some constraints in the transmission lines. Wind turbines can participate in

inertial control emulating the inertia response of the conventional plants by designing an

artificial control loop to inject into the grid kinetic energy, through control of the wind

turbine rotor speed, [102]. Furthermore, also primary control can be ensured to provide

both upward and downward frequency regulations. While the former is always possible

by limiting the power injected from the wind farm, the latter requires additional power

reserve. Therefore, if WPPs are required to participate in frequency control they should

operate in deloaded mode by keeping a certain capacity reserve. There are several

approaches for doing so, and the investigation of new approaches based on a better

understanding of the wind and wind turbine dynamics is acquiring relevance as a major-

focus research topic among the wind energy researchers.

Since frequency support is and will be of central interest in the next years, especially
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with the occurrence of new grid codes, this doctoral thesis presents new concepts on

both model development and control design for wind farms. Novel control strategies are

addressed with the aim to improve the wind energy participation in the power generation

market and in the electrical balancing market. Wind farm generation is optimized by

designing closed-loop control strategies able to account of the fast dynamics character-

izing the wind turbine operation, as well as, of the slower dynamics of the wind flowing

through the wind farm. Surrogate low-fidelity models for describing these dynamics are

used to design wind farm controllers based on the receding horizon idea, i.e., predic-

tive controllers, stated to solve multi-objective optimization problems able to optimally

regulate the wind turbines power set-points. Reliability and performance are the main

drivers for designing proper control strategies that ensure accurate enough prediction

behaviour and, at the same time, low computational costs to provide real-time control.

In fact, the computational time should be kept small enough to guarantee fast response

in order to ensure grid support, which usually should be provided within second scale.

Furthermore, with the aim to guarantee the aforementioned objectives, also when large

WPPs are considered, both centralized and non-centralized control architectures are pro-

posed. On the other hand, with the growing number of turbines in the wind farm, the

large communication links required for a centralized control approach might have asso-

ciated high computational burden, especially when some optimization is solved in the

control algorithms, and low resiliency in case of the failure of one sensor. Furthermore,

the proposed methodologies are tested in MATLAB-Simulink wind farm toolbox, which

is able to simulate the slow dynamics of the wind flow field, to assess the closed-loop

performance and the effectiveness of the control strategies by making comparisons with

results obtained from the different proposed approaches and among the centralized and

non-centralized control techniques.

1.2 Research Questions

This dissertation is devoted to the design of wind farm optimization-based controllers.

The main research goal of this thesis is motivated by the following key research questions:

Q1 Which kind of wind farm controllers can be designed to provide grid support?

8
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Figure 1.4: Frequency response after a droop from the nominal value fs and deployment
of power reserve.

Q2 How the operation of a wind turbine can influence the power delivered by a wind

farm?

Q3 Which wind farm dynamics are needed to be considered when designing a wind farm

model such that a control strategy can be used in an online closed-loop framework?

Q4 Which control objective should be stated in an optimization-based control for wind

farm to provide frequency support?

Q5 How the computational burden can be reduced while ensuring the reliability of the

controller when the number of turbines in the wind farm becomes larger?

Q6 How can optimally distributed the wind controllers? Is a centralized approach the

best solution?

Q7 How the non-centralized control topology influences the overall closed-loop perfor-

mance when controlling a wind farm with respect the centralized counterpart?

Detailed answers to the aforementioned questions will be given throughout this disser-

tation. Questions Q1 and Q2 allow to provide an overview of the wind farm models and

control approaches already present in the literature. On the other hand, they identify

possible research opportunities in which this thesis provides its contribution. Questions

Q3-Q5 are the hearth of this thesis, proposing the design of novel optimization-based

both model-free and model-based control strategies to optimize the participation of wind

9
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farm in frequency support while satisfying other constraints imposed by the electrical

grid and wind turbine characteristics. Finally, questions Q6-Q7 are devoted to solve the

problem of controlling large-scale wind farms in a clever way, considering the aerody-

namic couplings among the turbines and additional constraints imposed by the electrical

grid.

1.3 Thesis Outline

This thesis is divided into the following parts:

I Preliminaries,

II Centralized control approaches for power reserve maximization,

III Non-centralized wind farm control strategies for optimizing wind farm power gen-

eration,

IV Concluding remarks.

In Figure 1.5, it is shown a road map for helping the reader to summarize the structure

and the main connections about the topics covered in this thesis.

Chapter 2: Literature Review and Background

This chapter is devoted to present an overview of the main topics covered in this thesis.

Firstly, a brief description about the most common wind turbines, together with their

mechanical and electrical characteristics, are discussed. Then, the main issues when

controlling wind turbines located in a wind farm are presented with a general review

about the principal objectives that want to be optimized when controlling the wind farm

operation. In addition, the background and preliminary concepts associated to model

predictive control and partitioning approaches are also presented.

Chapter 3: A wind farm control strategy for power reserve maximiza-
tion

This chapter presents a new wind farm control strategy to optimally distribute the power

set-points among the turbines inside a wind farm such that the tracking of the power

10
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demanded by the grid is ensured. Moreover, a linear programming problem is stated to

improve the extra power that the wind farm can provide in case of deloading operations,

such that the capacity reserve of the wind farm is improved. The test of the proposed

strategy is made under different wind conditions and power generations to ensure the

reliability and performance of the proposed methodology for each operation conditions.

This chapter is mainly based on the following publication:

• Siniscalchi-Minna, S., Bianchi, F. D., De-Prada-Gil, M., Ocampo-Martinez, C.

(2019). A wind farm control strategy for power reserve maximization. Renewable

energy, 131, 37-44.

Chapter 4: Predictive Control based on Lexicographic Minimizers

This chapter copes with the non-convexity nature of the cost functions of a multi-

objective optimization-based problem stated to minimize the tracking error, for pro-

viding automatic generation control, and to maximize the power reserve, for enhancing

the participation of the wind farm in primary frequency support. The lexicographic

solution method is applied to ensure the priority among the different objectives and

avoids the min-max non-convexity problem. The receding horizon technique is used to

design the predictive wind farm central controller, here the dynamics of the turbines

are described with simplified linear models that allow to keep low computational burden

such that the controller can be used for on-line optimization. Simulations are shown in

high-fidelity wind farm simulator able to reproduce the highly dynamic nature of the

wind and to test the wind turbine operation under a turbulent flow-field considering.

This chapter is mainly based on the following publication:

• Siniscalchi-Minna, S., Bianchi, F. D., Ocampo-Martinez, C. (2018, June). Pre-

dictive control of wind farms based on lexicographic minimizers for power reserve

maximization. In 2018 Annual American Control Conference (ACC) (pp. 701-

706). IEEE.

12
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Chapter 5: A multi-objective predictive wind farm controller for en-
hancing primary frequency support

This chapter states a multi-objective predictive control strategy where the power dis-

tribution among the turbines is optimally regulated by a predictive central controller.

In light of the results obtained from the two previous chapters, in this control strategy

the active power distribution is ensured by properly setting specific weighting parame-

ters that guarantee the minimization of the power losses due to the wake propagation

throughout the farm. Furthermore, along with the aerodynamics interactions also the

minimization of the power losses within the inter-array collection grid is considered.

Therefore, specific simulations will show how the minimization of electrical and aerody-

namics interaction can be treated for several wind speed directions, since the minimiza-

tion of aerodynamic interactions for certain wind directions may result from the opposite

regulation to reduce the electrical cable losses. In order to highlights the improvements

of using the proposed control approach with respect to the common power distribution

approaches in terms of power reserve, a comparative study is presented. Moreover, the

wind farm contribution to restore the frequency of the grid after a droop is also inves-

tigated for the investigated different distribution approaches. This chapter is mainly

based on the following publication:

• Siniscalchi-Minna, S., De-Prada-Gil, M., Bianchi, F. D., Ocampo-Mart́ınez, C.,

De Schutter, B. (2018, June). A multi-objective predictive control strategy for

enhancing primary frequency support with wind farms. In Journal of Physics:

Conference Series (Vol. 1037, No. 3, p. 032034). IOP Publishing.

Chapter 6: A non-centralized predictive control strategy for wind farm
active power control: a wake-based partitioning approach

This chapter is devoted to present a non-centralized control strategy for controlling large-

scale wind farms. Firstly, a new partitioning approach is proposed to cluster the turbines

in the farm according to the aerodynamic coupling due to the wake effects. Then,

each subset is controlled independently by a central control unit based on the receding

horizon idea. Each subset can be considered to behave as an equivalent wind turbine,

hence an aggregated first-order model is used to describe its dynamic. At the partition

13



Chapter 1. Introduction

level, the centralized approach presented in Chapter 5 is used to control the single wind

turbine. Simulations show the improvements in terms of reduction of computational

burden and the negative impact on the overall performance for maximizing the wind farm

power reserve, when the proposed model is used. Furthermore, a sensitivity analysis on

the overall wind farm control performance is shown for different number of partitions.

This chapter answers the research question Q6-Q7 and it is based on the following

publications:

• Siniscalchi-Minna, S., Bianchi, F. D., Ocampo-Martinez, C., Dominguez-Garcia,

J.L., De-Schutter, B. A non-centralized predictive control strategy for wind farm

active power control: a wake-based partitioning approach. Submitted to Renewable

Energy Journal. Elsevier.

• Siniscalchi-Minna, S., Ocampo-Martinez, C., Bianchi, F. D., De-Prada-Gil, M.,

De-Schutter, B. (2018, December). Partitioning approach for large wind farms:

Active power control for optimizing power reserve. In 2018 IEEE Conference on

Decision and Control (CDC) (pp. 3183-3188). IEEE.

Chapter 7: Contributions and Concluding Remarks

This chapter draws the concluding remarks of this dissertation and proposes some open

research questions as future work. The key research questions presented are also ad-

dressed in this chapter.

Other Publications and Awards

• Boersma, S., Doekemeijer, B. M., Siniscalchi-Minna, S., van Wingerden, J. W.

(2019). A constrained wind farm controller providing secondary frequency regula-

tion: An LES study. Renewable energy, 134, 639-652.

• Best poster award at Wind Europe 2017.
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Chapter 2

Background and Literature
Review

This chapter presents a literature review related to the main topics treated in this doc-

toral thesis. First, some relevant notions of wind energy and wind turbine aerodynamics

are described to derive the expressions for power and forces developed on the wind tur-

bines. Afterwards, a literature overview of wind farm control strategies is made focusing

on active power control. Firstly, some relevant works related to centralized and non-

centralized wind farm controller designs are discussed. Secondly, the model predictive

control strategy is presented, highlighting its versatility in the design of optimization-

based wind farm controllers. Thirdly, the partitioning of large-scale systems applied to

wind energy systems is briefly revised, being used throughout the thesis.

2.1 Wind Turbine Overview

This section is devoted to provide an overview about the main mechanical and electrical

characteristics of a wind turbine and to derive the mathematical formulations of the

torque, forces and power developed on a wind turbine.

The wind turbines are basically classified according to the way the turbine spins into

horizontal and vertical axis. Wind turbines that rotate around a horizontal axis are

more common, while the use of vertical axis wind turbines has considerably been reduced

during the last years due to the less energy intercepted by the rotor. Two sub-groups of

horizontal axis wind turbines can be identified, i.e., fixed-speed and variable-speed wind
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turbines. The former, known also as Type 1, has the advantage of being simple and

reliable to control. However, the direct connection to the grid imposes the generator to

rotate at synchronous speed avoiding the possibility to optimize the power extraction.

Meanwhile, the idea behind variable speed wind turbines is to keep the generator torque

constant while the wind variations are absorbed by changes in the generator speed. From

the electrical point of view three different types of variable-speed wind turbines have

been proposed over the years. Limited variable-speed wind turbine (or Type 2), such

that the speed operation range change from 0% to 10% above the synchronous speed,

but the problems of the fixed-speed concept are not totally solved. In order to cope

with this issue, two other types have been proposed, i.e., variable speed with partial-

scale converter and variable speed with full-scale converter, which will be thoroughly

discussed in Chapter 2.1.3.

Therefore, in this dissertation only the variable-speed variable-pitch horizontal axis wind

turbines are considered, as nowadays they represent the most employed wind technology

[79]. However, the interested reader can find a more complete and detailed description

about wind turbines development and innovation in [8, 23, 54, 80].

Typically, the main components of a wind turbine are:

• Rotor, which is the assembly of the blades, typically three or two, connected to a

central hub.

• Nacelle, which hosts the gearbox, generator, and all the other components enabling

mechanical transmission, such as heat exchangers, coolers and heaters.

• Tower, which holds up the nacelle. Recently, the yaw system is located between

the wind turbine nacelle and tower in order to ensure that the rotor is facing into

the wind as the wind direction changes.

The components along with the main control variables are shown in Figure 2.1, the latter

are: 1) pitch angle (β) that can be set to properly rotate the blades in order to regulate

the power extracted by the turbine for high wind speed conditions; 2) generator torque

(τg), it is controlled to ensure specific turbine operations when the incoming wind speed

is low and the pitch is not activated; 3) yaw angle (γ), by setting a yaw angle different

from 0 degrees the orientation of the rotor turbine changes with respect to the incoming
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Pitch 
b(  )

Break

Gearbox Anemometer

Controller

Generator torque
t(  )g

Yaw
g(  )

Figure 2.1: Main components of a wind turbine.

wind direction. All these control variables can be optimized to improve the performance

of the wind turbine operation.

2.1.1 Aerodynamics

The wind turbine converts the kinetic energy contained into the moving air into mechan-

ical energy. The rotor turbine turning at an angular speed ωr exerts a force on the wind

flowing through the rotor Ft while a torque Tr acts on the rotor. The most common

approach to derive the aerodynamic model of a wind turbine is the actuator disc theory,

also known as disc theory [23, 83], which is based on the assumptions that the wind

turbine behaves as an actuator disc (represented as a dark shadowed area in Figure 2.2),

the wind flows in a tube where the external pressure is the same as undisturbed field

(i.e., the flow is incompressible), and the mass flow rate remains the same throughout

the flow. Therefore, applying the conservation of axial momentum and the equilibrium

of forces law on the rotor area, the following formulation for the mechanical torque is

obtained:

17



Chapter 2. Background and Literature Review
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Figure 2.2: Cone development based on the disc theory.

Tr = ρArvr(v∞ − vw),

Tr = Ar(p
+ − p−),

(2.1)

where Ar = πR2 indicates the rotor area, being R the rotor radius, ρ the air density, vr

the wind speed faced by the rotor, v∞ and vw respectively the wind speeds at the tube

inlet and outlet. Finally, p+, p− indicate the air pressures immediately before and after

the rotor, see Figure 2.2. Applying the Bernoulli’s equation for the section 1 − 1′ and

2− 2′, the pressure drop can be written as

(p+ − p−) =
1

2
ρ(v2
∞ − v2

w). (2.2)

Replacing (2.2) into (2.1) the expression of the outlet wind speed is

vw = (1− 2a)v, (2.3)

where a indicates the induction factor, which gives information about the interference

between the wind speed and the rotor turbine. Finally, the thrust force can be expressed

as

Ft = 2ρArv
2
∞a(1− a), (2.4)

and the power extracted by the wind as

Pg = 2ρArv
3
∞a(1− a)2. (2.5)

It is clear that, for a given freestream wind speed, those equations depend on the gen-

eration conditions of the wind turbines counted by the induction factor. Therefore, the
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wind turbine capability of capturing the energy from the wind flow field can be indicated

by the power and trust coefficients, defined as

CT = 4a(1− a)

CP = 4a(1− a)2.
(2.6)

In normal operation of the wind turbine, the induction factor a can be assumed taking

values between 0 and 1/3. Therefore, the coefficients in (2.6) are increasing functions

of ai and the maximum theoretical value of Cp,max is obtained at a = 1/3. This is

a theoretical upper bound for limiting the wind turbine operation. Typically, for the

commercialized wind turbines the maximum value of CP is lower than the theoretical

limits, being almost equal to 0.45 [23]. The manufacturer provides the CP and CT tables

as function of the pitch angle β and the tip speed ratio λ, defined as

λ =
ωrR

v∞
, (2.7)

where ωr is the angular speed. Notice that the equations of CP and CT as function

of the blade pitch and tip speed ratio can be obtained by modeling the wind turbine

aerodynamics following the blade element theory [23]. Therefore, the power generated

by a wind turbine facing a freestream wind speed v∞ is

Pg =
1

2
ρArCP (β, λ)v3

∞. (2.8)

In this thesis, the power and thrust coefficient curves of the benchmark NREL-5MW

wind turbine shown in Figure 2.3 are used.

2.1.2 Mechanics

Conceptually, the mechanical components of a wind turbine can be treated as rigid bodies

linked by flexible joints, in number equal to the degrees of freedom of the structure.

Although simple models may not represent the complex dynamics of wind turbines,

they are quite helpful for controller design, where the complex dynamics can be treated

as uncertainties. Usually, the variable-speed fixed-pitch wind turbines are well designed

considering one or two degrees of freedom. Therefore, the most common mechanical

models of the wind turbine, derived using Multi-body System approach, consist of two

or one mass model. Because of its huge dimension with respect to the other components,

19



Chapter 2. Background and Literature Review

15

10

λ

5

030

20

β

10

0

0.1

0.2

0.3

0.4

0

C
P

15

10

λ

5

030

20

β

10

0.5

0

1.5

1

0

C
P

Figure 2.3: Power coefficient curve (top plot) and thrust coefficient curve (bottom plot)
of the benchmark NREL-5MW wind turbine.
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Figure 2.4: Two mass wind turbine model.

the rotor can be modeled as one mass. The drive train turns the slow rotor speed ωr

into high speed on the generator side, ωg. Those two different speeds characterize the

two-mass model ; rotor, gear box and the slow speed shaft inertia are integrated in Jr,

while the high speed shaft inertia is integrated in Jg, and the slow and high-speed parts

are connected by a flexible shaft see Figure 2.4. The twisting of the rotor, gear-box,

and low wind speed shaft are integrated in the torsional spring Ks and in the damping

coefficient is Ds, while the two masses frictions are indicated as Kr, Kg. Hence, the rotor

dynamics at the rotor side can be represented by the equation of motion

Jrω̇r = Tr − Tls −Krωr, (2.9)

being Tls the torque of the low speed shaft equal to

Tls = Ksσ +Dsσ̇, (2.10)

where σ , θr−θg/ng is the torsion angular displacement between the rotor and generator

angular positions θr, θg. Similarly, at the generator side,

Jgω̇g = Ths −Kgωg − Tg, (2.11)

being Tls = Ths/ng.
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Table 2.1: NREL 5MW wind turbine parameters.

Symbol Value Units

R 63 m
ng 97 -

Ks 867 · 10106 Nm/rad

Ds 6215 · 103 Nm/rad/s

Jg 534.116 kg·m2

Jr 387 · 105 kg·m2

ωr, N 1.26 rad/s
Tg 43093 kN·m
Pn 5 MW

Therefore, the wind turbine dynamics are described by the following system of equations:

Jrω̇r =Tr −Ds

(
ωr −

ωg

ng

)
−Krωr −Ksσ (2.12)

Jgω̇g =
Ds

ng

(
ωr −

ωg

ng

)
−Kgωg +

σKs

ng
− Tg

σ =ωr −
ωg

ng

Pg =Tgωg.

Hence, the wind turbine is a multi-input multi-output (MIMO) system governed (2.12),

which can be used to control the operation while acting on the generator torque Tg and

the pitch angle β. Table 2.1 lists the parameters for the wind turbine NREL 5-MW used

in this dissertation [85].

2.1.3 Electric

The aim of this subsection is to provide a brief description of the electrical power con-

version of a wind turbine, the interested reader can find a detailed overview in [23, 166].

This work is focused on two electrical wind turbine topologies from all the different ex-

isting configurations in the wind industry: the Doubly Fed Induction Generator (DFIG

- also called Type 3 wind turbine) and the fully-rated power converter (known as Type 4

wind turbine), see Figure 2.5.. These electrical topologies have been chosen due to their

higher regulation capacity of rotor speed and they are explained in detail below.
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Drive Train DFIG

DC

AC

AC

DC

RSC GSC

(a)

Drive Train PMSG
DC

AC

AC

DC

(b)

Figure 2.5: Figure(a): simplified structure of a DFIG. Figure(b): full-power converter
(b).
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Doubly-fed Induction Generators

Due to the improvements in power electronics and their high reliability, so far the DFIG

is the most used electrical configuration for wind power applications. One of the main

reasons of the massive employment of DFIG is that the power electronics devices have to

manage just a fraction (almost 30− 40%) of the power captured reducing the converter

size and losses compared to a full power converter solutions [122]. In fact, the connection

to the grid occurs by two different ways, see Figure 2.5a. The stator windings are

connected directly to the AC grid, i.e., three-phase, constant-frequency (fs) connection,

while the rotor windings are connected to the grid through a static converter that includes

a rotor-side converter (RSC) and a grid-side converter (GSC). Conventionally, the RSC

controls the rotor currents in magnitude and phase to regulate the active and reactive

power, while the GSC controls the DC-link voltage to ensure DC voltage stability. By

regulating the generator behavior through the GSC controller, the rotation speed is

allowed to operate over a range directly related to the converter rating, typically the

range is limited from −40%to + 30%. The ability to change the generator rotor speed

over a wide range enables the improvement of the power production by:

• Optimization of power output, the variable rotor speed increases the energy cap-

ture, especially in case of low wind speed conditions, load alleviations and more

power quality

• Exploitation of the kinetic energy used to alleviate the variation of power trans-

ferred to the grid or to provide grid support.

• Possibilities of reactive power control without using the capacitors.

Furthermore, the reactive and active powers are controlled separately by transformation

of the electromagnetic variables into the dq-reference frame. The reactive power depends

on the quadrature rotor current (q-axis), while the active power can be influenced by

controlling the d-axis components.

Full Power Converter

Figure 2.5b shows the scheme of the Type 4 wind turbine. This turbine is fully connected

though a frequency converter to the AC grid that uncouples the turbine generator to
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the grid frequency. The generator can be of either synchronous or induction nature,

even if the wound-rotor synchronous generators have had a larger employment. The

RSC ensures the rotational speed adjustment within a large range, since the converter

must effort all the energy supplied to the utility. Meanwhile, the GSC transfers the

active power to the grid and attempts to cancel the reactive power consumption. In the

past, the large converter capacity was the main drawback of this topology, in fact the

converter should be rated up 120% of the nominal generator power resulting in higher

cost of this configuration respect the DFIG. However, the advances in power electronics

achieved over the last years have provided converters with the capability of handing

large amounts of power at accessible prices [78]. Nowadays, a large number of new wind

farm installations include this wind turbine topology that ensures major performance

for controlling the power and voltage as well as to guarantee ancillary services.

In this thesis, the active and reactive powers are assumed to be controlled separately by

two uncoupled inner loops. Furthermore, for performing the active power, it is assumed

that its effect on the reactive power is not included. Being interested in the active power

control, and being the dynamics of electric machines as well as power electronics faster

than the mechanical dominant modes, a steady-state first order system is used to model

the generator power. Therefore, the following model of electromagnetic torque Tg is

implemented

Ṫg =
Tg − Tg,r

τT
, (2.13)

being Tg,r the reference generator torque and τT the time constant used to describe the

generator dynamics.

2.1.4 Operation

This section is devoted to present the mode of operation of a variable-speed variable-pitch

wind turbine. The operation of a wind turbine depends on the control objectives to be

achieved given the atmospheric conditions, i.e., under a certain freestream wind speed.

Figure 2.6 shows the ideal power curve of a wind turbine, where the power generation is

obtained from (2.8) for the wind speed range between vmin and vN. The latter indicates

the rated wind speed; while the former, also known as cut-in wind speed value, indicates

the limit above which the wind turbine starts to operate. In fact, at lower wind speeds

the power generated is too low to compensate the operational costs. On the other hand,
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Figure 2.6: Figure (a): P −v characteristic curve. Figure(b): Cp−v characteristic curve

the wind speed has also an upper limit, limit of cut-out vmax, which avoids structural

overload for high wind speed conditions. Mechanical stresses and loads are also reasons

of keeping the power constant to the rated value, indicated as PN, from vN to vmax.

This rated value is a compromise between the energy captured by the turbine and the

economical aspects, e.g., the maintenance and manufacturing costs.

Classical Operation Mode

Typically, the wind turbine operation can be divided in two regions, as shown in Fig-

ure 2.6. In Region 1, called partial load operation mode and being the wind speed low

(v ≤ vN), the goal is to extract all the available power, i.e., the maximum generation

capacity for the incoming wind conditions v. The available power is obtained using the

power equation in (2.8) but computed for the maximum theoretical power coefficient

Cp,max in (2.6), that is

Pav(v) =
1

2
ρπR2Cpmax

v3. (2.14)

In order to operate along the maximum power coefficient, the most common approach

is based on the generator torque control while keeping the pitch angle at the constant

value, typically equal to βo = 0 degrees. Under this circumstance, the power coefficient

is only function of the tip speed ratio in (2.7), i.e., Cp(λ, β
o). Being the wind speed

v a uncontrollable variable, the only parameter to change for providing the maximum

power coefficient is the rotor angular speed ωr. Figure 2.9 shows some curves of the

power profile as function of the rotor speed for different values of the incoming wind

speed. It can be noted that connecting the points corresponding to Cpmax
the curve

of optimal power Pr is obtained, red line in Figure 2.9. Therefore, the aforementioned
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Figure 2.7: Block scheme of power control for operation mode in Region 1.
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Figure 2.8: Block scheme of power control for operation mode in Region 2.

characteristics curves can be used as look-up table to provide the optimal power set-

point at the turbines. This control technique is know as Power Signal Feedback Control,

a simplified block scheme is shown in Figure 2.7. Here, a PI-based controller is used to

reduce the power error by acting on the system input Tg.

At high wind speeds, the available power cannot be tracked, being higher than the power

rated. Therefore, in order to achieve the ideal curve in Figure 2.6, the common operation

mode in Region 2 is to limit the power generation by regulating the pitch angle with a

PI-based control strategy, as shown in Figure 2.8. While for low wind speed the pitch

control is only used to keep the pitch at the optimal value βo, at v < vN it is activated to

manage the transient response around the transition region, i.e., close to the rated point

(PN, vN). In this circumstance, the aerodynamic power is quickly set at the rated value

by the speed controller but, the high wind conditions increase the kinetic energy stored

in the rotor inertia then transmitted to the grid, generating transient loads. Using, the

pitch control this effect can be smoothed [110] with the drawback of loosing some energy

capture [23].
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Figure 2.9: P-v and CP − v characteristics curves in MMPT mode (black line) and
deloading mode (red line).

2.1.5 Operation for Grid Support

As mentioned in Chapter 1, wind farms can be demanded to meet grid code specifica-

tions. Typically, wind turbines do not automatically provide these requirements, thus

it is expected to optimally regulate the power generation of the wind turbines to meet

such requirements. Basically, two main modes of operation can be set at the wind tur-

bines in a wind farm to provide the grid requirements: 1) MPPT (maximum power

point tracking) operation; 2) De-loaded operation. The latter is basically provided when

the grid requires to track a power demand profile lower than the available power of the

wind farm, thus some wind turbines must be curtailed. Meanwhile, the former is set to

provide the maximum power for all the wind range, that is

Pmax = min

(
1

2
ρπR2Cpmax

v3, PN

)
. (2.15)

When this operation mode is used to regulate the wind turbine operation, the kinetic

energy stored in the blades can be used to provide inertia frequency support, when it is

required. It is worth to anticipate that when power maximization concerns a wind farm
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whose wind turbines are aerodynamically coupled, the optimal power production is no

longer obtained by setting the MPPT operation to all the turbines in the farm [36].

Frequency Support

Because most wind turbines provide asynchronously generated power which cannot con-

tribute to system inertia because their spinning masses are decoupled electronically from

the grid. Therefore, high penetration of wind generation reduces the system inertia caus-

ing increased rates of change of frequency immediately following a disturbance. This

concern has pushed both academia and industry to provide advanced control strategies

to comprehensively address the issues related to frequency response. In this regards,

three main approaches can be identified for providing system frequency support:

1. Use the rotating kinetic energy stored in the turbine blades through proper de-

signed emulated inertia control [36, 102].

2. Regulate the pitch and the rotor speed to keep a certain wind turbine capacity

reserve [160, 168].

3. DC-link voltage and pitch angle are controlled for smoothing wind turbine output

power [59, 150]. Since the voltage control is out of the scope of this thesis, this

operation mode is not further discussed.

For the former case, the idea is to emulate the system inertia by means of artificial

control. There are several control schemes to draw the frequency support approaches [46,

151]. One common approach consists in adding a PI-based extra control loop sensitive

to the network frequency [167]. For a variation of the frequency from fs to f∗, where

the latter indicates the system frequency in normal operation, the controller sets an

input reference ∆Pr to be added to the input reference in the control loop, shown in

Figure 2.10, which is computed by

∆Pr = −KI
(fs − f∗)

t
−KP (fs − f∗), (2.16)

being KI ,KP ∈ R≥0 constants properly tuned.

A quite similar concept to facilitate an inertial response is presented in [109]. Here,

a droop-loop controller is activated only when the grid frequency exceeds some limits
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Figure 2.10: Simplified block schemes of wind turbine operation mode, including fre-
quency support.

in order to provides an active power change proportionally to the frequency deviation,

see Figure 2.10. Droop controller has not high impact on the initial rate of change of

frequency but it largely influences the frequency in the most critical condition of the

transient. The main limitations of those approaches appears at high wind speed, since

the wind turbine produces the rated power additional power cannot be provided by

the turbine; in this circumstance only downward regulation is guaranteed to balance

under-frequency deviation.

At low wind speed, the control loop for frequency response can be designed to inject into

the grid extra active power obtained by releasing the amount of kinetic energy stored in

the rotor mass within short term (about of milliseconds scale), that is

∆Ek = E∗k

(
1−

(ωs
ω∗

)2
)
, (2.17)

E∗k =
1

2
Jrω

∗2, (2.18)

where E∗k indicates the kinetic energy at frequency f∗, and the rotor speed is ω∗ = 2πf∗.

Hence, the set-point ∆ωr = ω∗ − ωs should be added as additional input to the rotor

speed control in Figure 2.7, so that the active power to be injected into the grid should

be increased after a frequency droop or decreased after an over-frequency event.
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So far, the main drawback of providing primary frequency support with wind turbines is

the undesirable stall conditions due to the over-decreasing in rotational speed of wind tur-

bines after the kinetic energy is released along with the increasing of mechanical stresses.

Moreover, the recovery process results in decreased wind turbine power production.

Deloaded Mode of Operation

When a wind turbine works in de-loaded operation, the power generated by a wind

turbine is

Pmin ≤ Pg ≤ min(Pr, Pmax), (2.19)

being Pmin an arbitrary minimum value of power, typically set different from zero to

avoid the shut-down of the turbine, and Pr the power reference set by the controller. In

case of derating operation, the latter (indicated by the blue line in Figure 2.14) is lower

than the maximum power (red line). Thus, according to (2.8), for a given P ∗g the choice

of (β∗, λ∗) that provide P ∗g is not unique. This degree-of-freedom on deloading the wind

turbine can be used to reach different goals, such as mechanical loads reduction and/or

frequency support.

By deloading a wind turbine there exists an extra amount of active power that can still

be delivered into the grid to provide primary frequency support. This power is commonly

called power reserve or capacity reserve and is given by

Pres = Pmax − Pg. (2.20)

In the literature, deloading control strategies are based on pitch control and speed con-

trol. Usually, in the case of high wind speed operation, the pitch is controlled to maintain

the power generated to a value lower than the rated one for all the wind range v > v∗,

while the rotor is typically kept to its optimal MPPT value (red line in Figure 2.14),

i.e., for v ≤ v∗, the maximum power is generated. The characteristic power curve for

this case is represented with the dotted blue line in Figure 2.14. More general deloaded

control strategies consist in the choice of rotor speed ω∗r , see blue line in Figure 2.14, and

pitch angle λ∗r such that the power reserve is guaranteed for any values of wind speed

in order to optimize the amount of kinetic energy stored in the rotor masses [36, 169].

With this approach, primary frequency support can be guaranteed for the entire wind

range, i.e., for both downward and upward frequency regulations.
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Figure 2.11: P-v and Cp-v characteristics curves in MMPT mode (black line) and de-
loading mode (red line).
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2.2 Wind Farms

Nowadays, the displacement of conventional power plants with renewable energy sys-

tems, such as wind energy systems, is one of the major challenges attracting worldwide

attention. In order to achieve this goal along with economies of scale to reduce the

cost of installation, maintenance, and transmission line construction, wind turbines are

arranged in even more larger clusters laid out in a grid-like pattern, commonly known

to as wind farms or wind power plants. The mature technology level of variable-speed

variable-pitch wind turbines together with the developments in the field of optimiza-

tion and control allow wind farms to optimize the power quality generation for a wide

range of wind conditions. One central feature affecting the power generated and the

performance of the wind turbines is related with the aerodynamic phenomena involved

in a wind farm, which make the difference between the control strategies typically used

to provide optimal control of a single wind turbine with respect to those necessary for

controlling a wind turbine within a wind farm.

2.2.1 Wind and Wake effect

The kinetic energy in the wind flow field is harvested by the rotor turbine and trans-

formed into mechanical power, computed as (2.8). However, in a large wind farm, the

wind speed v = vi faced by a generic wind turbine i depends on the wind turbine posi-

tion and the generation power conditions of the other turbines in the wind farm. Indeed,

when extracting kinetic energy from the wind, a wind turbine causes a reduction of the

wind speed in the downstream wake. As a result, the wake moves downstream and in-

teracts with other turbines standing in the wake modifying the mean velocity intensity

and the turbulence in the out-flow field, such that the available power of the downstream

turbines experiences a reduction. Therefore, to take into account those couplings among

the turbines when optimizing wind farm production, several wake models estimating the

wake effect on the incoming wind speed have been proposed in the literature [136]. How-

ever, modeling the highly dynamic behaviour of the aerodynamic interactions among the

wind turbines with high-fidelity degree is not a trivial task.

An initial categorization of the wake models is based on the model’s fidelity. High-

fidelity models involve numerical solutions to systems of 3-D Navier-Stokes partial dif-
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ferential equations, which require computational fluid dynamics (CFD)1 simulation to

be employed. Among the most popular high-fidelity wind farm 3-D models based on

large-eddy simulations, it is worth to mention the NREL’s Simulator fOr Wind Farm

Applications (SOWFA) [30], the UTDWF [100] and SP-Wind [105]. Whilst the expensive

computational costs (days on parallel computation) make those models not affordable

for real-time estimations, they should be used to test the reliability and accuracy of less

sophisticated wake models [44]. Nevertheless, for the sake of engineering applications,

such as the real time control of a wind farm, for which fast algorithms should be em-

ployed, simplified low-fidelity wake models should be considered to estimate the wake

within reasonable time. Commonly, such models are the 2-D parametric models in which

only the main elements of the wake are considered.

Even though in the literature there exist many wake model representations, they basically

are variants of the pioneer wake models presented in [84], also known as Jensen’s model.

This as first proposed the formulation of the wind speed deficit among an upstream and

the downstream turbine due to the wake effect. In [86], an extension of this model was

proposed by accounting for multiple wind turbine interactions. These relatively simple

formulations give reasonable results for the wake effect estimations, however they present

some limitations. For instance, the influence of the yaw angle is not considered, in this

regards the authors in [50, 62] proposed parametric wake model considering the yaw effect

to be tuned with SOWFA or real wind farm data. A recent simulation tool, FLORIS

(FLOw Redirection In Steady-state), based on this parametric model and including also

Gaussian velocity profile [20] and vorticity effects [100] has been shown to match the

wind farm power predictions with small errors (almost lower than 5.3%).

Due to the fact that these models contain a number of tuning parameters, it is difficult

to generalize the obtained results but some additional strategies have been provided to

update online the parameters according to real measurements [26]. Furthermore, the

aforementioned engineering wake models are based on steady-state assumptions, i.e.,

given the operating conditions, and the free upstream wind value, the wind distribution is

computed by a static wake model. By neglecting the wake dynamics allows the discussed

1
Computational Fluid Dynamics (CFD) is a branch of fluid mechanics that solves fluid flows governed

by the three-dimensional (3-D) Navier-Stokes (N-S) equations. The most accurate simulation direct
numerical simulation (DNS) uses a very dense grid to capture all eddy scales, however the computational
costs are high thus large-eddy simulations (LES) and Reynolds-averaged N-S (RANS) models can reduce
them reducing accuracy.
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models to be suitable for solving real-time optimization-based problems, e.g., layout

optimization and power maximization. Hence, the dynamics of the wakes moving across

the wind farm are neglected. In fact, depending on the free-stream wind speed the travel

time of wakes from one row to another is approximately 1-3 min [31]. The authors in

[93] propose the dynamic wake meandering model (DWM) based on 2-D Navier-Stokes

equations, where at the steady-state wake model aforementioned is added a stochastic

(meandering) wake model directly solved by LES in order to consider the effect of the

changes in turbulence intensity during the wake propagation. In [144], it is presented a

first attempt to consider the dynamics of the wind within a wind farm, while allowing the

use of efficient control algorithms that are not based on CFD simulation. In this model, a

state space wake representation is obtained from a system of partial differential equations

via finite volume method, and this allows the employment of control theory results

rather than static optimization ones. Moreover, a dynamical version of the Jensen’s

model is used in [137], which represents each wind turbine wake as one-dimension partial

differential equation and includes the dynamic effect of thrust modulation through wake

advection and the variable nature of the wake is considered using the Kalman filter.

Despite these dynamic models are more sophisticated of the steady-state ones, they still

present the issue of the computational time, especially if the wind farm is expected to

provide some specific requirements, such as grid support.

Summarizing, in the literature, there is not yet a wake model based on unsteady Navier-

Stokes equations that can be used for on-line control. However, on-line re-calibration of

the tuning parameters used for simplified wake models is becoming increasingly popular

in the literature being a suitable trade-off between computational burden and model

fidelity [44]. It is worth to mention that only a very brief overview about wake models

has been treated in this section. For the interested reader, a more complete overview

about wake models can be found in [88].

2.2.2 Control Objectives and Strategies

The need for control wind farms with optimization-based control strategies is directly

linked with the presence of the couplings among the turbines due to the wake effect.

Furthermore, as wind farms improves in size and power capacity, control specifications

become more and more demanding. Starting from merely extract all the maximum power
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by operate the turbines at their MPPT, nowadays wind farms controllers are typically

designed to

• maximize the power generation,

• reduce the mechanical loads,

• guarantee specific requirements, for instance to grid support purpose.

These control objectives, sometimes conflicting, are closely related and should not be

achieved separately.

Intuitively as the number of wind turbines of a wind farm increases, the wake effect

becomes more important, so that maximization of power production of wind farms should

be provided to optimally coordinate the control settings of the individual wind turbines

to prove potential gain with respect to classic individual turbine MPPT operating mode.

In general, to do so two common approaches can be adopted: induction control and

wake steering control. The former is based on de-rating strategy to optimally regulate

the induction factors a presented in (2.3) in order to reduce the wind speed deficit

behind the rotor of an upstream turbine. It has been shown that the reduction of the

power production of upstream turbines can increase the kinetic energy of wind reaching

downstream turbines [11, 140]. Wind tunnel tests have shown that this approach is

extremely sensitive to the fast changes in wind speed and direction. In fact, a slow

reaction of the controller would imply operating in suboptimal conditions, which might

be outperformed by the power maximization at the level of each wind turbine [29].

Being the axial induction control the main approach used to design the novel control

strategies presented in this dissertation, additional literature review on this topic will

be further discussed in Part II. The idea behind the wake steering control is to pur-

posely introduce a misalignment between the rotor axis and the incoming wind flow by

regulating the control settings, i.e., the tilt angle δ, pitch angle β and yaw angle γ, in

order to deflect the wake downstream to minimize the overlap of rotor area with the

area of the wake downstream. Notice that the tilt angle refers to the angle between the

horizontal axis and rotor shaft, the benefits on regulating this angle are presented in

[11, 52]. In general, wake redirection has been demonstrated successfully in a number of

situations in the literature, with an improvement in power production of more than 4%
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[90]. Among others, [62, 112] have demonstrated the concept in high-fidelity simulation.

Furthermore, [20, 29] tested in wind tunnel experiments the concept of wake redirection

control, and [51] even tested the concept in full-scale field experiments. Despite of the

promising results reached with wake redirecting, the increasing of fatigue loads on the

downstream turbines is still an important drawback that should be considered to prop-

erly set the control actions. Finally, some recent works proposed to optimize both the

axial induction factor and the yaw control by using adapted formulation of the Jensen’s

wake model to include the yaw angle as additional control parameter [21, 64, 113].

Closed-loop Wind Farm Control

As discussed in Section 2.1.4, some wind turbines work in de-loaded operation mode to

sustain the grid by providing some ancillary services, e.g. for frequency and/or voltage

purposes or curtailment constraints. Under this circumstance, the wind turbine should

track a certain control reference that can be optimally regulated by a higher control level,

which ensures that the wind farm provides the expected grid requirements. Due to the

complicated dynamics at a range of spatial and temporal scales inside the wind farm, ac-

curate control cannot be achieved without feedback [44]. Hence, a closed-loop framework

is preferred. Figure 2.12 shows a summary block scheme of a common closed-loop wind

farm control strategy. Here, a supervisory high-level controller determines a collective

control action by solving an optimization-based control problem using measurements

and/or simplified surrogate models. The latter can be calibrated by an observer in real-

time using noisy-measurements from wind farms to improve the control performance

by considering the wind farms and wind field dynamics. Hence, the optimal control

inputs are sent to the individual wind turbine controllers, typically PI-based nature.

The closed-loop control can be designed as two different communication architectures,

i.e., centralized or distributed control structures. A comparison of these architectures is

shown in Figure 2.13. In the centralized control system, the wind farm controller re-

ceives measured wind velocity and control degree-of-freedom magnitudes from all wind

turbines, and likewise transfers control set-points to all machines [77]. In a distributed

wind farm control system instead, the set-points of individual wind turbines are regulated

by their respective distributed control units [171], which are permitted to communicate

with all the control units or just to those of the turbine’s immediate neighbors.
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Figure 2.12: The closed-loop feedback block scheme of a general wind farm control
system. The measurements, control settings and outputs include several signals used to
state the optimization-based control problem.

Figure 2.13: The closed-loop feedback block scheme of a general control system for wind
farm. The measurements, control actions and outputs can include several signals.
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A comprehensive overview on the design of the supervisory controller can be found in

[88, 90]. Basically, two main approaches can be identified: model-based controller, and

model-free controller. The former consists of an internal model which is used to estimate

the wind farm performance. The latter, relies on simple control algorithms typically

provided to ensure the tracking of a certain power reference profile required by the TSO.

In [77], the regulation of the total power among the turbines is set proportionally to the

available power. The authors in [139] provided an on-line optimization-based control

algorithm to maximize the whole power reserve, i.e., the reserve at the wind farm level,

when the wind farm works in deloading operation. Other model-free approaches find the

optimal inputs for the wind turbines using game theory. The authors in [98] presented a

centralized game-theoretic dynamic optimization for power derating conditions. Starting

from baseline values of the induction factors for the turbines, at each time-step these

values are perturbed. They are updated if the wind farm power output increases with

respect the initial conditions, otherwise the baseline values of the induction factors are

kept. This model, tested for the HornsRev wind farm, resulted in increasing the wind

farm efficiency by 34% with respect to greedy conditions (i.e., the wind turbines produce

the maximum power at any time), but the iterative process to converge was too much

computationally expensive for real-time control (almost 103 iterations). In [16], the

authors provide a data-driven distributed control scheme to reduce the communications

among the turbines and speed-up the computational burden to maximize the energy

captured and to reduce the computational burden, which increases the reliability of

the wind farm operation. Moreover, distributed game-theoretic control algorithms have

been presented in [61] and [174]. The latter work is based on the model presented

in [98], however the information sharing is only limited at the neighbour turbines and

the perturbed values of induction factors are based on some probability distribution

function. The performance in power maximization is around 3.8% but the number of

iteration is drastically reduced (almost 200). Despite the proper results obtained, those

models have not been tested with high-fidelity wind farm simulators. Therefore, it is

not clear whether they can be applied to real wind farms. The only exception is the

model in [61], where a game theoretic algorithm is proposed for wake redirection and

tested with the high-fidelity model SOWFA. Other model-free controllers are designed

on the basis of the extremum seeking control technique, an optimization-based approach

that works for non-linear, time-varying systems. In [31], this technique is coupled with
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large-eddy simulations to find optimal torque gain settings for the wind turbines while

considering the dynamic of the aerodynamic couplings among neighbour turbines. The

model presented an improvement of 7.8% in the efficiency of wind farm power production.

For both game-theory and extremum seeking control approaches, the computation time

to converge to a unique solution remains a critical issue. Furthermore, the proposed

models are basically provided to maximize the power generation but it has not yet

further investigated if they can be used to provide ancillary services. Finally, to deal

with the non-linearity of the model and dynamics of the system other wind farm control

approaches defined as dynamic controllers can be designed using linear models as PID,

H2,H∞ based controllers. A distributed H2 optimal controller to mitigate the structural

loads and track a power reference is proposed in [145], while wake steering redirection

based on a robust H∞ controller is designed in [128].

The second common approach to design a wind farm controller requires a surrogate model

of the system to be controlled to estimate the future behavior of the system in response

to any hypothetical control input. This approach, also known as model predictive control

(MPC) strategy, enables to solve optimization problems subjected to several objective

functions and constraints. Being this strategy largely used in this thesis, it will be

discussed in the dedicated Section 2.3.

It is worth to mention that, another distinction between closed-loop control schemes can

be made with respect the measurements used to find the optimal control actions. In the

case of closed-loop state-feedback, all the states to be controlled are assumed measured.

However, this assumption can be impractical especially when the wind farm counts of

hundreds of turbines. In this case, only a certain number of measurements is used, while

the states are estimated using some observers. Typically, the observer is used to estimate

the flow velocity by using surrogate models that are based on parameters that need to

be adjusted according to the real-time operation. For this purpose, the authors in [66]

propose a control strategy where the wind speed is estimated re-calibrating the DWM

model. However, such an estimation is restricted for off-shore wind turbines operating

in de-loading strategy. Some works estimate the variable nature of the wake using the

Ensemble Kalman filter as proposed in [138],[43]. The dynamic wake model represents

each wind turbine wake as a one-dimension partial differential equation and includes the

dynamic effect of thrust modulation through wake advection. The work in [138] presents
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Figure 2.14: Frequency and Voltage control approaches for wind farm control. Figure
adapted form [77].

the observer combined with an MPC controller to track a power reference; although the

simulation time is still high (around 30 s), this model seems promising for track the

real-time grid set-points. Despite of the scarce number of control strategies that use an

observer, future wind farm control research should incorporate such estimation technique

to provide more reliable controllers.

Active and Reactive Power Control

Nowadays, one of the major research challenge for wind farm is related to comply with

the grid requirements while ensuring wind turbine safe operation and quality of the

wind farm power generation. Therefore, in order to fulfill these requirements wind farms

need to be controlled with dedicated control strategies that enable optimal active (or

frequency) and reactive power (or voltage) control. The active power control functions

required by the system operators are:

• Balance Control, wind farm is downward or upward regulated in steps of constant

level.

• Delta Control, the wind farm operates in de-rating mode by keeping a certain

amount of power reserve for ensuring frequency support.

• Power gradient limiter, the power delivered by the wind farm for supplying fre-

quency imbalances is regulated according to the rate of change of frequency. In this

case, the balance between wind farms and conventional power plants is guaranteed.

• Automatic frequency control, the frequency measured at the Point of Common

Coupling (PCC) is controlled to automatically produce more or less power.
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In the literature, different strategies to provide frequency support can be found while

tracking the power profile demanded by the grid. Among others, some works reported

control approaches to optimally regulate the power set-points among the turbines, in

order to control the rotor speed set-points of each turbine such that the kinetic energy

at the wind farm level is maximized, [3, 4, 37, 38, 130, 169]. For instance, in [37]

an heuristic control strategy is proposed to maximize the kinetic energy released by

the turbines inside wind farm. The heuristic approach is based on a scheduling of the

generated power solution of the optimization problem, in which the constraints on the

generated power are not considered. Hence, the optimal power profiles are used as set-

point for rotor speed controller in order to reduce the losses of kinetic energy during the

normal operation mode. The authors provide also this strategy for the energy recovery

problem, a downside of the inertial control that can cause the wind turbine to produce

less power after the inertial response, which could adversely affect grid frequency. In [4],

the maximization of kinetic energy is proposed for wind turbine operating in de-loaded

mode. In [169], the stored kinetic energy is maximized by reducing the power generated

by some wind turbines without reducing the total power delivered into the grid. The

authors in [38] propose to use the stored kinetic energy to smooth the variability on

the generated power, which is given by the self-induced turbulence levels. Here, Pareto

frontiers were constructed to optimize the amount of kinetic energy stored and the

maximization of power extraction.

Likewise, in case of de-rating operation the power set-points can be coordinated among

the turbines such that the power reserve is maximized [141]. Moreover, other control

strategies provide frequency support by equipping wind farms with energy storage sys-

tems to compensate the mismatch between the power demand by the grid and the power

generated by the farm.

On the other hand, the grid requires wind farms to control reactive power power so that

the voltage at the PCC is regulated within the admissible limits. The reactive power flows

and voltage profile within the offshore grid are influenced by the electrical components

in the system as well as their operating points and actively controllable by the WT

converters, on-load tap changers (OLTC) of transformers and other controllable reactive

power compensators. Typically, a transformer has a discrete number of tap setting

positions to be adjusted. Thus, the inclusion of this variable into the system leads to deal
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with mix integer optimization problems. The reactive power injection could be carried

out by capacitor banks, synchronous condensers, or parallel FACTS like Static Var

Compensators (SVC) or Static Compensators (STATCOM). The reactive power output

of SVC, STATCOM and synchronous condensers can be continually adjusted, while the

capacitor banks have discrete steps that are usually connected through switches. Using

such devices, the service of the wind turbines during grid faults is guaranteed avoiding the

disconnection of wind turbines to prevent a risk of voltage oscillations [127]. The reactive

power flows are strictly affected by the electrical connection between wind farms and

electrical grid. The most common is the alternating current (AC) connection, however

the distance from the cost for offshore wind farms motivates the use of high voltage direct

current (HVDC) system. In this case, the onshore AC-grid is interfaced with voltage

source converter (VSC), which fulfills the grid requirements and the reactive power

stability, whereas the offshore VSC-HVDC provides the voltage reference to offshore

grid. Recently, the project PROMOTioN [104] proposes offshore AC grid control of

wind farms connected through Diode-Based HVDC systems to deal with the voltage

stability. In the novel Diode-based HVDC links the wind turbines are responsible of

ensuring stability of the offshore AC grid (i.e., frequency and voltage), which modifies

completely the conventional control schemes of wind farms and wind turbines.

Nowadays, the optimization of active and reactive powers as unique problem able to track

the grid requirements and minimize the power losses is a pretty new on-going research

topic. A significant impact is getting the control of voltage adjusting both active and

reactive power references [173]. Here, the combined scheme can efficiently coordinate

the power regulation devices towards guaranteeing the stability of the wind farm.

2.3 Model Predictive Control

Model Predictive Control (MPC) is an advanced control technique that has had a large

impact on industrial control engineering. The main reason of this is the ability of the pre-

dictive controller to handle either one or even more than one constraint in order to ensure

quality and safety of the process. Typically, the MPC strategy is an optimization-based

technique that computes an optimal control sequence that minimizes a cost function

subject to a number of physical and/or operational constraints over a receding time
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horizon. A predictive controller has an internal model to generate prediction of the

plant behaviour over a future prediction horizon. Usually, the models used are of black-

box linear input-output nature obtained from simple tests of the plant or by system

identification using data taken from the plant [95]. However, non-linear models are also

used for understanding the physical aspects of some complex engineering systems, e.g.

those characterized by high dynamics as chemical transformations or flow computations.

In the rest of this thesis the internal model is assumed linear; this makes the calculation

relatively straightforward.

2.3.1 MPC Strategy

Usually, the MPC controllers are designed in discrete time and by using a state-space

model of the plant to be controlled [95, 116, 131]. Suppose that the dynamic behaviour

of the plant is governed by the state-space discrete-time non-linear model of the general

form

x(k + 1) = g(x(k),u(k),d(k)), (2.21)

where k ∈ Z≥0 denotes the discrete time. The vector x ∈ X ⊆ Rnx is an nx-dimensional

state vector, u ∈ U ⊆ Rnu is an nu-dimensional vector of control inputs, d ∈ Rnd

corresponds to the vector of disturbance affecting the system that may be obtained

using forecasting algorithms [45, 171], y ∈ Y ⊆ Rny is the ny-dimensional output vector.

Furthermore, the sets X, and U indicate the feasible sets according to physical and/or

operational constraints for the system states and control inputs, respectively. These

constraints are defined in a polytopic fashion as

X = {x ∈ Rnx |x(k) ∈ [x,x], ∀ k}, (2.22a)

U = {u ∈ Rnu |u(k) ∈ [u,u], ∀ k}, (2.22b)

where x ∈ X and x ∈ X denote the vectors of minimum and maximum admissible values

of system states, respectively, while u ∈ U and u ∈ U denote the vectors of minimum

and maximum admissible values of manipulated variables, respectively.

The predictive behavior of the system (2.21), that is the state vector sequence

x̂(k) , (x(k + 1|k),x(k + 2|k), . . . ,x(k +Hp|k)) (2.23)
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at x(k + i), i = (1, . . . ,Hp − 1) depends on the assumed feasible control input sequence

û(k) , (u(k|k),u(k + 1|k), . . . ,u(k +Hp − 1|k)), (2.24)

which is to be applied over a fixed-time prediction horizon denoted by Hp ∈ Z≥0. The

notation û rather than u here indicates that at time k there is only a prediction of

what the input at time k + i, i = 0, . . . ,Hp − 1 will be. Hence, the actual input at

that time u(k + i) will probably be different from û(k + i). Once the control input

is computed, according to the receding horizon philosophy [95], only the first element

of the trajectory in (2.26) is applied as the input signal to the plant in (2.21), that is

u∗(k) = u∗(k|k). Typically, the optimal control input sequence is obtained by stating

the predictive control approach to solve an open-loop optimization problem with the

following general formulation:

minimize
û(k)∈U

J(x(k),u(k)) , Jm(x(k +Hp|k)) +

Hp−1∑
i=0

J l(x(k + i|k),u(k + i|k)) (2.25a)

subject to

x(k + i+ 1|k) = g(x(k + i|k),u(k + i|k),d(k + i|k)),∀i ∈ [0, Hp − 1],
(2.25b)

u(k + i|k) ∈ U,∀i ∈ [0, Hp − 1], (2.25c)

x(k + i|k) ∈ X, ∀i ∈ [1, Hp]. (2.25d)

In this case, the function Jm : Rnx → R represents the terminal cost, meanwhile J l :

Rnx × Rnu → R represents the cost over the prediction horizon. Assuming that the

optimal problem in (2.25) is feasible, the optimal control input sequence throughout the

prediction horizon is given by

û∗(k) , (u∗(k|k),u∗(k + 1|k), . . . ,u∗(k +Hp + 1|k)), (2.26)

where the first optimal control input corresponds to the decision variable to be applied

to the system (2.25b). The procedure is applied iteratively, computing a new optimal

control sequence for each simulation step. Algorithm 1 summarizes the entire MPC

procedure.
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Algorithm 1 Model Predictive Control Formulation

1: Ns ← simulation length
2: Hp ← prediction horizon
3: k ← initial time
4: x(k) = x0 ∈ X← initialization of state vector
5: for k = 1 to Hp do
6: û∗(k)← solve the optimization problem in (2.25)
7: x(k + 1) = g(x(k),u∗(k|k),d(k))
8: k = k + 1
9: end for

2.3.2 MPC Tuning

Multiple objectives are usually implemented by solving a sequence of optimisation prob-

lems. The cost function is composed from different objectives having different priority;

hence, the cost function of the problem in (2.25a) is composed of n objectives, i.e., the

objective function in (2.25a) is replaced by the following expression:

minimize
û(k)∈U

J(x(k),u(k)) , Jm(x(k +Hp|k)) +
n∑
j=0

Hp−1∑
i=0

γjJ
l
j(x(k + i|k),u(k + i|k)),

(2.27a)

where γi ∈ R with i = {1, . . . , n} indicates the weight prioritizing the i − th objective.

There are many parameters that can be adjusted for obtaining the desired effects from

the controller. This requires to set several design parameters as

• Weights γi

• Prediction horizon Hp

• Value of the terminal cost function Jm in Algorithm 1

• Reference trajectory

In many cases, the tuning process is solved intuitively on the basis of the real-world

requirements and applications or selecting the weights by a trial-and-error procedure.

Otherwise, efficient setting of these tunable parameters often requires a systematic tuning

guideline for MPC, an extensive review about the explicit and implicit tuning approaches

for MPC is presented in [57]. Basically, the tuning procedures are based on a trade-off
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between performance and robustness. For example, off-line tuning procedures propose

to tune the prediction horizon such that the closed-loop stability of the control system is

ensured, the common approach is to set the prediction horizon so large such that further

increase has no effect on the control system performance [165]. Moreover, a detailed

theorem to ensure closed-loop stability based on the prediction horizon value has been

proposed in [56]. Afterwards, an extension of this approach has been reported in [101]

and [155].

Another tuning parameter is the choice of reference trajectories for each controlled vari-

able, the idea is to find the appropriate tuning by matching the MPC performance with

the performance of a pre-established controller that provides the mentioned references

[41]. Furthermore, the stability of the closed loop can also be improved by using distur-

bance models and observer dynamics: for instance, in [162] an automatic tuning approach

consisting of a controller and a state observer is presented. In [1], developed frequency

domain tuning techniques based on the H∞-norm of a mixed sensitivity function for

disturbance rejection scenarios are provided for single-input-single-output (SISO) struc-

tured controllers. One of the advancements in this area is the application of concepts

like neural networks, fuzzy logic, and genetic algorithms to tackle the difficulties asso-

ciated with the tuning of MPC. For instance, in order to save computational time in

[156] the authors have used genetic algorithms and multi-objective fuzzy decision makers

to establish the tuning of MPC controller considering the errors between outputs and

reference trajectories. Finally, the weights γi can be tuned without the use of a refer-

ence model. Focusing on the characterization of the set of feasible optimum solutions for

multi-objective optimization problems, that is computing several points along the Pareto

front associated with a given objective function [132].Then, a pre-established manage-

ment point allows to determine the desired value within the Pareto front from which the

appropriate tuning weights are determined. However, a large number of objectives lead

to complex non-convex Pareto curves and the optimization problem needed to be solved

using an evolutionary algorithm [154]. On-line dynamical tuning based on evolutionary

game theory is proposed in [15] to set the appropriate prioritization weights according to

a desired region of the Pareto front. Further methods have been explored to consider the

priority in solving multi-objective problems by ranking the objective functions instead

of solving a single objective [108].

47



Chapter 2. Background and Literature Review

2.3.3 Non-centralized MPC for Large-Scale Systems

Over the years, more and more large-scale engineering systems have been developed to

cope with new environmental and technical concerns. For instance, the ever-growing

integration of RES into the electrical network has caught the interest of many researcher

groups for providing reliable and highly performance controllers to achieve different

requirements, for instance to optimize the electrical power generation [6, 159], to provide

voltage and frequency regulation [40, 107], traffic control [19], water network distribution

[71, 117] and many others requirements. For large-scale systems, the high number of

elements characterizing the system to be controlled has associated an high number of

decision variables and constraints makes the centralized control approach not suitable to

provide a reliable control due to the high computational complexity. Therefore, one can

solve the control problem by decomposing the overall system into smaller subsystems,

such that the original problem is divided into computationally lighter sub-problems

to be solved separately. This approach is known as partitioning control approach and

the control of the overall system is ensured by a non-centralized design. In this case

when each sub-system corresponds to a specific partition controlled by local controllers;

each controller may be treated as an independent unit exchanging information with

only the elements within the partition or it may partially communicate also with some

elements in other partitions. Despite there are several classifications within the non-

centralized MPC controllers depending on how the controllers share information between

each other [134], in this dissertation only the two main architectures for MPC controllers

are identified: decentralized control scheme and distributed control scheme. If the latter

control approach allows dynamical couplings among the sub-systems (dotted line in

Figure 2.15), the former approach assumes that the dynamical couplings are weak and

the sub-systems are independent units. There are several ways to solve non-centralized

control problems, however going through them is out of the scope of this thesis. For

a deep understanding, the reader could find an extensive review about decentralized

approaches in [134] and in [96] for distributed control designs.

2.3.4 Partitioning Problems

Besides the benefits of reducing the number of variables to be controlled in order to

provide a certain control performance, dividing the systems in several partitions could

48



Chapter 2. Background and Literature Review

Figure 2.15: Different non-centralized architectures for MPC controllers: (a) general
design for non-centralized architectures, (b) decentralized design, (c) distributed (se-
quential) design. Dashed arrows connecting different sub-systems represent that the
dynamical coupling might exist or not. LC: Local Controller. Sub-sys: sub-system.

reduce the communication issues and economic costs due to long distance connections to

transport measurements and control signals. The partitioning strategy allows the identi-

fication of multiple sub-systems such that the controller can be performed in a distributed

or decentralized fashion. The system decomposition problem is typically recommended

during the system modeling process through cleaver identification of sub-systems on the

basis of physical insight, intuition or experience. However, for a large-scale complex

system this approach is not suitable, thus the main challenge is to design systematic

partitioning methods to automatically decompose a given large-scale system. Since the

partitioning approaches are strictly based on specific dynamics of the couplings among

the elements within the systems, or on detailed control performance, such as on existing

coupled constraints that are imposed to guarantee some warranties and specifications,

determining a general partitioning problem is quite challenging. Mainly, two general

cases can be identified for partitioning large-scale systems [15]: 1) determining a par-

titioning based on the dynamical coupling of the whole system; 2) taking into account

not only the dynamical representation of the system, but also considering all the cou-

pled constraints involved in the control design. The former case can be applied when a

given sub-system i ∈ S with S = {1, . . . ,m} and m the total number of sub-systems, has

only interaction with neighborhood sub-systems. Meanwhile, the latter case is required

to provide partitions also if there are not dynamical couplings among the sub-systems,

which instead are coupled by constrains to be included in the optimization problem in

(2.27).
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Since most of networking systems can be represented by using a graph, for performing

certain partitioning procedures a graph-theoretical strategy can be used [135]. In this

case, the elements of the system coincide with the nodes of the graph while the couplings

among the elements represent the arcs. Typically, the main objective for partitioning the

system consists in minimize the couplings among the elements in different sub-systems

such that the controller can be performed in a non-centralized fashion [74]. How the

information should be shared among the sub-systems and the appropriate manner to

implement the partitioning approach to provide online control for any decentralized,

distributed and hierarchical approaches are presented in [114]. A quite general optimal

partitioning problem independent from the control strategy used is presented in [118],

where it has been applied to define decentralized predictive controllers. Another general

partitioning problem is presented in [17], this work sought to partition the graph with a

trade-off among minimization of sub-system sizes, interconnections, pairwise distances

while considering information relevance. Other partitioning approaches applied to con-

trol power systems networks are presented in [13, 92] where, respectively, voltage control

and reactive power control are provided.

2.3.5 MPC for Wind Farms Control

As wind provides more and more of the energy the world consumes, there is a growing

interest in active power control (APC), in which the wind farm manages its power output

in accordance with the electrical grid requirements. The generation conditions of the

wind turbines may be optimized in order to achieve several objectives while respecting

some constraints to ensure technical and/or operational limits. In the past decade,

control techniques such PID control [158] and H∞ have been prevalent in the literature

[128, 129, 145]. However, these controller designs cannot incorporate the system and

input constraints in a systematic fashion, additionally violating constraints will cause the

undesired shutdown of wind turbine [91]. Therefore, MPC in wind energy applications

has become popular in academic community due to its intrinsic capacity for dealing with

multi-variable systems and constraints. Furthermore, its accessible design formulation

handles more complex issues and guarantees proper performance and robustness [27, 34].

For those reasons, the predictive controllers represent a good alternative to classical

control designs since they solve multi-objective optimization-based control problems to

50



Chapter 2. Background and Literature Review

regulate the wind farm generation during deloaded mode of functioning by optimally

regulate the operation balance between the strictness of the wind turbine power reference

following and the reduction of the wind turbine structural loading [25, 147, 172] or the

minimization of the wake-induced power losses [10, 21, 138, 153].

A pioneering work is presented in [147], where the idea to exploit the freedom in power

distribution to reduce fatigue loads was first presented in the context of disturbance

rejection. There, the problem is divided into two parts. First, optimal power set points

are computed explicitly off-line for each turbine using a receding horizon strategy. These

set points are based on other auxiliary power variables that are then used for online

coordination of the turbines in order to meet the total power demand. In [25], an optimal

constrained centralized predictive control strategy is proposed to minimize the fatigue

loads affecting the turbines by controlling the induction factors and the yaw settings.

Distributed control design for reduction of loads is presented in [172], the control scheme

is based on the fast gradient method via dual decomposition implemented using the

clustering-based piecewise affine wind turbine model. The proposed strategy shows fast

control to coordinate the wind power generation with energy storage systems linked to

the wind farms. In [173], the authors use the same approach for optimally dispatching

the active and reactive power set-points among the turbines such that frequency and

voltage supports can be provided by the wind farms.

Adjoint-model predictive control has been proposed in [153], where Lagrange multipliers

were used to remove constraints for the optimization problem, while WFSim was used

to simulate wake aerodynamics. The authors keep measurements of the entire wind

field that can become cumbersome as the size of wind farms grow. Recent works [67,

68, 111] used the receding horizon technique for designing centralized controllers that

consider the wake dynamics estimated with a full high fidelity LES model of the wind

farm to compute the optimal control commands. Despite the large wind farm efficiency

gained of up to 21.2%, the computational costs of running LES makes these controllers

unpractical for on-line optimization. To enable real-time operations, the authors in [138]

propose a method that utilizes a time-varying one dimensional wake model in which

rows of turbines are considered to behave similarly. This assumption greatly speeds the

computation but neglects differences in the incoming wind profiles and requires turbines

to be fully waked, which eliminates the possibility of wake steering control.
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In order to cope with the computational costs, in [10] an efficient model to estimate

the wind speed changes using SCADA data is proposed and the estimations used to

optimally dispatch the power set-points among the turbines. The distributed consensus-

based predictive control strategy proposed in [21] is used, including time-varying axial

induction factors, yaw misalignment, and wake characteristics, is described and used to

determine optimal axial induction and yaw control actions. However, the use of linear

model for the wake estimation limits the use of this strategy for advanced purposes as

loads or power optimization. Finally, [65] examined the available power gain due to the

wake reduction controlling the induction factors when using a wake model with MPC to

represent the interactions between turbines.
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Centralized Wind Farm Control:
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Figure 2.16: WPP control scheme under study.

Overview

The objective of wind farm control is to reduce the levelized cost of wind energy by

intelligently operating the turbines inside the farm. When the wind conditions and

the power demanded by the TSO permit, so that the latter is lower than the available

power at the farm level, there is a degree-of-freedom in tracking the power demand.

Therefore, besides tracking, the regulation of the power among the turbines can be

optimized to reach different subgoals; for instance, the decrease of mechanical loads

acting on the wind turbine and/or the increase of available power and the reduction of

electrical cable losses. For doing so, a closed-loop central controller should be properly

designed to solve a multi-objective optimization problem. As part of this dissertation,

three novel wind farm control strategies are presented and tested by simulations in

Matlab/Simulink. Finally, for the sake of completeness, the proposed methodologies

are compared for different wind speed conditions and directions values. fig. 2.16 shows a

schematic illustration of the centralized closed-loop control scheme of the optimization-

based control approaches proposed. The gray block contains the main components of

the controller, which is required to regulate the power reference among the turbines Pr

according to some constraints and measurement information, such that the total power

generated by the wind farm, indicated as Pg,tot, meets the power demanded by the grid

Pdem.
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A wind farm control strategy for
power reserve maximization

Nowadays, in many countries wind energy is responsible for a significant part of the

electricity generation. For this reason, TSOs are now demanding the WPPs to contribute

with ancillary services such as frequency support. To this end, WPPs must be able to

temporally increase the active power delivered into the grid to compensate consume and

demand imbalances. This implies that WPPs now work below their maximum capacity

to keep some power reserve to be able to inject extra power into the grid when needed.

This reserve depends on the available wind power, which is directly connected with the

wind speed faced by each turbine within the WPP.

Within a wind farm, the wind conditions are imposed by the wakes produced by the

upstream turbines [53] that make the control of the turbines in the farm challenging.

One approach for dealing with these aerodynamic interactions is to develop wake models

for use in the optimal control problem formulation [21],[64]. However, the highly dy-

namic behaviour of the wind makes the estimation of the wake incredibly challenging, in

particular if this goal wants to be achieved by first-order models. As mentioned in the

extensive literature review about wake control presented in Section 2.2, several strategies

have been proposed to minimize the wake effect in order to maximize the total power

generation and minimize the power losses caused by the wakes. Some of them are based

on redirecting the wakes around the downstream turbines by yawing [62, 121] or tilting

[12, 152] the wind turbines, whereas others seek to redistribute the power contribution

of each turbine [137]. Among others, an alternative approach in line with the goal of the
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control strategy proposed in this chapter is to develop an online control algorithm where

a centralized controller adjusts the axial induction factors of the turbines according to

wind turbine performance information, local wind conditions and grid requirements. In

particular, this chapter is devoted to present the wind farm control strategy as published

in [139]. Here, a centralized wind farm controller solves an optimal control algorithm

that seeks to determine the power set-points for every turbine considering that com-

monly wind farms operate in waked conditions. With the goal of maximizing the power

reserve, the proposed wind farm control strategy distributes the power contribution of

each turbine in order to maximize the available power (i.e., the power reserve) at the

wind farm level.

The proposed approach has tested for a wind farm model of 12 wind turbines using a

simulator that models the dynamic behavior of the wake effect by using the common

dynamic wake meandering model [93].

3.1 Wind Turbine and Wind Farm Models

The power reserve for a wind farm of N turbines is computed by

Pres,tot =

N∑
i=1

Pres,i =

N∑
i=1

(Pav,tot − Pdem) (3.1)

where

Pav,tot =
N∑
i=1

Pav,i(vi), (3.2)

and vi the wind speed experienced by the turbine. In circumstances with high wind

energy conditions, wind farms are able to meet the total power demanded by the TSO

by de-loading some wind turbines, i.e., by keeping a certain amount of power reserve

Pres,i as defined in (2.20). For wind turbines with this capability, the generated power

can be expressed as

Pg,i = κ1Cp(ai)v
3
i = min(κ1Cp,maxv

3
i , Pr,i), (3.3)

where κ1 = (πρR2/2) and Cp is the power coefficient that can be written as a function of

the induction factor ai [97], see (2.3). In normal operation, according to the Betz’s theory,

the induction factor ai can be assumed taking values between 0 and 1/3. Therefore, Cp
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Figure 3.1: Induction factor a – wind speed v characteristic for several power set-points
Pr. The black line corresponds to the nominal case (Pr = Prated).

is an increasing function of ai and the maximum value Cp,max is obtained at ai = 1/3. It

is worth to recall, that the induction factor is only a control parameter that is empirically

related with pitch and torque regulation. In fact, de-loading operations can be achieved

by acting, individually [81] or in simultaneously [169], on both pitch and torque control

actions to ensure sub-optimal operational conditions. According to (3.3), the generated

power can be set to a given value Pr,i if wind conditions allow. This expression also

indicates that, for a given vi, there exists a unique 0 ≤ ai ≤ 1/3 producing Pg,i = Pr,i.

The relationship among Pg,i, vi and ai is shown in Figure 3.1.

The available power at each wind turbine, i.e., the maximum generation capacity for

the wind conditions vi, is a monotonically increasing function of the wind speed until

to reach the rated value PN in Region2, as shown in Figure 2.6. Therefore, for a

given power reference Pr,i each turbine within a farm has different capacity reserve as

wind conditions depend strongly on the geographical distribution of the wind turbines,

variations of wind direction, surface roughness, turbulence and the air flow disturbances

caused by the wake effects induced by up-stream turbines [18]. Despite of the complexity

of the aerodynamic interactions between turbines, suitable estimations can be achieved

by modeling the wind speed deficit as a function of the geographical positions of the

wind turbines, the atmospheric wind conditions, and the control actions required for the

turbines, which affect the induction factor ai. Assuming the velocity deficit behind the

upstream turbine modeled as a quasi-steady state model with a linear relation between
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the induction factor and the downstream inlet velocity, [24, 84], the incoming wind speed

for the downstream turbine is given by

vj = vi(1− δv(xji, si, ai)), (3.4)

where i ∈ {1, . . . , N − 1}, j = i+ 1, si is the spanwise distance behind the i-th turbine

while the velocity deficit is

δv(xji, si, ai) =

{
2aicji if si ≤

2R+2κrci,j
2

0 otherwise,

with the coupling parameter cji = (2R/(2R+ 2κr(xi − xj)))2 including the information

about the wind turbine distance, being xi and xj the positions of the upstream and

downstream turbines respectively, and the roughness coefficient κr that defines the wake

expansion when passing through a turbine.

In light of the previous expressions, the wake effect may be modified by properly acting on

the induction factors ai with the aim of attenuating the wind deficits and thus for instance

maximizing the power reserve and the wind farm capability for providing frequency

support.

3.2 Wind Farm Controller

The primary objective of the wind farm controller is to track a power demand profile

set by the TSO. This goal can be achieved with different power contributions of each

turbine. This leaves an additional degree of freedom that can be used to satisfy other

requirements. In the literature, several dispatch functions have been proposed to ensure

different goals. For example, a simple approach distributes the total power proportion-

ally to the available power of each turbine [77], while other distributions minimize the

structural loads with the aim of ensuring a long turbine lifetime [50, 171]. Here, a model-

free control strategy that uses this degree of freedom to maximize the power reserve is

proposed.

Assuming that the power Pdem demanded by the TSO is lower than the total available

power Pav,tot, the objectives are to regulate the total generated power at Pdem and

maximize the total power reserve Pres. Being the power demand Pdem a parameter set
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by the TSO, the maximization of power reserve implies maximizing the total available

power Pav,tot.

The available power at each turbine Pav,i depends on an increasing function of the wind

speed faced by the rotor vi (see Figure 3.1). Therefore, the maximization of the total

available power can be seen as maximizing

J =
N∑
i=2

vi(Pr), (3.5)

where Pr = [Pr,1, . . . , Pr,N ]T , and Pr,i is the power generation set-point at i-th turbine

imposed by the wind farm control.

Due to the propagation of the wake effect, the generation conditions of the upstream

turbines will affect the wind speed experienced by downstream turbines only after a

certain time interval Ts, being this the time needed by the air flow to travel from one

turbine to another. Notice that Ts can be approximated as

Ts = si/(v
′
∞), (3.6)

where v′∞ = 0.7v∞ indicates the variation of the convection velocity from the bottom to

the top of the rotor disk and si the distance between turbines [31].

Assume the wind turbines are evenly spaced and the set of turbine indexes

N =
{
i : 1 ≤ i ≤ N and vi ≥ vj , for i < j

}
is sorted according to the farm layout and dominant free-stream wind speed direction.

That is, i = 1 corresponds to the turbine facing the free-stream speed (v∞) and i = N the

last one, facing the wind speed after passing through the entire farm. Hence, the value

of the coupling parameter cj,i in (3.4) can be replaced by the constant κ2. Therefore,

defining t = kTs with k ∈ Z≥0, or simply k, the wind speeds faced by each turbine can

be modelled as
v1(k + 1) = v∞

v2(k + 1) = v1(k)(1− κ2a1(k)),

v3(k + 1) = v2(k)(1− κ2a2(k)),

...

vN (k + 1) = vN−1(k)(1− κ2aN−1(k)),

(3.7)
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with

v∞(k) = v1(k) ≥ v2(k) ≥ v3(k) ≥ · · · ≥ vN (k). (3.8)

The induction factor ai is given by Pr,i according to (5.3). It can be seen from 5.3 that

for a given vi an increase in Pr,i leads to an increase in ai. From 3.7, this results in a

higher wind speed deficit. Therefore, a heuristic approach to maximize 3.5 may be to

minimize the power contributions of first wind turbines and maximize the contributions

of the last ones (sorted according to N). Keeping this idea in mind, in this chapter it

is proposed to compute the power set-point Pr,i for each wind turbine by solving the

following linear programming problem:

minimize
Pr,i

wT ε (3.9a)

subject to Pdem =

N∑
i=1

Pr,i, (3.9b)

|Pdem −
N∑
j=i

Pr,j | ≤ εi, i ∈ N, (3.9c)

Pmin,i ≤ Pr,i ≤ Pav,i, i ∈ N, (3.9d)

where ε = [ε1, . . . , εN ]T , w = [w1, . . . , wN ]T are weights such that w1 < w2 < . . . < wN ,

and Pmin,i is the minimum power contribution.

Notice that constraint (3.9b) can be satisfied with multiple linear combinations of Pr,i.

The optimization problem (3.9) seeks to find the combination with higher power con-

tribution from the last group of turbines. In particular, with the selection of weights w

and the constraint (3.9c), the optimization problem can be seen as

Algorithm 2 Linear Programming Optimization Problem

try first Pr,N = Pdem,

if Pr,N > Pav,N then try Pr,N−1 = Pdem − Pr,N ,

if Pr,N−1 > Pav,N−1 then try Pr,N−2 = Pdem − Pr,N − Pr,N−1,

and so on, until ((3.9)b) is satisfied.
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In fact, if the lower limit Pmin is removed, the problem can be solve algorithmically.

Nevertheless, the lower limit is useful to prevent the shutdown of some turbines in high

wind conditions.

The optimization problem (3.9) is solved at every time T < Ts to produce a set of

power references Pr,i, i ∈ N. The application of these references alters the induction

factors and thus the wake effect. As the proposed control strategy reduces the power

contribution from the first set of turbines, the wind speeds faced by the last turbines

increase resulting in higher available powers. As will be shown in the case study, after

a few iterations this control strategy is able to increase the available power in the last

turbines and then in the total power reserve.

3.3 Case Study

Case description

The proposed control strategy has been evaluated by simulation in the case of a wind

farm with 12 benchmark NREL 5MW wind turbines with radius of 63 m (a diameter

D = 126 m). The wind turbines are evenly spaced along x- and y-directions by 630 m

(5D). Simulations were performed with the AEOLUS SimWindFarm (SWF) Simulink

toolbox [72], which uses the dynamic wake meandering model to estimate the wake effects

according with the wind turbine layout and the ambient turbulence intensity. The wind

field size was 2500× 2500 m2 and the 2d (x,y) grid was spaced 15 m. Simulations were

performed with laminar flow conditions, while the turbulence intensity was set equal to

0 to have a clearer view of the wind speed changes produced by the proposed strategy.

Different wind directions were simulated by rotating the wind farm layout. Figure 3.3

shows the wind fields v∞ = 11 m/s with directions of 0 and 30 degrees in steady-state

conditions. Although wind farms layout are designed such that the occurrence of highly

waked conditions are minimized, e.g., when the wind direction is 0 degrees, it remains an

interesting case study to investigate the wind farm conditions in the worst case scenario

[50].

With the aim of evaluating the improvement in the power reserve, the proposed control

algorithm was compared with the commonly used power distribution [72, 81] established
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Figure 3.2: Wind farm layout corresponding to the case study. The turbines are consid-
ered oriented to the free-stream wind speed direction.

as

Pr,i = min

(
Pdem

Pav,tot
Pav,i, Pav,i

)
, i = 1, . . . N. (3.10)

Simulation Results

Scenario 1: low power demand and zero degrees wind speed direction

First, it is analyzed the system response when the power required by the TSO is set at

20 MW and the free-stream wind speed is 11 m/s with a direction of 0 degrees. Figure 3.4

shows the total values of the available power Pav,tot (red line), the power demand Pdem

(dashed line), the power generated Pg (blue line), and the power reserve Pres (black line).

Initially, for t < 200 s (shadow area), the wind farm controller sets the power set-points

of each turbine according to the baseline power distribution (3.10). After t = 200 s,

the controller starts computing the power set-points with the proposed control strategy

(3.9). It can be observed in Figure 3.4 that such strategy ensures the regulation of Pg

around the constant set-point Pdem = 20 MW during the whole simulation. On the other

hand, it can also be seen that when the proposed control strategy is applied (t ≥ 200 s),

the available power Pav,tot increases from 48 to 51 MW after a few steps. This represents

an increase in the power reserve Pres from 28 to 31 MW. The new steady-state value is

reached after 200 s.

Figure 3.5 shows the power available Pav,i (red line), the power set-points Pr,i (dashed
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Figure 3.3: Wind fields simulated with SWF for a wind farm of 12 turbines facing a
v∞ = 11 m/s. Left plot: wind field for a direction of 0 degrees. Right plot: wind field
for a direction of 30 degrees.

line) and the power generated Pg,i (blue line) for each wind turbine. The wind speed

experienced by each turbine is shown in Figure 3.6. The shadow areas in both figures

correspond to the use of the baseline power distribution (3.10) (t < 200 s), in the analyzed

scenario Pdem/Pav,tot = 0.47. In Figure 3.6, it can be observed the wind speed deficit

caused by the wake effect. With the baseline distribution, each turbine must contribute

with 47% of its available power. The turbines in the first column are facing the free-

stream speed 11 m/s, whereas the ones in the last column are experienced 10.23 m/s.

As a result, the available power Pav,i decreases from 5 MW in the first column (WT1,

WT5, WT9) up to 3.71 MW in the last column (WT4, WT8, WT12).

When the proposed control strategy is applied at t = 200 s, the power set-points of

the turbines in last column are set at the their available power. As a consequence of

the larger contribution from these turbines, the remaining turbines reduce the power

generation until the minimum value Pmin,i = 1 MW. As explained in Section 3.2, this

reduction of the power generation in the turbines of the first columns implies a decrease

of their induction factors and of the wind speed deficit in downstream turbines. These

changes take about Ts = 60 s to reach the last column (t1 ' 260 s) for the current

case. This is the time needed by the wakes to travel through the columns. At t = t1,

the reduction in Pg,i only affects the wind speeds faced by the turbines in the adjacent

downstream column. The wind speed vi in Figure 3.6 increases with respect to the
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Figure 3.5: Scenario 1: generated (Pg,i), available (Pav,i) and set-point (Pr,i) powers for
each wind turbine. Shadow area: baseline power distribution function. White area:
proposed distribution algorithm.
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Figure 3.6: Scenario 1: wind speeds faced by each turbine. Shadow area: baseline power
distribution function. White area: proposed distribution algorithm.

initial conditions (t < 200 s) in 1.5% for turbines WT2, WT6, WT10, in 1.3% for WT3,

WT7, WT11 and 1.2% for the last column. The increase in the wind speed faced by

the downstream turbines causes an additional increase of the available power in the last

column. As a result, the control strategy imposes a higher set-point to WT8 and WT4.

The contribution of WT12 is now lower because the total available power is enough to

reach the power demand. This new distribution causes a new increase in the wind speed

and thus in the available power until an equilibrium is reached after three steps, i.e., at

t3 = 200 + 3Ts s.

Figure 3.4,3.5,3.6 show that the proposed algorithm is able to reduce the wake effects

and thus improves both the overall available power and the total power reserve.

Scenario 2: low power demand and different wind directions

For a more complete evaluation of the proposed strategy towards power reserve maxi-

mization, the control system was simulated under low power demand Pdem = 20 MW

for different wind speed directions. Figure 3.7 shows the power reserve for a free-stream
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wind speed v∞ = 11 m/s with directions of 0, 20, 40, 60, 80, 90 degrees. As in the

previous case, the baseline control is used for t < 200 s, then the new power distribution

algorithm is applied. In Figure 3.7, it can be seen that the proposed strategy increases

the power reserve for all wind directions compared with the baseline case. As mentioned

in Section 3.2, the proposed algorithm needs several steps before reaching the equilibrium

and these step times are affected by the time required from the wakes to travel through

the wind farm columns. This propagation time is different for each direction because

the distance the air flow must travel depends on the wind speed direction. Notice that

higher improvements in Pres are obtained when the wind turbines are totally in the wakes

of the upstream turbines (see Figures 3.2 and 3.3). As a result, the higher improvement

occurs for both 0 and 90 degrees, namely when the wind direction is perpendicular to x-

or y- directions. Under these circumstances, Pres increases from 28 MW for t < 200 s to

30.5 MW for t > 500 s when the direction of the wind is 0 degrees and from 30 MW to

31.8 MW when the direction is 90 degrees. If the turbines are only partially affected by

the wakes, as the cases for 20, 40, 60 and 80 degrees, the additional power reserve ob-

tained with the proposed control strategy is low but the approach is still advantageous.

For example, the difference between Pres for t < 200 s and t > 500 s is about 0.4 MW

at 20 and 60 degrees, 0.92 MW and 1.4 MW for both 40 and 80 degrees, respectively.

Figure 3.8 presents the power reserve increments obtained with the proposed control

strategy compared with the baseline expression, i.e., ∆Pres = Pres,new − Pres,base, where

Pres,new is the reserve at t > 500 and Pres,base is the power at t = 0. In this figure, three

free-stream speeds, 11, 13, 15 m/s, were considered for several wind directions. Clearly,

the proposed control achieves the highest improvement for v∞ = 11 m/s. Under these

circumstances, the total available power in the farm is close to the power demand and a

clever distribution of the power contribution from each turbine makes a significant impact

over the power reserve. In this case, the maximum ∆Pres is 2.36 MW at 0 degrees, while

lower differences are obtained for high wind speed conditions. Comparing different wind

speed directions, it can be observed that the proposed control strategy produces higher

improvements in the reserve for those cases with higher air flow disturbances caused

by the wakes. In particular, the lower reserve increment for the case of 90 degrees

compared with the 0 degrees case can be understood as a consequence of the wind farm

layout. When the wind speed reaches the farm with 90 degrees, there are less turbines
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Figure 3.7: Scenario 2: power reserve for several wind directions, Pdem = 20 MW,
v∞ = 11 m/s.

downstream and thus a lower wake effect. For the higher free-stream wind speed (13

and 15 m/s), the increase in the power reserve is lower because the available power is

higher and the ratio Pdem/Pav,tot is lower. As a consequence, the power required to the

first column of turbines is lower and the wake effect less marked.

Scenario 3: high power demand and different wind directions

In Figure 3.9, it can be observed the power reserve in case of a high power demand

scenario. The power demand was Pdem = 45 MW and the free-stream wind speed

v∞ = 11 m/s, with directions of 0, 20, 40, 60, 80, 90 degrees. Under these wind

conditions, the available power is not enough to ensure the power demand. As a result,

the reserve is almost zero except for the cases of 20, 40 and 60 degrees, in which the wake

effect has less impact on the available power. Nevertheless, the proposed approach is able

to increase Pres with respect to the value obtained with the baseline power distribution

in 1.05 MW for 20 degrees, in 1.6 MW for 60 degrees and in 0.8 MW for 40 degrees.

Figure 3.10 presents the corresponding reserve increments ∆Pres for three free-stream
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algorithm for several free-stream wind speeds and directions.
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Figure 3.10: Scenario 3: Summary of power reserve levels obtained with the proposed
algorithm for several free-stream wind speeds and directions.

wind speeds 11, 13, 15 m/s with the directions aforementioned. As the power demand

is high and the available power is low in the case of 11 m/s, the improvement is only

significant for the case in which the available power is higher than zero. On the other

hand, when the wind speed is higher (13 and 15 m/s), the benefits of the proposed

control strategy is more noticeable for all the wind directions as a result of higher wind

power resources.

3.4 Summary

This chapter has proposed a new control strategy to maximize the power reserve in

WPPs while the power demanded by the TSO is satisfied. The proposed approach seeks

to distribute the power contribution of each turbine in order to reduce the wind speed

deficits caused by wake effects. The idea is to prioritize the power contribution of the

most downstream turbines and thus attenuating the wake disturbances. The proposed

strategy was evaluated by simulation in the case of 12 turbine WPP under different

scenarios, including low and high power demands and several wind speed conditions. The

results show that the control strategy is capable of increasing the power reserve compared

with the conventional power distribution where the power set-points of each wind turbine

are proportional to its available power. The best performance is obtained when the
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power demanded by the TSO is close to the total available power. In these cases, a

clever distribution of the power contributions from each turbine reduces the negative

effects of wakes and produces a significant increase in the power reserve compared to the

conventional approach.
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Chapter 4

Predictive Control based on
Lexicographic Minimizers

This chapter presents a novel de-loading control strategy aimed to regulate the total

power delivered from a wind farm at the PCC to provide the power set-point given

by the TSO whereas the power reserve available for frequency support is maximized.

The contributions presented in this chapter have been published in [141]. The control

strategy consists of a wind farm MPC controller that uses the information about the

generated and available powers by each turbine and solves a multi-objective optimization

problem in order to coordinate the best power contribution for each wind turbine. The

optimization problem is solved using the lexicographic formulation introduced in [106]

in order to consider the hierarchy of the control objectives. Conventionally, a multi-

objective optimization problem is solved by stating a global cost function, composed

of a linearly weighted sum of cost functions associated with each objective. However,

finding appropriate weights is not a trivial problem and specific tuning of the weights

are necessary due to different numerical values of cost functions for different scenar-

ios. Moreover, the common tuning methodologies require a reference controller or an

observer, e.g., [42, 161], involving a lot of numerical simulations. As an alternative

to automatic tuning, the lexicographic approach addresses the issue of prioritizing the

objectives by setting a priori the prioritization among the competing objectives. How

the lexicographic approach can be applied to MPC has been shown in [87], and some

application to fault diagnosis and optimal aircraft trajectories are presented in [124? ].

The application of lexicographic multi-objective optimization for controlling large-scale
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systems is presented in [119], where an MPC is stated to optimally regulate a sewer

network.

The lexicographic approach in the present work is used to guarantee that the MPC

controller solves the optimal problem of regulating the power set-points among the tur-

bines providing the highest priority to the power reference tracking and less priority to

the power reserve maximization. Nevertheless, due to the opposite nature of the two

cost-functions the lexicographic approach avoids the problem of stating a non-convex

cost-function by solving the two objectives separately. In order to illustrate the en-

hancement over the performance of the MPC controller, the proposed control strategy is

evaluated by simulations for the case of a wind farm with three turbines in a row taking

into account the variation of wind speed faced by downstream turbines due to the wake

effect.

4.1 Wind Farm and Wind Turbine Models

Since the MPC strategy is based on the receding horizon idea, in order to predict at each

sample time the wind farm dynamics, a model of the wind farm is necessary. Moreover,

since the control objectives must be ensured quickly (about seconds-scale) to follow the

fast variation of the power demanded by the grid, the wind farm model must be simple

and computationally efficient. When doing so, some critical issues are related to the

modeling of the nonlinear wind turbine dynamics and aerodynamic couplings among the

turbines, discussed in Chapter 2. Complex wind farm models are presented in [137].

However, when the main objective of the controller is to ensure the wind farm power

tracking within small computational time, the flow dynamics can be neglected [158] and

the wind farm can be modeled as a graph including nt uncoupled subsystems, i.e., the

wind turbines. Assuming that each wind turbine is equipped with a power controller

that ensures the power curve in Figure 2.6, and so allows working in derated mode if

necessary [23]; the dynamic behaviour of the i-th turbine from the power set-point to

the generated power can be modeled as a first order system delivering a power

Ṗg,i = −1

η
(Pg,i −min(Pav,i, Pr,i)), (4.1)
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Figure 4.1: Wind turbine power response. Grey line: power reference Pr,i, red line:
power generated PNREL−5MW,i, and blue dashed-line: power generated Pg,i, obtained
from (4.1).

where η is a time constant, Pr,i is the power reference set by the wind controller and

Pav,i = min

(
ρπR2

2
Cp,maxv

3
i , PN

)
. (4.2)

The reader is referred to (2.8) for the variables definitions. In order to check the validity

of this approximation, Figure 4.1 shows the power response obtained by modeling the

wind turbine as a first-order system for the value of time constant η = 0.15 s and the

power response of the more detailed wind turbine model, that is the two-masses NREL-

5MW wind turbine model used in [72]. Finally, from (4.1) follows that the wind farm

power response is obtained as

Pg,tot =

nt∑
i=1

Pg,i. (4.3)

The presented simplified wind turbine model can be used to estimate the wind turbine

response for the design of the MPC controller.

4.2 MPC Controller for Power Reserve Maximization

The proposed centralized wind farm control approach has the structure as shown in

Figure 4.2. The MPC controller uses the Pg,i and Pav,i sent by each turbine and the total
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Figure 4.2: Scheme of the proposed wind farm centralized control strategy. The MPC
shares information with the TSO (i.e., Pdem, Pr,tot) and sets the power reference (Pr,i)
among the wind turbines according to the information of the wind turbine operational
conditions (i.e., Pg,i, Pav,i)

.

power demand Pdem to produce the power set-point Pr,i for each turbine. The control

objectives to be considered for optimally distributing the power references among the

turbines are the following:

Obj1: Ensure the tracking of a power demand profile Pdem.

Obj2: Maximize the total power reserve defined as (3.1).

The former objective is basically a reference-tracking problem. The latter implies to

coordinate the power contribution from each turbine taking into account the interaction

among the turbines caused by the wake effects in order to maximize the total power

reserve.

According to the wind turbine response model in (4.1), the dynamics of the wind turbine

power generation are represented by the following continuous-time state-space model

ẋ(t) = Ax(t) + Buu(t) + Bdd(t), (4.4)

where the vector x ∈ Rnx denotes the system states, u ∈ Rnu denotes the vector of

manipulated variables, d ∈ Rnd is the vector of disturbance and A and B indicate

the system matrices in the simplified wind turbine model (4.4) of specific dimensions.
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Specifically,

x =
[
Pg,1, . . . , Pg,nt

, ξ
]T
, nx = nt + 1 (4.5)

ξ = (Pdem −
nt∑
i=1

Pg,i),

u =
[
Pr,1, . . . , Pr,nt

]T
, nu = nt

d = Pdem, nd = 1

A =

− 1
η Int×nt

0

−1nt×nt
0

 , Bu =
[

1
η Int×nt

]
, Bd =

[
0nt×1

1

]
.

Notice that ξ is an integral action added to ensure null steady-state error.

In order to implement the MPC strategy as presented in Section 2.3 the system (4.4)

is discretized for a sampling time Ts, resulting in the following state-space difference

equations:

x(k + 1) = Adx(k) + Bu,du(k) + Bd,kd(k), (4.6)

where k ∈ Z≥0 denotes the discrete-time instant and Ak, Bu,k and Bd,k the discrete-time

versions of matrices in (4.5).

System states and manipulated variables are constrained because of physical and/or

desired operational limits. These constraints are defined in a polytopic fashion as

X = {x ∈ Rnx |x(k) ∈ [x,x],∀ k}, (4.7a)

U = {Pr ∈ Rnu |Pr(k) ∈ [Pr,Pr], ∀ k}, (4.7b)

where x ∈ Rnx and x ∈ Rnx denote the vectors of minimum and maximum admissible

values of system states, respectively, while Pr ∈ Rnu and Pr ∈ Rnu denote the vectors

of minimum and maximum admissible values of manipulated variables, respectively.

In order to design the MPC strategy for the considered system, let û(k) be a sequence of

feasible control inputs (manipulated variables) within a pre-establish prediction horizon

denoted by Hp ∈ Z>0. Similarly, let x̂(k) be the sequence of feasible system states when
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applying the control input sequence û(k) to the system in . Finally, let d̂(k) be the

available forecasting of the power demands (disturbances). Hence,

û(k) , {Pr(k|k), . . . ,Pr(k +Hp − 1|k)}, (4.8a)

x̂(k) , {x(k + 1|k), . . . ,x(k +Hp|k)}, (4.8b)

d̂(k) , {Pdem(k|k), . . . , Pdem(k +Hp − 1|k)}. (4.8c)

Thus, the MPC controller is designed by stating the following open-loop finite-horizon

multi-objective optimization problem:

minimize
û(k) ∈ U

J(x(k), û(k),d(k)) ,
3∑

m=1

Hp−1∑
i=0

Jm(x(k + i), û(k + i),d(k + i)), (4.9a)

subject to

x(k + j + 1|k) =
[
Ad Bu,k Bd,k

]  x(k + j|k)
Pr(k + j|k)
Pdem(k + j|k)

 , j ∈ [0, Hp − 1] ∩ Z≥0, (4.9b)

u(k + j|k) ∈ U, j ∈ [0, Hp − 1] ∩ Z≥0, (4.9c)

x(k + j|k) ∈ X, j ∈ [1, Hp] ∩ Z≥0, (4.9d)

where x(k|k) ∈ Rnx is the current measured system state. Assuming that the optimiza-

tion problem in (4.9) is feasible, its solution yields the optimal sequence

û?(k) , {P?
r (k|k), . . . ,P?

r (k +Hp − 1|k)}.

Therefore, following the receding horizon control philosophy, the controller applies to

the system in (4.6) the first control input from û?(k), which corresponds with P?
r (k|k).

Then, a new state vector is measured from (4.6) and the procedure is repeated in order

to determine the optimal control sequence from which the optimal control input for

û?(k + 1) is obtained.

Notice that the multi-objective cost function in (4.9a) is defined according to the stated

objectives Obj1 and Obj2 as follows. Objective Obj1 is formulated as the minimization

of the linear cost function

J1(k) , ‖Qx(k)‖1, (4.10)
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being Q = q
[
01×nt

, . . . , 1
]T
, q ∈ R a weighting matrix prioritizing the corresponding

system state such as the minimization of the tracking error is achieved. Due to the

cost convenience of wind power generation, this minimization has the highest priority in

order to supply the TSO power demand in the best possible way.

On the other hand, it is also required the wind farm to contribute with ancillary services

like primary frequency support. This feature can be achieved by releasing the power

reserve into the grid when the available power is higher than the demand. Hence,

maximizing the cost function

J2(k) , −‖Pav,tot − Sx(k)‖1, (4.11)

with S = s
[
11×nt

, . . . , 0
]T
, s ∈ R a weighting matrix prioritizing the sum of power

generated by the turbines, i.e., the control strategy may ensure the capability of the

system for increasing the power generation when needed.

As a complementary action, the cost function

J3(k) , ‖R∆Pr(k)‖1, (4.12)

with ∆Pr(k) , Pr(k)−Pr(k−1) and R = r
[
Int×nt

]
, r ∈ R a weighting term of suitable

dimensions, aims at smoothing the variation of the manipulated inputs and then avoiding

undesired peaks in the output power signal.

A weighted sum of the aforementioned objectives leads to a non-convex objective function

as a consequence of the opposite nature of the objective functions in (4.10) and (4.11).

Hence, in order to guarantee the convexity of the problem (i.e., the termination of the

optimization problem), the objectives are optimized separately in a sequential order

starting from the minimization of the most important objective J1.

Lexicographic Approach

Optimal control for a number of engineering systems deals with several objectives, e.g.

safety process, economic considerations, production levels or product quality [87]. In

order to guarantee the process requirements, the specific objectives are considered while

stating the optimal control problem as either optimization objective or as constraints.

In general, multiple objectives can be considered into a single cost function. In case the
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objectives have a different priority, the most common approach is to set the cost function

equal to a weighted sum of multiple objectives [108, 125], such that the highest weight

is referred to the most important cost function. Typically, the weights are performed

in a multiple trial-and-error manner, requiring many repetitive optimization until an

acceptable solution is found [149]. However, specific tuning of the weights are necessary

to adapt the controller if any change affects the system process; for example, in the case

of wind farm control, some objectives are only relevant under specific circumstances

(e.g., high wind conditions, high turbulence intensity, derated operations). The common

approach for tuning the weights requires either to compute several points along the

Pareto fronts in order to select an appropriate prioritization for the local objectives,

which implies a high computational burden, [70]. Furthermore, most of the tuning

techniques are static and performed off-line as part of a design procedure to find a

trade-off between the many solutions that are optimal in terms of the Pareto optimality

concept [15, 148]. As an alternative, the method used in this chapter considers the

hierarchy among the objectives without the need of tuning the weights.

Let consider a general multi-objective optimization problem

minimize
θ ∈ Θ

f(θ) =
[
f1(θ), f2(θ), . . . , fr(θ)

]T
, (4.13a)

where Θ ⊆ Rz is the admissible set of decision variables, and fi : Θ → R with i ∈
{1, . . . , r} is the scalar-valued objective functions. A minimizer of problem (4.13) follows

the Definition 4.1 below:

Definition 4.1. A certain θ∗ is a Pareto optimal minimizer and f(θ∗) is a Pareto
optimal minimum of problem (4.13) if there does not exist a θ ∈ Θ and an i such that
fi(θ) ≤ fi(θ∗).

Therefore, a minimizer is Pareto-optimal if and only if an objective fi can be reduced

only at the expense of increasing at least one of the other objectives. As a consequence,

a minimizer and a minimum are guaranteed to exist but the solution may not be unique.

However, if a priority exists between the objectives, a unique solution exists on the

Pareto surface where this order is respected. Let the objective functions be arranged

according to their priority from the most important to the least important,
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Definition 4.2. A certain θ∗ is a lexicographic minimizer and f(θ∗) is a lexicographic
minima of problem (4.13) if there does not exist a θ ∈ Θ and an i∗ such that fi∗(θ) ≤
fi∗(θ

∗) and fi(θ) = fi(θ
∗), i = 1, . . . , i∗.

Hence, a lexicographic minima is a special type of Pareto-optimal solution and exists if

and only if an objective fi can be reduced only at the expense of increasing at least one

of the higher-prioritized objectives {f1, . . . , f(i−1)}. Therefore, the optimization problem

can be stated as a set of optimization problems, such that in each problem one or more

objectives are considered.

This approach is known as lexicographic programming [103]. The fundamental concept

of such a strategy is to solve sequentially a set of minimization problems. After the

objective functions are arranged according to their priority from the most to the least

important, the slack variable associated with violating the first objective is minimized

subject to the original constraints. If this problem has a unique solution, it is also the

solution of the overall multi-objective problem. Otherwise, the second optimal problem

is solved using the optimal value of the slack variable to impose additional constraints

on the second optimization, and so on until the objectives are satisfied. At each step of

the algorithm, all primary variables for higher priority objectives must be recalculated.

Hence, the way of solving (4.13) follows the procedure shown in Algorithm 3. Notice

that functions fi are arranged according to their priority from the most important f1 up

to the least important fr.

Algorithm 3 Lexicographic multi-objective optimization

1: f∗1 = minθ∈Θ f1(θ)
2: for l = 2 to r do
3: f∗l = min{fl(θ)|fj(θ) ≤ f∗j + ε, j = 1, . . . , l − 1}, ε > 0
4: end for
5: Determine the lexicographic minimizer set as:

θ∗ ∈ {θ ∈ Θ|fj(θ) ≤ f∗j , j = 1, . . . , r}.

In Algorithm 3 ε > 0 is a small tolerance used to relax the constraints in order to improve

the numerical conditions. Given the structure of the problem in (4.9) and the nature of

cost functions in (4.10), (4.11) and (4.12), this thesis uses the sequential solution method

of lexicographic minimizers [106, 119] to solve the multi-objective optimization problem.

Hence, regarding the combined problem of power reference tracking plus power reserve
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maximization addressed in this chapter, the solution of (4.9) is obtained by considering

a first optimization problem taking into account cost functions (4.10) and (4.12), that is,

an optimization problem composed of two linear cost functions properly prioritized such

as the reference tracking was more important than the smoothness of the control input

(by means of Q and R in (4.10) and (4.12), respectively). This optimization problem is

therefore stated as

min
û(k) ∈ U

Hp−1∑
i=0

J1(k + i) + J2(k + i)

s.t. (4.9b), (4.9c) and (4.9d),

(4.14)

from which an optimal sequence û?1(k) = û?(k) is obtained and used to define an extra

constraint for a second optimization problem focused on the maximization of the power

reserve, i.e.,

max
û(k) ∈ U

Hp−1∑
i=0

J3(k + i)

s.t. (4.9b), (4.9c) and (4.9d),

Hp−1∑
i=0

J1(k + i) + J2(k + i) ≤ û?1(k) + α,

(4.15)

where α > 0 is a small tolerance in order to avoid numerical problems and the infeasibility

of the optimization problem in (4.15). Finally, the resultant optimal sequence û?2(k)

from the solution of (4.15) corresponds with the definitive sequence from which the first

element û?2(k|k) = P ?r (k|k) will be taken and applied to the system.

4.3 Simulation Model

The proposed control strategy was evaluated in the case of a wind farm with three

turbines in a row (nt = 3). The simulation model used to test the MPC controller

is programmed in Matlab. The wind turbine aerodynamics and electrical properties

are modeled as proposed in [85] for the NREL 5-MW baseline wind turbine. For the

simulations, the wind turbines were described by a nonlinear two-mass model including

also the pitch actuator and a power control as proposed in [72]. This model has been used
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Figure 4.3: Wake expansion based on Jensen’s model.

as a reference by research teams throughout the world to standardize baseline offshore

wind turbine specifications and to quantify the benefits of advanced land- and sea-based

wind energy technologies. The aerodynamics of the wind flowing through the wind farm

along with the wake effect on the wind speed vi are modeled by the common Park’s model

[86]. This model estimates the effect of multiple wake interactions assuming that wakes

expand as a cone-like fashion with circular cross section for a given free-stream wind

speed v∞, and the wind speed profile has a top-hat shape in the crosswind direction.

Under these assumptions, the wind speed faced by the i-th turbine Ti is computed as

vi = v∞

1− 2

√√√√∑
j∈Ni

(
2(1− aj)

R

rij(xij)

)2 Asij(xij)

A0,i

 , (4.16)

where xij is the distance in the x-direction between turbines Tj and Ti, rij(xij) =

R+ z0 xij is the radius of the wake generated by turbine Tj , z0 the roughness coefficient

and Ni is the set of indexes corresponding to the turbines upstream of Ti. The symbols

A0,i and Asij(xij) denote the rotor area and the shadowed area due to the upstream

turbine, respectively (see Figure 4.3). If the wind turbines have the same radius R, then

the shadowed area can be computed as

Asij(xij) = rij(xij)
2 cos−1

(
Lij

rij(xij)

)
+R cos−1

(
dij − Lij
rij(xij)

)
+ dijzij , (4.17)
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with Lij the distance between the centres of the wake area Axij and the shadowed area

Asij , dij the distance between the centres of the wake area Axij and the rotor area A0,i,

and zij the vertical distance between the intersection points of the previously mentioned

areas (see Figure 4.3).

The wake impact on the wind speed faced by downstream turbines depends on the free-

stream wind speed direction φ (defined as the angle between v∞ and the farm layout

and the turbine geographical disposition within the farm [18]. Hence, the wake effect

faced by some turbines can be either partial or total. As stated before, the effect over

downstream turbines also depends on the operational conditions of upstream turbines,

which are taken into account with the induction factor ai in (4.16). Therefore, the degree

of coupling due to the wake effects between turbine Ti and Tj is basically a function of

the wind speed direction, the shadowed areas, the induction factors, and the distance

among the turbines. The latter affects the wake propagation delay, i.e., the time for the

wake to travel through the rows of wind turbines in the farm, computed as the ratio

between the turbine separation distance and the wake convection velocity [31].

4.4 Case Study

The turbines were considered aligned with the free-stream wind speed direction and the

distance between turbines was 630 m (five rotor diameters). The freestream wind speed

is assumed to be equal to 11 m/s with a constant main direction φ = 0◦.

The MPC strategy was implemented with a sampling time Ts = 0.08 s and a prediction

horizon Hp = 10, which have been set to be relatively small since the turbines are

required to regulate power on milliseconds scale. The time constant η in the simplified

model (4.4) was set at 0.15 s. The parameters of the weighting matrixes in the cost

functions (4.10), (4.11) were set as q = 5, r = 1 and s = 1. Simulations have been run

using Yalmip [94] and Cplex under Matlab in a PC with an Intel i7 processor and 8

Gb RAM. In order to evaluate how the controller coordinates the power contribution of

each turbine, two scenarios were considered. The first scenario analyzes changes in the

power demand set-point. The second evaluates the system response under a change of

the free-stream wind speed. In both cases, the free-stream wind speed was set in order to
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Figure 4.4: System response for scenario 1. Top plot: generated, available and demanded
total power. Middle plot: total power reserve. Bottom plot: wind speed faced by each
turbine.

ensure that the available power was higher than the one demanded by the TSO. Finally

the last case study presents the system response when for five turbines in a row.

4.4.1 Scenario 1: Constant Power Demand Set-Point and Wind Speed

This scenario analyzes the system behavior when the power set-point Pdem increases from

13 to 14 MW (at t1 = 100 s) and the wind speed v2 falls to 10.5 m/s (at t2 = 360 s).

The initial free-stream wind speed was 12 m/s. The system response with the proposed

control strategy is shown Figure 4.4. In the top plot, it can be observed the power

demand set-point Pdem (blue line), the total generated power Pg,tot (dashed line) and

the total available power Pav,tot (red line). The middle plot shows the total power

reserve and the bottom plot the wind speeds v1, v2 and v3 faced by each wind turbine,

respectively. The generated and available powers for each wind turbine is displayed in

Figure 4.5, with solid and dashed lines, respectively.

As shown in the top plot Figure 4.4, the control is able to achieve a proper tracking in

spite of the disturbances, delivering to the grid the power demanded by the TSO. This
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Figure 4.5: System response for scenario 1. Available and generated powers for each
turbine.

tracking is achieved by increasing the power contribution of each turbine, which reduces

the total power reserve and slightly affects the wind speed faced by Turbines 2 and 3 due

to the wake effects. The subsequent reduction of the wind speed v2 for t < t2 causes a

significant decrease in the available power in Turbine 2. After t2, Turbine 2 is forced to

work at maximum generation. As a consequence, the controller re-distributes the power

contribution of the remaining turbines increasing Pg,1 and Pg,3. Nevertheless, the total

power demanded at the PCC is still satisfied. In the bottom plot of Figure 4.4, it can

be seen that v3 decreases once the wake disturbance caused by the increase Pg,1 finally

arrived at Turbine 3. However, this does not affect Pav,3 because the wind speed v3 is

still sufficient to operate at Region 2.

4.4.2 Scenario 2: Change in Free-stream Wind Speed and in v2

The second scenario considers a change in the free-stream wind speed v∞ = v1 from 14

to 13 m/s at t3 = 150 s followed by an additional reduction in v2 at t = 360 s. These

changes can be observed in the bottom plot of Figure 4.6. It can be also seen in top plot

of Figure 4.6 that the control is able to manage this situation keeping the total power

86



Chapter 4. Predictive Control based on Lexicographic Minimizers

0 t
3

200 t
2

400 600

P
ow

er
[M

W
]

12

14

16
Pav,tot

Pg,tot

Pdem,tot

0 t
3

200 t
2

400 600

P
ow

er
[M

W
]

0

1

2 Pres,tot

time (s)
0 t

3
200 t

2
400 600

w
in
d
[m

/s
]

10

12

14

v1

v2

v3

Figure 4.6: System response for scenario 1. Top plot: generated, available and demanded
total power. Middle plot: total power reserve. Bottom plot: wind speed faced by each
turbine.

delivered to the grid, but a significant reduction in the available power, and consequently

in the reserve, occurs after t = t2.

Figure 4.7 shows the generated and available powers corresponding to each turbine. The

first change in the free-stream wind speed does not have a significant effect on generated

and available powers as the wind speeds faced by each turbines ensure the operation in

Region 2. On the other hand, the subsequent reduction of v2 forces Turbine 2 to enter

in Region 1 and delivered all its available power (Pg,2 = Pav,2). The lower contribution

from Turbine 2 must be compensated with increments in the power supplied for the

remaining turbines. In Figure 4.7, it can be observed that once the increase in Pg,1

starts to affect the wind speed v3, Pg,3 also reaches the available power Pav,3.

4.4.3 Scenario 3: Five Wind Turbines in a Row

This scenario is devoted to show how the proposed controller distributes the power

among the turbines for different values of power demand. The number of turbines is

increased to five and the turbines are considered totally waked as shown in Figure 4.3.
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Figure 4.7: System response for scenario 1. Available and generated powers for each
turbine.

In order to evaluate the effect of considering the maximization of power reserve, until

time t = 200 s only the minimization of the tracking error is considered in the general

cost function of problem (4.9a), then for t > 200 s the power distribution is optimized

to maximize the power reserve. Top plot of Figure 4.8 shows the tracking response for

different values of the power demand Pdem = (65%, 75%, 85%, 95%)Pgreedy, Pgreedy is

the maximum power that can be delivered in steady-state condition if all the turbines

operate at MPPT. It can be seen that the power demand is ensured for all the cases.

Nevertheless, such a result is a consequence of using the lexicographic technique that

ensures the priority of the tracking with respect the maximization of power reserve,

hence the effect of including the latter cost function in the optimization problem has

not effect on the tracking performance. Figure 4.9 left plot shows the power response at

wind farm and wind turbine level when the power demand is Pdem = 85%Pgreedy. With

the increasing of the number of turbines, in order to maximize the power reserve the

controller sets the power reference among the turbines such as a backward distribution,

see Figure 4.9 right plot. Initially, for t < 170 s, the usptream turbines T1, T2 and T3

produce the maximum power while the turbines T4 and T5 are deloaded respectively to

Pg,4 = 0.76 MW and Pg,5 = 0.5 MW. However, for maximizing the power reserve the
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Figure 4.9: Left plot: Power response ate the wind farm level and wind speed faced by
the turbines. Right plot: Power response at the wind turbine level.
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controller changes the power set-points to require the maximum power at the turbines

T5, T4, T3 by deloading the first to Pg,1 = 0.5 MW and the second to Pg,2 = 1 MW. This

affects the wind speeds faced by the turbines, as shown in the bottom plot of Figure 4.9.

Especially, while at the beginning the wind speed faced by the last turbine is higher than

the wind investigated by the turbine T4 for the effect of the its lower generation, then the

wind speed faced by the last turbine decreases of more than 1 m/s as a consequence of

the higher generation of T4. Meanwhile, the wind speeds crossing all the other upstream

turbines increase, thus increasing the available power for these turbines.

4.5 PALM Simulation Results

In order to test the effectiveness of the proposed control strategy under more realistic

wind flow conditions, this section shows the results obtained when the proposed MPC-

based controller is evaluated with LES. For this end, the open-source PArallelized Large-

eddy simulation Model (PALM) is used [99], it is a meteorological model for atmospheric

and oceanic boundary-layer flows available in the public domain [75]; a more detailed

presentation of PALM simulator is given in Appendix A. The wind turbine model used in

PALM is based on the actuator disk model as presented in Section 2.1.1, as a consequence

the control signal for the turbine is the disk-based thrust coefficient C ′T as presented in

[105],[25]. Hence, the power generation dynamics of a wind turbine can be estimated by

the first-order filtered response of C ′T , that is

dC ′T
dt

=
(C ′T − C ′T,r)

η
, (4.18)

being C ′T,r the reference value sent by the MPC controller and η the time constant of

the first-order system. Hence, the power generated by the i-th turbine is computed as,

Pr,i =
πR2

2
(vi cos[γi])

3C ′T,i, (4.19)

where the yaw angle γi, that is the second parameter that can be controlled in PALM,

is set equal to zero being yaw control out of the scope of this thesis. For the interested

reader, in Appendix B it is presented an optimal control problem considering optimal

yaw setting and loads minimization.
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Table 4.1: PALM Simulation set-up

grid dimensions Lx × Ly × Lz 15.3× 3.8× 1.3 [km3]

grid spacing ∆x ×∆y ×∆z 15× 15× 10 [m3]
sample time ∆t 1 [s]
diameter, hub height D, zh 120, 90 [m]
turbine spacing sx, sy 5D × 3D [m]
freestream wind v∞ 8 [m/s]
turbulence intensity TI∞ 6 %
prediction horizon Hp 10 [s]
time constant η 5 [s]
simulation lenght T 800 [s]

Therefore, since the power is regulated indirectly by controlling the C ′T the state vector

and the vector of control input in (4.8) should be replaced by

û(k) , {C′T,r(k|k), . . . ,C′T,r(k +Hp − 1|k)} ∈ Rnu (nu = nt), (4.20a)

x̂(k) , {x(k + 1|k), . . . ,x(k +Hp|k)} ∈ Rnx (nx = 2nt + 1), (4.20b)

being, x̂ =
[
Pg,C

′
T, ξ

]
, (4.20c)

d̂(k) , {Pdem(k|k), . . . , Pdem(k +Hp − 1|k)} ∈ R. (4.20d)

Therefore, the matrices of the state-space system in (4.4) become

A =

 0nt×nt
πR

2

2 v
3
i Int×nt

0

0nt×nt
− 1
η Int×nt

0

−11×nt
01×nt

0

 , Bu =

 0nt×nt
1
η Int×nt

01×nt

 , Bd =

[
02nt×1

1

]
.

It follows that also the weighting terms for the single objective functions in (4.9) should

be replaced as Q = q
[
01×2nt

, . . . , 1
]T
, q ∈ R, S = s

[
11×nt

, . . . ,01×nt+1

]T
, s ∈ R and

R = rInt×nt
, r ∈ R.

The PALM simulation results are obtained for a neutral boundary layer for the wind

farm with 6 wind turbines as shown in Figure 4.10. In Table 4.1 the summary of the

simulation set-up and turbine parameters are listed,

In order to test the performance of the proposed control strategy under more realistic

scenarios the power demanded by the grid is defined as a profile changing during the

simulation time, it is formulated as

Pdem(t) = pPgreedy + 0.2PgreedyδP (t), (4.21)
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Figure 4.10: Wind field longitudinal direction flowing through a wind farm with 6 wind
turbines placed in a matrix of 2. Figure adapted from [25]

.

being p ∈ Z≥0 a fraction of Pgreedy, δP (t) a normalized ”RegD” type automatic gener-

ation control (AGC) signal [123] given by the TSO and Pgreedy = 7.5 MW, therefore it

is guaranteed that the wind farm operates in deloading operation during the simulation

period. Figure 4.11 and Figure 4.12 show the power tracking response in the case of

low and high power demand profiles, respectively obtained for p = 0.7 and p = 0.9

in (4.21). Furthermore, in order to evaluate the influence of considering power reserve

maximization two different cases are shown: Baseline case (referred as case 1 ), when the

optimal control problem is formulated only to minimize the tracking error, i.e., in (4.9a)

J(k) = J1(k) + J3(k). Meanwhile, for the second case (referred as case 2 ), the max-

imization of power reserve is included in the optimization problem formulation, hence

Jm(k) =
∑3

l=1 Jl(k). It can be observed that the power tracking is ensured for both the

cases. However, in the circumstance of high power demand around t = 450-500 s the

tracking decays for the case1. In fact, the available power within this period decreases

going below power demand, thus the controller cannot guarantee a good tracking. Nev-

ertheless, if the maximization of power reserve is considered by the MPC controller then

the decay of the tracking can be recovered for an increasing of the overall power avail-

able. In order to estimate how good is the tracking achieved with the proposed control

strategy, it can be considered as performance parameter the root-mean-square (RMS)

of the tracking error computed as,

e =

√∑T
t=1(Pdem(t)− Pg,tot(t))

2

T
. (4.22)
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Notice that, only ideally the wind farm could provide a zero mean tracking error. How-

ever, it is clear that a low RMS would result in increased payments for the AGC services

and improved grid reliability. In order to understand if the proposed MPC control strat-

egy ensures good power tracking performance, the obtained results can be compared

with the ones presented in [158], where a PI-based feedback control strategy is proposed

for the same scope of minimizing the tracking error when following the power profile in

(4.21). Here, two RMS errors were found for two different scenarios. The best scenario

corresponding to an upward power distribution among the turbines, i.e., the first row

of turbines produced more power than the downstream turbines. Meanwhile, the worst

scenario resulted when the same amount of power was required at each turbine. In both

the cases, the performance resulted good and able to guarantee the CAISO coefficient

above 0.5. The latter is the California Independent System Operator performance score,

which rates power tracking between 0 and 1, as described in [5] and it is used in the US

power markets to partially determine the payments for providing total power of the wind

farm with and without the AGC services. CAISO scores above 0.5 must be guaranteed

by the wind farm owner to be qualified in providing ancillary services [28]. A summary

of the comparison between the results obtained using the presented MPC control strat-

egy and the PI-based strategy proposed in [158] is given in Table 4.2. In order to

Table 4.2: Performance results compared with the PI-based feedback control strategy
presented in [158].

MPC-Controller PI-Controller
Low Demand High Demand

Case: 1 2 1 2 Upward Equal

Error [W] 98330 99070 108200 108250 91554 107000
CAISO 0.938 0.938 0.927 0.927 0.94 0.93

Table 4.3: Variation in power reserve for each turbine; values given as percentage of the
power reserve with respect case1.

T1 T2 T3 T4 T5 T6 Total

∆Pres [%] 20 14 24 -20 -6 -16 3.4

In Figure 4.13 is illustrated how the controller regulates the power among the turbines.

Here, due to the variable and turbulence nature of the incoming wind speed, it can
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Figure 4.11: Total power response of the wind farm without (case1) and with (case2)
power reserve maximization for low power demand.

Figure 4.12: Total power response of the wind farm for high power demand without
(case1) and with (case2) power reserve maximization for low power demand.
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Figure 4.13: Power response of the wind turbines. Top plot: case1. Bottom plot: case2.
.
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be seen that the available powers (green line) and so the power references (red dashed

line) for the turbine change a lot during the simulation time. Moreover, the available

power for each turbine is not only affected by the generation conditions of the upstream

turbines, but also by its own generation. In fact, with LES, the effect of the convection

vortexes at the rotor area generated by the rotating mass are considered, which have an

additional negative impact on the measured wind speed at the rotor disk. For the case1,

top plot, the upstream turbines produce globally more than the turbines downstream,

affecting the available power of the downstream turbines for the wake generation and its

own available power for the high rotor speed. Meanwhile, for case2 illustrated in bottom

plot, with the aim of maximizing the available power, the controller seeks to regulate

the power reference among the turbines by deloading more the upstream turbines. This

causes an improvement in power available for the second and third rows of turbines

and reduces the negative impact of the high generation in its own power available. In

order to show the benefits of the proposed control strategy in terms of power reserve,

Table 4.3 lists the values of the difference in power reserve between case2 and case1

given as percentage of the power reserve in case1 for each turbine and for the overall

wind farm.

System response after wind turbine failure

Finally, the MPC control strategy is tested for the case of an unexpected event, rep-

resented as a shut-down of the third turbine T3. Until time t = 99 s, all the turbines

produce power to contribute to the power tracking task, then the third turbine is shut-

down generating a dip in the power reference profile, see Figure 4.14. However, it can be

seen that the central controller is able to cope with this unexpected event by improving

the control set-points for the remaining turbines, see Figure 4.15, and so restoring the

proper tracking of Pdem.

Computational Effort

With the aim of regulating the power demanded by the grid the wind farm central

controller needs to be fast enough to solve the optimal control problem. In this study

the controller ensures an on-line optimal power dispatch by solving the problem in (4.9)

every second, which is in line with the time variation of the power demand profile.
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Figure 4.14: Power response of the wind farm for an unexpected event.

Figure 4.15: Control action C ′T profiles for each wind turbines in the case of an unex-
pected event.
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However, the mean computation time is function of several factors, as: complexity of

the system model used to predict the wind turbine power response, and number of states

and control actions to be controlled. The latter increases proportionally to the number

of turbines within the farm, making the system to control larger. Hence, the number

of turbines represents a limit on the performance of the centralized control approaches

proposed so far. A sensitivity analysis of the proposed control strategy with respect to

the wind turbine number is given in Table 4.4, it can be concluded that up to 36 turbines

the controller is able to ensure an online optimal control but already for 49 turbines the

mean time is about 1.5 s. It could be interesting to investigate if the controller can

still provide an online control by formulating the overall control problem as a bilevel

problem, as presented in [146, 147]. In this circumstance, the tracking objective can be

solved every second while the power set-points are updated according to the optimal

solution found by a slow level control. This is however not further investigated in this

dissertation.

Table 4.4: Effect of the number of turbines on the mean computation time per controller
time step ∆tCPU.

nt 3 9 15 20 25 36 42 49 64
∆tCPU[s] 0.049 0.091 0.16 0.22 0.38 0.77 0.9 1.5 2.9

4.6 Summary

This chapter has proposed an MPC strategy for the regulation of the power generated

by a wind farm. Currently, wind farms must contribute to the grid support as other

conventional power sources. To this end, wind farms must keep some power reserve that

allows them to increase the power generation and thus help, for instance, the primary

frequency control. Unlike conventional power sources, to keep a certain power reserve

in a wind farms requires the coordination of many small generators (turbines) that are

exposed to different conditions (wind and generated power) coupled each others due

to the wake effects. Here, we have proposed a multi-objective MPC scheme aimed to

regulate the total power generated and coordinate the contribution of each turbine to

maximize the power reserve. The control seeks to exploit the degree-of-freedom in the
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distribution of the power contribution of each turbine to obtain the total demanded

power and maximize the total power reserve. Firstly, this strategy has been evaluated in

a simple array of three and five wind turbines showing promising results. Thus, in order

to validate the proposed approach a layout of 3 by 2 wind turbines has been tested with

the LES simulator, PALM. As future work, motivated by the fact that usually within a

wind farm there are tens of turbines, it is proposed to test the MPC strategy for more

complex wind farm layout.
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Chapter 5

A multi-objective predictive wind
farm controller for enhancing
primary frequency support

In this chapter, it is proposed a model predictive control strategy stated to solve a

multi-objective optimization problem to: 1) provide automatic generation control by

following a certain power demand profile, 2) minimize the power losses within a wind

farm, considering the wake interactions and the electrical cable interconnections within

the farm. Part of the contributions proposed in this chapter have been presented in [142].

Furthermore, for completeness of the investigation, additional results are presented in

this chapter in order to assess the improvements achieved with the proposed control

strategy on frequency regulation by simulating a frequency droop in the interconnected

system network. Moreover, different wind turbine regulations obtained by properly

setting the weights of the multi-objective cost function are compared to evaluate the

improvements in terms of power reserve.

Up to this point, only the power losses due to the wake effect have been considered

when optimizing the wind farm operation. Even though the latter mainly affect the

wind farm power production, for large-scale wind farms also the electrical losses within

the cable connections are responsible for a significant part of the reduction of the wind

farm annual energy production. Nevertheless, yearly electrical losses around 2%–3%

of the energy generated occur in on-shore and even more in off-shore wind farms [32].

Furthermore, the design of ever-growing wind turbine rated power requires larger cable
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Figure 5.1: Figure (a): London Array wind farm of 630 MW of power capacity made
up of 175 wind turbines and two offshore substations [Figure adapted from [47]]. Figure
(b): Horns Rev-2 wind farm with a capacity of 210 MW produced by 91 wind turbines
located in the North Sea [figure adapted from [133]].

capacities, i.e., greater cable dimensions with higher costs, which makes even more im-

portant to consider the losses within the cables when maximizing the wind farm annual

energy production. As first step for reducing the electrical losses, the cable connections

should be properly designed considering also an installation cost perspective. In fact,

the electrical infrastructures account for 15%-30% of the overall installation costs of an

offshore wind farm [69]. Therefore, it is quite important when designing a wind farm:

1) to consider the site specifications, e.g., considering the existing electrical grid [126];

2) to optimize the location of each turbine and the cable connections among turbines

[49]. As an example, Figure 5.1 shows the electrical connections for two existing off-

shore wind farms, the left one presents a new concept of wind farm topology while the

right one is a more common topology where a parallel cable connection is used. For this

reason, the proposal of optimum electrical topologies able to minimize both electrical

and aerodynamics losses continue to be an open issue for wind farm industry [157].

To the best of author knowledge, despite the high number of works concerning optimal

active power dispatch presented in Section 2.2, in the current literature there exists a

102



Chapter 5. A multi-objective predictive wind farm controller for
enhancing primary frequency support

gap related to the optimization of wind farm power generation when considering elec-

trical cable losses. Perhaps, the main reason of this is that the electrical cable loss is a

nonlinear function of the current flowing in the cable. Typically, complex models consid-

ering also the geographical properties (e.g., soil), converter (rectifier and inverter) and

temperature correction factors are used to estimate the losses [120], hence such highly

non-linear models are difficult to handle with real-time controllers. Therefore, to fa-

cilitate the integration of electrical losses computation within the optimization control

strategies, a simplified estimation should be considered. In [173], the power loss in the

collection cables is modeled as a first-order system by linearizing the voltage-current

non-liner functions with sensitivity coefficients properly calculated through an updated

Jacobian matrix. Moreover, simplified analytical models of cable losses are used in

[133] to provide aggregated impedance and susceptance of wind farm collection system,

thereby incorporating losses in the collection system in the wind farm reactive power

capability calculation.

Given the existing gap in the literature, this chapter is devoted to present a wind farm

control strategy to provide active power control while minimizing the wake effect as well

as the power losses in the inter-arrays connecting the wind turbines within the wind farm

collection grid. A constrained multi-objective optimization-based problem is solved by a

predictive central controller, to facilitate the estimation of cable-losses within reasonable

computational cost and without external simulation software several assumptions are

made. Nevertheless, this rough approach allows to consider the effect of power losses

for regulating the power set-points among the turbines. Finally, the proposed control

strategy is also used to assess a comparative analysis among three possible approaches

to distribute the power among the turbines such that the power reserve is improved.

Furthermore, the benefit of providing such an improvement is shown by investigating

the effect of wind energy generation on the frequency response of an electrical grid after

a frequency droop.

5.1 Cable Losses Model

Losses in power cables occur due to heat dissipated from the interior of the cables

towards the surroundings when the cables are energised and under load. Cable losses
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WTj WTj+1 WTi

Ij+1

Ij+Ij+1

Ij Ii
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Ii+∑ Ii‐j

j=1

i‐1

Figure 5.2: Electrical configuration of i turbines connected at the same feeder.

can be divided into conductor or ohmic losses due to the inner resistance of the cable,

dielectric losses due to the charging current flowing through the capacitance created

inside the isolation, and sheath and armour losses resulting from induced circulating

currents within the conductor. For the sake of simplicity, this approach will only consider

the ohmic losses, which are the main cause of losses in cables [48], specially in inter-array

cables where the lengths of the cables inter-connecting wind turbines within the collection

grid are relatively short.

Ohmic or resistive losses in a cable i of length Li can be calculated as

P loss
i = RiI

2
i , with Ri = riLi, (5.1)

where Ri, ri are respectively the cable resistance and the resistance per unit of cable

length and Ii is the current that flows through the cable.

For this study, it is assumed that reactive power flowing among wind turbines is small

(i.e., the power factor is close to one) and the voltage magnitudes in each bus within the

collection grid are quite close to the nominal value, so that voltage drops are negligible

[7]. Thus, the current flowing for each inter-array cable i can be estimated as

Ii =
Pi
Vn
, (5.2)

where Pg,i is the active power flowing through the cable i and Vn the voltage nominal

value.

Assuming a radial electrical configuration within the wind farm (see Figure 5.2), and

replacing expression (5.2) in (5.1), the power losses in a certain cable i belongs to a
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feeder f connecting several turbines is

P loss
f,i =

Rf,i

V 2
n

(Pg,i +

i−1∑
j=1

Pg,j)
2, ∀i > 2, (5.3)

where Pg,i is the power generated by turbine i connected to the cable i and Pg,j refers

to the power generated by the turbine j located before the turbine i and connected at

the same feeder f . Hence, the total power losses in a wind farm of nt turbines with l

feeders and N turbines for each feeder is denoted by

P loss
tot =

1

V 2
n

R (K P2
g), (5.4)

where

R =

R1,1 · · · R1,N
...

. . .
...

Rl,1 · · · Rl,N

 ∈ Rl×N , Pg = [Pg,1, . . . , Pg,nt
]T ∈ Rnt (5.5)

K = diag[K1, . . . ,Kl] ∈ R(l×N)×nt Ki =

 1
...

. . .

1 · · · 1

 . (5.6)

Here, R denotes the resistance matrix, Pg the vector of generated powers, and K a block

diagonal matrix, for which each element is equal to the matrix Ki.

5.2 Control Strategy

The wind farm controller acts as a single centralized unit, which has as inputs the power

demanded by the TSO Pdem, the power generated Pg,i, the power loss P loss
i and available

Pav,i from the wind turbines and inter-array connections, while as outputs the optimal

power references for each turbine namely P ∗r,i. The latter are sought by solving a multi-

objective optimization problem stated to regulate the total power delivered by the wind

farm at the PCC, such that the following objectives are minimized:

O1) Tracking error : minimize the difference between power demand required by the

TSO and total mechanical power generated by the wind turbines. This objective
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can be denoted as

J1 = Pdem −
nt∑
i=1

Pg,i. (5.7)

O2) Peaks on power generation: minimize the variation over the control inputs to avoid

peaks in the power output, i.e., power generated, avoiding possible damage due to

quick variations on the mechanical loads affecting the turbines. This objective is

defined as

J2 = ∆Pr. (5.8)

O3) Wake effect : minimize the wind deficits, i.e., maximize the power available. In the

previous chapters, it has been shown that properly optimizing the sequence of the

power reference Pr has a direct impact on the wind speed faced by the downstream

turbines, as there is a one-to-one relation between ai and Pr,i as shown in Figure 3.1.

Furthermore, with the aim of maximizing the power reserve it was shown that the

backward power distribution was able to reduce the wind speed deficits, and so to

improve the overall power available. Therefore, this third objective can be ensured

by regulating the power generation to contribute more to the total power generated

with the most downstream turbines. There are several proposals to do this, see for

example Algorithm 2. Here, a simple weighted sum is used in order to simplify the

entire optimization problem. The weights are selected according to the wind farm

layout and predominant wind speed directions. That is,

J3 =

nt∑
i=1

ωiPg,i. (5.9)

Assuming the set of turbine indices to be ℵ = {i : 1 ≤ i ≤ nt with vi ≥ vj , for

i < j}, then the weights ωi ∈ [0, 1] must satisfy ω1 ≥ ω2 ≥ · · · ≥ ωnt
. Notice that

the set ℵ is sorted to the dominant free-stream wind speed direction, such that

i = 1 indicates the turbine facing the free-stream wind speed while i = nt is the

turbine most affected by the wakes. Hence, the same weights correspond to the

turbines facing the same wind conditions.

O4) Power losses: minimize the electrical power losses. Hence, according to 5.4 the

objective is denoted by

J4 = P loss
tot . (5.10)
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The aforementioned objectives should be ensured by the central controller that needs to

consider the different priority among each objective.

5.2.1 Multi-objective Predictive Controller

In this section, an MPC strategy is proposed to solve the multi-objective optimization

problem. The wind turbine system has been shown to be properly modelled as a first-

order system (4.4), hence the dynamical model to be controlled is given by

xk+1 = Adxk + B1duk + B2dPdem, (5.11)

where k ∈ Z≥0 denotes the discrete-time step, xk = [PT
g,k, ξ]

T ∈ Rnx is the vector of

system states, Pg,k ∈ Rnt is the vector of generated powers, ξ is an integral action

to ensure a zero steady-state tracking error and uk ∈ Rnu denotes the vector of control

inputs corresponding to the vector of manipulated power references u = [Pr,1, . . . , Pr,nt
] ∈

Ru. Moreover, the formulation of the discrete-time matrices Ad, B1d and B2d depending

on the time constant used to model the wind turbine system is elaborated in (4.5).

In order to design the MPC strategy for the considered system, let û(k) , {Pr(k|k), . . . ,Pr(k+

Hp− 1|k)} be a set of feasible control inputs within a pre-established prediction horizon

Hp ∈ Z>0 that is constrained to ensure desired operational limits. Consider that the

system in (5.11) is controlled using the multi-objective optimization problem with m = 4

control objectives. Thus, the optimization problem behind the MPC controller is stated

as follows:

minimize
û(k)

m∑
j=1

wjJj(xk, ûk)

subject to

x(k+j+1|k) = Adx(k+j|k) + Bdu(k+j|k) + BlPdem j ∈ [0, Hp − 1] ∩ Z≥0

Pmin ≤ u(k+j|k) ≤ Pav(k)

(5.12)

being Pmin and Pav respectively the minimum and maximum power limits. Note that the

former is included to avoid the shutdown of the turbines. The solution of the optimization

problem finds the sequence of the optimal power set-point u∗ = [P ∗r,1, . . . , P
∗
r,nt

] such that

the objectives aforementioned are minimized.

Taking into account the parameters used to define the dynamical wind turbine model,

the cost functions from J1 to J4 should be rewritten as
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O1) J1 = (Qxk)
′ (Qxk), with Q = [0, . . . , 0, 1] ∈ Rnx .

O2) J2 = (S∆uk)
′(S∆uk), with ∆uk = uk − uk−1 and S = Int

.

O3) J3 = 1nt
(Ωxk), with Ω =diag [ω1, . . . , ωnt

] ∈ Rnt .

O4) J4 = P losstot,k.

Notice that the overall power loss is neglected with respect to the total power generated

in the evaluation of J1, being at most four orders of magnitude lower than the power

demand. Moreover, such an assumption allows to guarantees the cost function linear.

The weights wj used to prioritized the objective functions Jj in (5.12) are properly

tuned such that the highest priority is given at the tracking error minimization then

at the second objective to guarantee the safety of the wind turbines, while a more

detailed tuning process depending on the main freestream wind direction is required to

properly balance the electrical and wake losses. Since the objectives have different order

of magnitude, it is necessary to normalize the multi-objective cost function and then

assign the appropriate weights for each control objectives, such that
∑4

j=1wj = 1, as

proposed in [15]. The normalized cost function has the form

J̃j(xk,u) =
Jj(xk,u)

Jj(x
M
k ,u

M)− Jm
j (xm

k ,u
m)
, (5.13)

where M,m indicate the maximum and minimum values of the states and control inputs

of the controlled system.

For the sake of clarity, the aforementioned objectives could be reached on the basis

of the lexicographic programming approach presented in Chapter 4. However, there is

not a fixed hierarchy between the wake effect reduction and power losses minimization,

in fact one of the scope of the proposed control approach is to investigate in which

conditions it is better to prioritize the wind speed increasing with respect to the power

losses reduction.

5.3 Case Study

Two different cases study are presented. First, the results obtained by solving the

optimization problem in (5.12) are discussed. Then, considering only the power reserve
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Table 5.1: Simulation set-up.

Parameter Value

Separation 630 m
Sampling time Ts = 0.1 s
Prediction Horizon Hp = 4 s
Constant time η = 0.125 s
Free-stream wind 11 m/s
Turbulence Intensity TI = 0
Voltage Vn,i = 33 kV

Cable Parameters

Section [mm2] Resistence [Ω]
95 0.248
240 0.098
500 0.0456

maximization as objective for regulating the wind turbine generation, the advantages of

the participation of wind farm in frequency support is investigated.

5.3.1 Part I: Electrical Cable Losses Minimization

A wind farm layout of 12 wind turbines laid in 3 rows and 4 columns is considered

to test the proposed control strategy. The 5-MW NREL benchmark turbines are used

and spaced 5D (i.e., 630 m) in both the x and y directions. The inter-array cables

considered for this study are 3-phase XLPE-Cu, operating at 33 kV and are connected

as shown in Figure 5.3. In Table 5.1 the cable parameters are presented. The AEOLUS

SimWindFarm (SWF) Simulink toolbox [72] has been used for simulating the wind

speed at wind farm grid points in two dimensions. Wake effects within the wind farm

is modeled according to the dynamic wake meandering model [93] for given ambient

turbulent intensity and wind speed direction. In order to have a clearer view of the

power available and power losses changes produced applying the proposed strategy, a

laminar flow is modeled using a grid size of 2500 × 2500 m2 and the points are spaced

15 m. The reader is referred to Figure 3.2 that shows the steady-state wind field through

the wind farm with wind direction of 0 degrees. In Table 5.1 the parameters for the

simulation set-up are listed. In order to ensure the priority of the multi-objectives

functions as presented in Section 3.2, the vector of weights in (5.12) is set equal to
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Figure 5.3: Wind farm layout.

w = [0.4, 0.1, 0.25, 0.25] such that higher priority is given at the tracking objective and

equal importance at the electrical power losses and wake minimization.

Two scenarios are simulated as follows. The first scenario analyzes the system response

of the wind farm controller when the power required by TSO changes dynamically during

the simulation time. The second scenario shows the effects on the power reserve and the

power losses when the proposed multi-objective optimization problem is solved by the

wind farm controller.

Scenario 1: Power tracking

Figure 5.4 shows the power response of the system for a wind speed coming from 0 de-

grees. The wind farm works in derated operation, hence the available power (blue line) is

higher than the power demand profile (red line). The proposed control strategy ensures

that the total power generated by the farm (grey-dashed line) tracks the fast variations

of the power demand ensuring that the tracking error is kept lower than 0.12% of the av-

erage power demand. In order to see how the controller optimizes the power set-points

among the turbines, Figure 5.5 shows the available, generated and reference powers for
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Figure 5.5: Scenario 1: Power generated Pg,i, available Pav,i, and power set-points re-
quired by the controller Pr,i.
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Figure 5.6: Scenario 1: Power reserve and power losses profiles.
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each turbine. According to the cost functions J3 and J4 in (5.12) the power set-points

for each turbine are found to improve the overall power reserve while decreasing the

electrical cable losses. The latter is reduced by minimizing the powers generated by

the turbines furthest from the PCC, see Figure 5.3. Meanwhile, the power reserve is

improved reducing the wake effect through the wind farm, then improving the overall

power available of the farm. As discussed in the previous Section 5.2. In order to reduce

the wake effect the power references are set such that the highest power contribution is

required to the most downstream turbines while the power generation of the other tur-

bines is reduced until to have the minimum power generated from the most downstream

turbines. Until time 0 ≤ t ≤ 150 s, in order to track the power demand, the power gen-

erated by the wind turbines (3-7-11-4-8-12 WTs) produces exactly the available power,

while the upstream turbines (1-5-9 WTs) generate the minimum power 1 MW, which

avoids the shutdown. At time t ≥ 150 s, when the power demand decreases, only the

most downstream turbines (4-8-12 WTs) are required to produce more power. The effect

of the aforementioned optimal power distribution in overall power reserve and electrical

power losses are shown in Figure 5.6. Here, two cases are compared: Case 1 (grey line)

is obtained when the MPC is stated to minimize only the first two objectives J1 and

J2, that is only tracking is achieved. Case 2 (green line) all the full multi-objective

optimization problem in (5.12) is solved. The power reserve improves while the power

losses decrease.

Scenario 2: Power regulation for different wind directions

For a more comprehensive evaluation of the proposed control strategy towards power

reserve maximization and power losses minimization, the system model is simulated for

t < t1 to ensure only tracking. Therefore, the global cost function in the general problem

formulation (5.12) includes only the first and second objective functions f1 and f2. Then,

for t > t1 the complete multi-objective problem is solved. In this scenario, in order to

have a clearer evaluation of the power distribution, the power demand is kept constant

at Pdem = 30 MW. Figure 5.7 shows the power set-points (dashed grey line), the power

generation (red line) and the power available (blue line) for each wind turbine. Initially,

the tracking is ensured by requiring the same contribution for each turbine, which is

equal to 2.5 MW. Then, for t > t1 the power distribution changes. The controller seeks
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Figure 5.7: Scenario 2: Power generated Pg,i, available Pav,i and power set-points re-
quired by the controller Pr,i).

to find the optimal power references for the turbines that ensure minimization of both

wake effects and power losses. Here, the power generation of the first column is reduced

to 2.8 MW, while the powers produced by the third and the last columns are respectively

increased to 3 MW and to the maximum available power. Meanwhile, the generation for

the second column is kept constant at 2.5 MW. The reduction of the power contribution

of the turbines in the first column increases their induction factors such that also the

wind speed deficits in (3.7) are decreased and the powers available improved. However,

the effects in the variations of the power set-points can be seen only after certain periods

denoted by ki, which depend on the travel time required by the wakes to cross the wind

farm. In Figure 5.8 are shown the power reserve and electrical power losses for several

wind directions.

The minimization of power losses is obtained for each direction by reducing the power

generation of the turbines closer to the PCC. Meanwhile, the decreasing of the wind

deficits is achieved by generating more power with the downstream turbines, which

change according to the direction of the wind. Therefore, the best balance between the
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Figure 5.8: Scenario 2: Power reserve and power loss for several wind direction.
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two objectives is obtained for a wind direction of 0 degrees.

5.3.2 Part II: Frequency Support Evaluation

The backward power distribution has resulted to be a reliable approach to indirectly

change the induction factors of the turbines such that the wind deficits on the outflow

field could be reduced. For the sake of completeness, this section is dedicated to compare

the latter distribution method with two other approaches commonly applied to regulate

the power set-points among the turbines [169]. For doing so, the MPC controller as

stated in (5.12) is employed. Being out of the scope of this case study, the electrical

power minimization expressed by the control objective J4 is not included, hence w4 = 0.

Therefore, the multi-objective control problem becomes

minimize
û(k)

w1(Qxk)
′ (Qxk) + w2(S∆uk)

′(S∆uk) + w31nt
(Ωxk)

subject to

x(k+j+1|k) = Adx(k+j|k) + Bdu(k+j|k) + BlPdem j ∈ [0, Hp − 1] ∩ Z≥0

Pmin ≤ u(k+j|k) ≤ Pav(k)
(5.14)

Here, the elements of the block-diagonal matrix Ω = diag(ω1, . . . , ωnt
) are set differently

to provide three different distribution modes:

1. Equal distribution: the power demand is equally distributed among the turbines,

such that Pg,i = Pdem
nt

. Hence, ω1 = ω2 = · · · = ωnt
.

2. Proportional distribution: the power demand is distributed proportionally to

the available power as formulated in (3.10). Hence, ωi =
Pav,i

PN
with i = 1, . . . , nt.

3. Backward distribution: the elements ωi are defined as formulated in (5.9).

In order to test the performance in terms of increasing of power reserve for the three

distribution approaches, different operational and atmospheric conditions have been sim-

ulated using SimWindFarm toolbox [72] as simulator for a wind farm composed by three

rows of five turbines as shown in Figure 5.9. Notice that this type of layout, where the

turbines placed on two consecutive rows are not totally aligned, is preferred since it helps

to reduce the impact of the wake effects on the downstream turbines.
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Figure 5.9: Wind farm layout.

Power reserve: a sensitivity analysis

To evaluate the sensibility of the investigated power regulation approaches on power

demand, several de-loading conditions have been simulated going from 55% up to 95%

of the maximum steady-state power P ss
av. Moreover, the sensitivity of the distribution

approaches with respect to the variation of the main wind speed direction was inves-

tigated. Figure 5.10 shows the values of power reserve at steady-state conditions for

different values of power demand and different wind directions. The backward distribu-

tion provides a better performance for all the wind speed directions except for 0 degrees.

In fact, for the latter case, when the power demand is higher than 85% of P ss
av it can be

noticed that the highest power reserve is provided by the equal distribution. To better

understand this result, the power contribution of a row of turbines (the bottom row in

Figure 5.9) is shown in Figure 5.11 for both backward and equal distributions. Never-

theless, for high power demand, in the case of backward distribution only the upstream

turbine is deloaded producing a significant wake reduction on the second turbine but

also involves a greater power generated by the second and third turbines which implies

an augmentation of the wakes faced by the downstream turbines. On the other hand,

when the turbines provide the same power, only the last turbine produces power close to

the available one while the other turbines are deloaded, thus the wind deficit experienced

by the downstream turbines is less significant than the backward distribution case and
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therefore the power reserve is higher. Notice that, this behavior has resulted only for

0 degrees since in this circumstance the impact of wake on power generation is more

significant being the rotors turbines totally waked. For the same reason, at 0 degrees

the differences in power reserve for the three distributions are more evident than the

other wind directions. Finally, it can be observed that the proportional distribution pro-

vides the lower values in terms of power reserve. However, it is worth to mention that

this strategy is typically used to provide the power demand while considering fatigue

loads minimization. Therefore, a further investigation considering also loads minimiza-

tion could be interesting for defining the best power distribution strategy able to find a

balance between minimization of wake losses and fatigue loads.

Figure 5.10: Power reserve values for different deloading operations and main wind speed
direction.

Effect on frequency response

When the amount of wind generation into the interconnected electrical system is high,

wind farms can be asked to provide frequency support. Hence, the regulation of the wind

turbines can be set to improve primary frequency response of the system and provide
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Figure 5.11: Distribution of the generated power among a row of wind turbines. Top
plot: equal distribution strategy. Bottom plot: backward distribution strategy

additional source of flexibility for power system operators. To this end, through this

dissertation, one of the major objectives considered for designing the wind farm control

strategies has been to improve the capacity of the wind farm to help in primary frequency

support by improving the power reserve. In order to assess the impact on frequency

regulation of the three different power regulations under investigation, the frequency

response after a frequency droop in the interconnected grid is investigated in this case

study. In order to ensure that the wind farm can provide the power reserve, an initial

deloading is set to provide a power demand equal to 40%P ss
av then at time t > 5 s the wind

farm power generation increases to inject the amount of power reserve into the grid, as

shown in Figure 5.12. During this period all the turbines produce the maximum power,

however only for a short time span of about 3 s the wind farm can deliver a power equal to

P ss
av, within this time all the power stored in the rotor inertia is delivered. Then, the high

generation of the wake decreases the overall available power thus only the 90%P ss
av can

be delivered into the grid. Figure 5.13 shows the frequency response, the droop occurs

at time t = 5 s (point A), it follows a deep frequency decline which can be arrested by

providing inertia support, i.e., delivering the stored kinetic energy in the rotating mass,

as discussed in Section 2.2. After this initial droop has been arrested, i.e., the frequency

nadir is reached (point B), at almost t = 6.5 − 7 s, the wind farm continues to help in

primary frequency support releasing the power reserve to stabilize the frequency to a

steady-state value (point C or C’). It can be seen that with the backward regulation the

frequency at the steady-state is qual to fC = 49.77 Hz higher than the one reached by
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the equal and proportional distributions, almost fC′ = 49.68 Hz. However, the frequency

nadir is a bit lower when the backward distribution is followed due to the different pitch

dynamics among the turbines. Pitch responses for each turbines, in both the backward

and equal distribution cases, are shown in Figure 5.14 for the bottom row of turbines. It

can be seen that while the pitch angle response in the case of equal distribution (bottom

plot) is almost equal among the turbines, going from about 7 degrees to 0 degrees,

for the backward distribution (top plot) the pitch dynamics are different. According

to the turbine power generation, the pitch changes faster for the downstream turbines

(WT5 and WT4), while the rate of change is low for the most upstream turbines that

are generating pitched at 10 degrees to generate the minimum power. Therefore, the

latter affects the overall dynamic response by decreasing the point of frequency nadir.

For instance, in order to avoid such a drawback for the backward distribution, it can be

considered to include in the formulation of the multi-objective control problem presented

in (5.12) an additional objective to combine inertia and primary frequency supports, and

so reducing the frequency nadir.

5.4 Summary

In order to improve the participation of wind energy in the electricity balancing market,

wind farms should be able to provide ancillary services, for instance frequency regulation.

Typically, wind farm should operate in curtailed mode to provide enough power reserve

to be delivered into the grid for ensuring primary frequency control. In this condition,

the wind turbine generation can be optimally regulated to provide different objectives.

Therefore, a multi-objective optimization problem that is solved with the predictive

control model technique has been presented in this chapter. Using a surrogate model of

the wind turbine power response, it has been possible to predict within the prediction

horizon of the MPC and optimize the power set-points for each turbines. Doing this, the

effect of the wake on the overall available power and the electrical cable losses within

the inter-array collection grid could be minimized. It has been shown that a backward

power regulation among the turbines can improve the available power but, in some cases

this regulation generates a drawback for the minimization of electrical losses. Therefore,

a trade-off between electrical power and wake minimization has been found to provide

both the objectives by properly assigning specific weights at each objective. The results
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Figure 5.12: Power generated by the wind farm to provide frequency support before,
t < 5 s, and after the frequency event.
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Figure 5.14: Pitch response for one row of turbines. Top plot: equal power regulation.
Bottom plot: backward regulation.

have shown that the proposed control is able to track the power demand by the TSO

during normal operation while minimizing the power losses and increasing the power

reserve for all the simulation cases, in particular the highest improvement is achieved

when the turbines are extremely affected by the wakes (i.e., at 0 degrees).

To see the effect of the proposed control approach when the wind farm provides primary

frequency support, a frequency droop in the interconnection grid has been simulated.

The results show that the backward distribution helps to restore the frequency at the

steady-state point within 13 s after the initial droop. Additional simulation case studies

were also presented that shown the proposed controller can deal with several atmospheric

conditions and power generations. Moreover, a comparison with other commonly used

power regulations has been presented in order to see the benefits of the proposed control

approach in terms of frequency support. As a result, it is possible to conclude that the

proposed approach provides a fast controller able to ensure the power demanded by the

TSO while maximizing the power reserve and, guaranteeing to release quickly the latter

power into the grid to restore the frequency at the nominal value after an event occurred.
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Decentralized Control for
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Overview

With the aim of reducing costs, modern wind farms consist of a large number of turbines

located close to each other. In this arrangement, turbines upstream produce wakes that

affect the power generation of the other turbines. As a result, the power production of

each turbine is highly coupled to the operating conditions of the other turbines, which

decrease the wind speed faced by the turbines. Such negative impact can be reduced

with suitable control strategies that send power commands to each turbine considering

couplings. In this circumstance, centralized control approaches may demand large infor-

mation sharing between turbines and the central controller. Complex communications

and large information exchange result difficult to process over times suitable to satisfy

the current power generation requirements (typically about seconds [63]) and the high

communication dependency make the system exposed to failures. To overcome this prob-

lem, this part of the thesis proposes a possible solution to mitigate the aforementioned

issues by designing a non-centralized wind farm control scheme based on splitting the

wind farm into almost uncoupled groups by solving a novel mixed-integer partitioning

problem. The control architecture corresponds to a hierarchical structure where a super-

visory controller coordinates the generation of each group to satisfy the power demanded

by the grid operator and additional grid requirements. The controller at the turbine level

seeks to optimize the distribution of the power set-points among turbines such that the

impact of the power losses due to the wake effect is reduced. The effectiveness of the

proposed scheme in terms of reduction of computational costs and power regulation is

evaluated by simulations for a wind farm of 42 turbines. With the proposed control ap-

proach the computation time is consistently reduced compared to the centralized control

strategy meanwhile the performance on optimal power distribution is slightly affected.

125





Chapter 6

Non-centralized predictive
control: a wake-based
partitioning approach

6.1 Introduction

Driven by economy scale costs and the need of replacing conventional power systems

with wind farms of similar capacity, the number of turbines in the recently installed

wind farms is even more increasing. Related wind farm models used to design the control

strategies become more complex and difficult to control with centralized design concepts.

Moreover, the ambitious targets arising from the new grid codes require to control larger

number of state information, increasing the computational burden and so the reliability

of ensuring real-time control with a centralized scheme. Typically, at the wind farm level,

a dedicated supervisory computer coordinates the operation of each turbine in order to

generate the power demanded by the TSO [? ]. This supervisory device needs to gather

information from a large number of sensors, compute a large set of commands and send

them to each turbine. With larger number of turbines, a centralized control approach

requires expensive communication networks, high computation power, and reduces the

overall system resiliency, being too sensitive to the status of the communication link [?

].

An alternative to mitigate the aforementioned issues consists in dividing the wind farm

into smaller groups of turbines, denoted as partitions. Each partition is equipped with
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a controller that communicates only with the turbines in the subset and the supervisor.

Thus, communication links and computational costs can be significantly reduced. This

idea has been applied to several large-scale systems, e.g., traffic systems, energy systems,

smart grids and water systems [17, 71, 118]. The application of partitioning techniques

for controlling wind farms in a decentralized manner has been started only recently

[9, 64, 146], mainly it consists on determining the partitions by considering the dynamical

couplings due to the wake effects. One pioneering work in this regard was proposed in

[146], in which by exploiting the problem structure a combination of online and offline

computations are used to reduce the solving time.

Among modern non-centralized control algorithms, alternating direction method of mul-

tipliers (ADMM), dual-decomposition and consensus-based control algorithms have at-

tracted more attention for wind farm control [10, 14, 21, 171]. In [171], fast gradient

methods via dual-decomposition are used for power regulation and load alleviation, in

which most of the computational tasks are shared by local distributed predictive con-

trollers at wind turbine level and reducing the computational cost of the central unit.

ADMM was also used in [9] to solve iteratively a clustering-based distributed optimiza-

tion problem in order to improve yaw misalignment issues of turbines within wind farms

and the total power production. Other limited-communication methodologies use con-

sensus algorithms to maximize the power generation and stored kinetic energy [55, 170].

These consensus algorithms have been successfully used for optimal power-sharing be-

tween wind farms and energy storage devices [14, 172]. Non-centralized control ap-

proaches have also been used in wind farms to mitigate negative wake effects in the

power production by computing axial induction factors or yaw misalignment [21, 64].

As these approaches rely on complex wake models and complex non-convex optimization

problems, the online implementation might be difficult.

In [143], a hierarchical control scheme based on artificial partitioning of a large-scale wind

farm was proposed. The work presented in this chapter extends this result improving the

partitioning procedure and using a hierarchical non-centralized MPC scheme. Firstly,

partitioning of the wind farm is cast as a mixed-integer linear optimization problem

taking into account the coupling among turbines caused by wakes. Once the wind farm

is split into a few almost uncoupled subsets, a three-level MPC scheme is designed with
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the aim of ensuring the power regulation at the levels imposed by the TSO and seeking

to maximize the power reserve available for ancillary service provision.

6.2 Wind Farm Partitioning

The partitioning problem for large-scale systems constitutes a relevant alternative in the

design of non-centralized controllers, allowing the identification of multiple sub-systems

in an appropriate manner as it has been presented in Section 2.3.4. As the first step

towards optimally designing a non-centralized control strategy, the wind farm is par-

titioned into several almost uncoupled subsets of turbines. Typically, the partitioning

can be addressed in two different ways. The first alternative consists in determining a

partitioning based on the dynamical coupling of the whole system, whereas the other

possible approach considers information coupling considering not only the dynamical

representation of the system, but also all the coupled constraints involved in the control

design. In this thesis, the partitions are designed organizing the wind turbines in subsets

according to the coupling level associated with the wake effect. Among the different ap-

proaches proposed for partitioning large-scale systems [10, 15, 118], here the partitioning

approach proposed in [143] is considered and improved in order to provide a more robust

partitioning algorithm.

In large wind farms, couplings among turbines caused by wakes are significant and

lead to substantial power losses. However, these couplings only affect a certain number

of turbines according to the turbulence intensity and the wind speed characteristics

in the surrounding area. As a possible strategy to better control the wind farm to

mitigate the overall wake effect, the wind turbines can be separated in subsets such

that the turbines affected by the same wake are in one subset. In order to do this, the

coupling dynamics should be modeled with relatively simple model to be included in

the partitioning problem formulation. As discussed in Chapter 2, by properly modeling

the wake interactions high fidelity code involving differential equations are required.

However, the high computational burden associated with these models are impractical

for updating the partitions in real-time. In Chapter 4, the Park’s model was used to

simulate the wind across a wind farm, the wind speed deficit was given as a function

of the distance among the turbines, the wind speed direction and the number of wakes
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affecting the downstream turbines. Based on this geometrical-based formulation of the

wake impact, in this thesis the strengths of the coupling among the turbines can be

computed as

εij =

∣∣∣∣ R

rij(xij)

∣∣∣∣ Asij(xij)A0
, (6.1)

if turbine Ti is placed downstream of turbine Tj (i.e., the wind speed faced by the i-th

turbine is affected by the wake caused by j-th turbine); otherwise, εij = 0. Notice that a

similar formulation for defining wind turbines subsets was presented in [10]. From (6.1)

it follows that the strength of the wake decreases with the separation among the turbines

rij(xij) and is proportional to the portion of the rotor shadowed by the upstream wake,

defined as Asij . The latter, function of the wind speed direction φ, is computed as

As,i(φ) = ri(xij)
2 cos−1

(
Lij

ri(xij)

)
+ r0 cos−1

(
dij − Lij

ri(xij)

)
+ dijzij , (6.2)

being Lij the distance between the centres of the wake area and the shadow area, dij the

distance between the centres of the wake area and the rotor area and zij the distance

between the intersection points of the wake and rotor area.

•

•

•

Tj

Ti R

dij

zij

xij

rij(xij)

Lij
y

x

A0

Asij

Axij

v∞

Figure 6.1: Wake expansion.

The proposed partitioning approach provide a clever way to organize the turbines such

that the The wake generated by an upstream turbine can affect the incoming wind
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speed of different downstream turbines in accordance with the turbulence intensity of

the surrounding area, the intensity and the main direction of the freestream wind speed.

6.2.1 Partitioning Problem

With the aim of considering wake effects, the interactions due to the wake propagations

are represented as a weighted directed graph G = (V,E), where V = {1, 2, . . . , n} is the

set of vertices, where each vertex corresponds to a wind turbine and E = {(i, j) : i, j ∈ V}
is the set of edges with weights εij in (6.1).

Then, according to the wind farm layout and the predominant free-stream wind speed

direction φ, the wind farm can be sorted in m subsets and the number of turbines within

each subset can be found by solving the following optimization problem:

minimize
δil

3∑
q=1

wqfq(δil), (6.3a)

subject to
∑
i∈V

δil ≥ 1, ∀ l ∈ K, (6.3b)∑
l∈K

δil = 1, ∀ i ∈ V, (6.3c)

with δil ∈ {0, 1} a Boolean decision variable such that δil = 1 if turbine Ti belongs to

subset l, with l ∈ K = {1, 2, . . . ,m}, and 0 otherwise. The non-empty constraint (6.3b)

and the exclusive constraint (6.3c) ensure that the subsets cannot be empty and turbine

Ti can only belong to one subset l.

The objective function (6.3a) consists of three terms weighted by wq > 0 (q = 1, 2, 3):

1. The first term f1 in the objective function (6.3a) is stated as the sum of the edge

weights at each partition l ∈ K, i.e.,

f1 , −
∑
l∈K

∑
i∈V

∑
j∈V\{i}

(εij + εji)δilδjl. (6.4)

Depending on farm layout and the v∞ direction, only a number of downstream

turbines is affected by the wake caused by an upstream turbine. The aim of this

term is to ensure that turbines coupled by the same wake belong to the same

subset.
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2. The second term is added to (6.3a) in order to minimize the distance dij between

turbines belonging to the same subsets, i.e.,

f2 ,
∑
l∈K

∑
i∈V

∑
j∈V\{i}

dijδilδjl. (6.5)

There might be cases where there is no coupling among turbines, i.e.,
∑

i∈V
∑

j∈V\{i}

(εij + εji) = 0, e.g., when wind turbines are located in a row (or a column) and

the freestream wind direction is such that the wakes generated by the upstream

turbines do not affect any other turbine. In such a case, to guarantee a unique

solution, turbines can be arranged according to their geographical distance.

3. Finally, in order to balance the number of turbines in each subset, an extra term

is added to minimize the difference between the number of turbines among all

subsets, i.e.,

f3 ,
m−1∑
l=1

m∑
l
′
=l+1

|
∑
i∈V

δil −
∑
j∈V

δjl′ |. (6.6)

Setting the weights wq, the aforementioned objectives are hierarchically prioritized to

find the optimal partition P
∗ = {P1, . . . ,Pm}.

The optimization problem (6.3) is nonlinear; however it can be recast as a mixed-integer

linear programming problem as follows. The procedure to transform products of logical

variables, in terms of linear inequalities was presented in [22], which however requires

the introduction of auxiliary Boolean variable δijl such that δijl , δilδjl. Notice that

δijl = 1 if and only if δil = 1 and δjl = 1, and therefore

δijl =


−δil + δijl≤ 0,

−δjl + δijl ≤ 0,

δil + δjl − δijl ≤ 1.

Let also define a dummy variable %ll′ ∈ R such that %ll′ ≥ |
∑

i∈V δil −
∑

i∈V δjl′ |, then

(6.6) can be replaced by

f3 =

m−1∑
l=1

m∑
l
′
=l+1

%ll′ . (6.7)
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Therefore, the optimization problem (6.3) becomes

minimize
δijl, %ll′ .

3∑
q=1

wqfq(δijl, %ll′), (6.8a)

subject to
∑
i∈V

∑
j∈V\{i}

δijl ≥ 1, ∀ l ∈ K, (6.8b)

∑
l∈K

δijl = 1, ∀ i, j ∈ V, (6.8c)

−δil + δijl ≤ 0, ∀ i, j ∈ V, ∀ l ∈ K, (6.8d)

−δjl + δijl ≤ 0, ∀ i, j ∈ V, ∀ l ∈ K, (6.8e)

δil + δjl − δijl ≤ 1, ∀ i, j ∈ V, ∀ l ∈ K, (6.8f)∑
i∈V

δil −
∑
j∈V

δjl′ ≤ %ll′ , 1 ≤ l ≤ m− 1, (6.8g)

∑
i∈V

δil −
∑
j∈V

δjl′ ≥ −%ll′ , 1 ≤ l ≤ m− 1, (6.8h)

where l′ = l + 1 and fq (q = 1, 2, 3) are given in (6.4), (6.5), (6.7). As a consequence of

using the auxiliary Boolean variable δijl, constraints (6.8d), (6.8e), (6.8f) must be added

to the original problem (6.3), [22] and the original no-empty and exclusive constraints

in (6.3b), (6.3c) must be rewritten as (6.8b), (6.8c), respectively. Additional constraints

(6.8g), (6.8h) are needed to be able to use the dummy variable %ll′ and hence using (6.7)

instead of (6.6).

6.2.2 Number of Subsets

In order to solve the m-partitioning problem (6.8), it is necessary to provide the number

of subsets m. A detailed strategy to determine this number for a drinking water network

is proposed in [15]. In the current work, a similar approach is presented assuming that

the air flow within a wind farm can be modeled as a simplified flow-based distribution

network. Many engineering systems have been modeled as flow-based distribution sys-

tems [15, 71], which consist of several elements of diverse nature, e.g., storage, actuator,

joint, sink, source and flow. Unlike other energy sources, wind cannot be stored, and

hence the wind flow in a farm can be obtained identifying only the following elements:
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1. Source: element generating the resource. It is equivalent to the turbine facing the

free-stream wind condition v∞ and generating the wake in the outflow field. The

set of these elements is denoted by V̄so.

2. Actuator: element that receives and provides the resources. The set of actuator

elements is denoted by V̄ac and corresponds to the set of turbines increasing the

wake effect generated by the upstream turbines j ∈ V̄so proportionally to the op-

erational conditions and, in turn, affected by the wakes generated by the upstream

turbines.

3. Sink: element that receives the resource from either the source and/or the actuator.

It is equivalent to the turbine only receiving wakes, e.g., the most downstream

turbine. The set of sinks is denoted by V̄si.

4. Link: directed link (i, j) allowing resource flow from an element i to j. For a wind

farm, this link corresponds to the wake generated by the turbine i ∈ V̄so ∪ V̄ac and

moving through a turbine j ∈ V̄ac ∪ V̄si. The set of link elements is denoted by

Ē ⊂ {(i, j) : i, j ∈ V̄}, with V̄ = V̄so ∪ V̄si ∪ V̄ac.

Therefore, the flow-based distribution system can be identified as a directed graph Ḡ =

(V̄, Ē) where each element i ∈ V̄ has a direct relationship with the turbines in the graph

G. The introduced elements for a flow-based distribution system and the representation

of the system by a directed graph allow finding the number of subsets as proposed in

[15], where three further indicators are defined:

1. Network resource-feeding index, denoted by τi with i ∈ V̄ \ V̄so, gives information

about the number of sources or actuator elements that provide the wakes for the

element i ∈ V̄ \ V̄so. Assuming the graph Ḡ is split into m subsets, it is possible

to identify the subsets of sinks V̄si,l and sources V̄so,l for each partition l ∈ K̄, K̄ =

{1, . . . ,m}, while the maximum resource-feeding index per partition is defined by

τ∗l = maxi∈V̄si,l
τi.

2. Sink co-relation index : The proportion of sinks in each subset l ∈ K̄ with respect

the total number of sinks in the flow-based graph Ḡ, i.e., σl =
∑

i∈V̄so,l
τi/
∑

i∈V̄l
τi

with V̄l = V̄so,l ∪ V̄si,l ∪ V̄ac,l the set of flow elements in the subset l.
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3. Resource-feeding co-relation index : The availability of sources in the subset l ∈ K

feeding the sink element i ∈ V̄si,l for which τi = τ∗l . It is assessed with re-

spect to the total number of sources j ∈ V̄so feeding the element i, i.e., βl =∑
j∈V̄so,l

αij/
∑

j∈V̄so
αij , where αij = 1 if the flow element εij = 1 with εij ∈ Ē,

and 0 otherwise.

The number of subsets is assessed by setting both a desired maximum sink co-relation

index and a minimum resource-feeding co-relation index, hence the subsets should satisfy

σl ≤ σ∗ and βl ≥ β∗. The parameter σ∗ is set to ensure that the number of sink

elements is balanced among the subsets such that there are not subsets without sinks.

Furthermore, identifying for each subset the maximum resource-feeding index τ∗l and

their respective sources, it is desired that each subset includes a minimum number of

these sources indicated by β∗.

6.2.3 Algorithm and Implementation Aspects

Figure 6.2 summarizes the partitioning approach proposed in this chapter. Assuming

an initial number of subsets m, the partitioning problem for the information sharing

graph G is first solved and the optimal partition set P∗ is found. Then, the analogy with

the flow-based distribution graph Ḡ is used to check whether or not the criteria for the

proper number of subsets are fulfilled. An iterative loop is repeated increasing the initial

number of subsets m = m+ 1 until the aforementioned criteria for defining the number

of subsets are satisfied.

The partition obtained with the previous procedure P
∗ depends on the distances xij

and the wind turbine arrangement within the farms (i.e., the set of downstream and

upstream turbines), which in turn depends on the predominant free-stream wind speed

direction φ. Furthermore, the computational burden to solve the proposed partitioning

problem for large wind farms can be high and inconsistent with the time scale related to

the variation of wind direction within a range and the sampling time used into the wind

farm controller. Nevertheless, the subset can be determined offline and one can keep a

look-up table to update the subset whenever the predominant free-stream wind speed

direction changes.
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Figure 6.2: Optimal partitioning algorithm flowchart.

As the wind speed direction is sensitive to turbulence and other atmospheric and geo-

graphical conditions such as eventual obstacles surroundings, a predominant wind speed

direction can be used to select the corresponding subset. This can be obtained by

time averaging of data gathered from sensors and for wind farms located in non-highly

turbulent sites and the predominant wind speed can be considered constant for about

10 minutes [58]. Therefore, during this time interval the subsets are kept constant to

provide robustness to the proposed control approach.

6.3 Wind Farm Control Strategy

Once the system is partitioned as indicated in the previous section for a set of predom-

inant free-stream wind speed directions

Φ = {φ1, . . . , φw},

there is a set P
∗ of optimal partition sets for each angle φ ∈ Φ. Then, for a given

direction φ and the corresponding partition set

P
∗ = {P1, . . . ,Pm},

the proposed non-centralized hierarchical control approach is structured as indicated in

Figure 6.3, where Pl is a set of nl indexes corresponding to the wind turbines in the

subset l ∈ K = {1, . . . ,m}.
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Figure 6.3: Scheme of the proposed wind farm non-centralized control strategy for a
given φ and the corresponding partition set P

∗ with m elements.

At the highest level, the Central Controller (CC) collects information regarding the

generated power P p
w,l and the available power P p

av,l in each subset and then sends the

corresponding commands P p
r,l. This controller aims to ensure that the total power de-

livered at the Point of Common Coupling (PCC) by the wind farm Pw,tot matches the

TSO’s power demand Pdem. In a lower level, the Partition Level Controllers (PLC) use

the measure of the generated power Pw,i and the available power Pav,i at each turbine

in the corresponding subset to impose a reference Pr,i to each turbine. Finally, at the

lowest level, the wind turbine control guarantees that the generated power satisfies the

set-point Pr,i.

6.3.1 Wind turbine Controller

Each wind turbine is equipped with a power controller that allows working in derated

mode if necessary [23, 72]. Thus, the power generated by the i-th wind turbine is given

by

Ṗw,i = −1

η
(Pw,i −min(Pav,i, Pr,i)), (6.9)

where η is a time constant, Pr,i is the reference sent by the PLC, and

Pav,i = min

(
ρπR2

2
Cp,maxv

3
i , Prated

)
(6.10)
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is the wind turbine available power, with Cp,max = maxai Cp(ai) and Prated the wind

turbine rated power.

6.3.2 Partition Level Controllers (PLCs)

The PLCs aim to ensure the total power generated in each partition matches the power

demanded by the CC. In addition, these controllers seek to distribute the power con-

tribution of each turbine in order to maximize the total available power, which in turn

maximizes the power reserve of the entire farm available for ancillary services. The

power reserve is defined as Pres = Pav,tot − Pw,tot.

For a given partition Pl, with l ∈ K and nl turbines, the corresponding PLC relies on

an MPC strategy based on the following optimization problem:

minimize
ul(k)

3∑
q=1

Hp−1∑
k=1

γqJq(xl(k),ul(k)) (6.11a)

subject to xl(k + j + 1|k) = Ad,lxl(k + j|k) + Bd,lul(k + j|k), (6.11b)

Pmin ≤ ul,i(k + j) ≤ Pav,i, ∀ i ∈ Pl (6.11c)

where γq > 0 are prioritization weights such that
∑3

q=1 γq = 1, xl ∈ Rnl is the state

vector and ul ∈ Rnl is the vector of manipulated variables, with elements xl,i = Pw,i and

ul,i = Pr,i (i ∈ Pl), respectively. The time indexes k ∈ N, j ∈ {0, . . . ,H − 1} and the

prediction horizon H are defined such that xl(k + j|k) denotes the vector of measured

generated power at the instant k corresponding to the control input ul(k + j|k).

The solution of problem (6.11) is the optimal control input ûl , ûl(k|k) corresponding

to the set-points for each the turbine i ∈ Pl. Notice that the first constraint (6.11b)

corresponds to the discretized version of (6.9), used to predict the power response of the

wind turbines in the partition Pl, where Ad,l and Bd,l are the discretized versions of the

matrices

Al = −(1/η) Inl
, Bl = (1/η) Inl

.

Finally, in the last constraint (6.11b), Pmin denotes the minimum power used as a lower

bound to avoid solutions implying the shutting-down of some turbines.

The cost function (6.11a) covers three objectives:
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1. Minimizing the tracking error, i.e., J1(xl(k), P p
r,l(k)) , ‖P p

r,l(k) −∑nl
i=1 xl,i(k)‖2,

where P p
r,l is the set-point imposed by the CC.

2. Maximizing the available power, i.e., J2(ul(k)) , ‖R ul(k)‖2, where the elements

of the matrix R are defined as

[R]ij =

{
(τi + κ)−µ, if i = j, µ = max(0, (P p

av,l − P
p
r,l)/P

p
av,l),

0, if i 6= j.

Here τi is the network resource-feeding index introduced in Section 6.2, P p
av,l is

the total available power in the subset Pl and κ > 0 is a small constant to avoid

singularity when the turbines are not affected by wakes.

When P p
r,l is lower than the total available power, J1 = 0 can be achieved with

different power contributions from each turbine. This degree-of-freedom can be

used to maximize the available power and thus the power reserve. Inspired by the

backward scheme presented in [140], here a simpler approach is proposed based

on penalizing the contributions of the most upstream turbines. The idea consists

in reducing the contribution of the upstream turbines to reduce the wind speed

deficits faced by the downstream turbine.

As the power demand P p
r,l is close to the available power, the backward distribution

may not be effective. In order to mitigate this issue, the exponent µ (0 ≤ µ ≤ 1),

defined as the ratio between the power reserve and the available power, is reduced.

Thus, in circumstance of high power demands, all turbines contribute with the

same power, whereas, for higher derating operations, the backward distribution is

used.

3. Limiting fast variations of the control inputs to smooth the operation and avoid

possible damage on the turbine, J3(ul(k)) , ‖ul(k)− ul(k − 1)‖2.

6.3.3 Central Controller (CC)

The aim of the CC is to ensure the entire wind farm delivers the power Pdem required

by the TSO. To this end, the CC receives, from each PLC, information about the total

generated power P p
w,l and the total available power P p

av,l corresponding to the partition,

and then produces a set of power references for each subset P p
r,l.
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As a consequence of the partitioning procedure, all turbine subsets can be considered

uncoupled. Moreover, in order to keep the controller simple, the dynamic response of

each partition can be described by a first-order system representing an aggregated wind

turbine as follows:

Ṗ p
w,l = − 1

ηl
(P p

w,l − P
p
r,l),

where ηl is a time constant that depends on the number of turbines in Pl and the PLC.

The CC relies on an MPC strategy based on the following optimization problem:

minimize
up(k)

Hp−1∑
k=1

‖Q xp(k)‖2 + ‖S (up(k)− up(k − 1))‖2 (6.12a)

subject to xp(k + j + 1|k) = Edxp(k + j|k) + Fdup(k + j|k) + GdPdem(k + j|k),
(6.12b)

Pp
min ≤ up(k + j) ≤ Pp

av, (6.12c)

with k ∈ N, j ∈ {0, . . . ,Hp−1}, and Hp the prediction horizon. As for the PLC, (6.12b)

corresponds to the discrete version of the following approximated dynamic model of the

entire wind farm:

ẋp(t) = E xp(t) + F up(t) + G Pdem(t), (6.13)

where

xp =
[
P p

w,1 . . . P p
w,m, ξ

]T
,

ξ = (Pdem −
m∑
i=1

P p
w,i),

up =
[
P p

r,1 . . . P p
r,m

]T
,

E =


−1/η1 0 . . . 0

0
. . .

...
...

... −1/ηm
...

−1 . . . −1 0

 , F =


1/η1 0 . . .

0
. . .

...
... 1/ηm
0 . . . 0

 , G =


0
...
0
1

 .

Constraint (6.12c) ensures the power references remain within the operating limits given

by the minimum power

Pp
min =

[
n1Pmin . . . nmPmin

]T
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to avoid shutting-down partitions and the available power defined as

Pp
av =

[
P p

av,1 . . . P p
av,m

]T
,

where P p
av,l =

∑
i∈Pl

Pav,i.

In the cost function (6.12a) is the sum of two objectives, the first is included to min-

imize the error in the tracking of the power demand. Therefore, the matrix Q =

diag(0, . . . , 0, Qξ) penalizes only the integral of tracking error. The second objectives

is related to the smooth operation and, the matrix S penalizes the rate of variation of

the power references.

6.4 Case Study

The proposed partitioning approach and control strategy were tested for a wind farm of

210 MW rated power with 42 benchmark NREL-5MW wind turbines spaced 630 m (i.e., 5

rotor diameters) and placed as shown in Figure 6.4. The wind field and wake effect have

been simulated for the free-stream wind speed of v∞ = 11 m/s using SimWindFarm

[72], a MATLAB/Simulink toolbox for wind farm simulation and control. The MPC

controllers were implemented with YALMIP [94] and CPLEX.

Wind farm partitioning

As mentioned in Section 6.2, the proposed partitioning approach depends on the pre-

dominant wind speed direction φ and is time-consuming for wind farm layout as the

analyzed in this section. Therefore, the partitions were computed offline for the set of

angles

Φ = {φ = (30 · i)◦, i = 0, 1, . . . , 11}.

A justification of this selection can be found in Section 6.4.2. The partition obtained

using the procedure in Section 6.2 for a wind speed direction of φ = 30◦ is illustrated

in Figure 6.4. The flow-based distribution graph Ḡ = (V̄, Ē) is obtained by relating each

turbine in the information sharing graph G to an element of the flow based distribution

system. The network resource feeding indices for each sink and the respective sources

are given in Table 6.1.
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Figure 6.4: Wind farm layout and optimal partitioning for a wind speed direction of
φ = 30◦: light blue P1, red P2, green P3, yellow P4, gray P5, and purple P6.

Table 6.1: Sinks, resource feeding indexes and sources in the directed graph Ḡ and their
connection with the turbines in the information sharing graph G.

Ti Sink, i ∈ Vsi τi, i ∈ Vsi Tj Source, j ∈ Vso

T37 1 T29

T38, T39, T10, T13, T14 2 T(29,30), T(22,30), T(15,22), T(4,5), T(6,7)

T41, T42, T35, T27, T28, T21 3 T(15,16,22), T(8,15,16), T(1,8,16), T(1,2,8), T(1,2,3), T(2,3,4)

The result of the multi-objective optimal partitioning problem in (6.3) was determined

by setting the maximum sink co-relation index σ∗ = 0.3, i.e., on each subset the number

of sink elements should be lower than the 30% of the total amount of sink elements.

Moreover, the minimum resource feeding co-relation index β∗ per subset was set at 0.5,

i.e., the source elements feeding the most affected sink in each subset are at least equal

to the 50% of the total sources feeding the element. In this case, the minimum number

of subsets ensuring the desired values of σ∗ and β∗ is m = 6, i.e., K = {1, . . . , 6}. Thus,

the maximum resource-feeding index for each subset τ∗l , with l ∈ K, along with the

corresponding turbine i ∈ Vl for which τi = τ∗l is: τ∗1 = 3 for T(42,35), τ
∗
2 = 3 for T(27),

τ∗3 = 2 for T(41,42), τ
∗
4 = 2 for T38, τ∗5 = 2 for T(13,14) and τ∗6 = 3 for T(21,28).

The weights in (6.3a) have been set as w1 = 0.7, w2 = 0.1 and w3 = 0.2, i.e., the highest
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Table 6.2: Time constants ηl and the number of turbines in each subset Pl for different
wind speed directions.

Wind
speed
direction
φ

Partitions

P1 P2 P3 P4 P5 P6

n1 η1 (s) n2 η2 (s) n3 η3 (s) n4 η4 (s) n5 η5 (s) n6 η6 (s)

0◦ 7 0.28 7 0.28 7 0.28 7 0.28 7 0.28 7 0.28
30◦ 9 0.30 8 0.28 8 0.26 5 0.21 5 0.18 7 0.25
60◦ 12 0.16 6 0.15 6 0.15 6 0.15 6 0.15 6 0.15
90◦ 9 0.3 9 0.3 6 0.18 6 0.18 6 0.18 6 0.18

priority is given at coupling among turbines due to the wake effect. Meanwhile, the lower

priority is set for the second objective f2 since it ensures a unique solution when there is

no wake interaction among the turbines. The balance of the number of turbines at each

partition is only ensured by the third objective function f3 minimizing the difference of

the number of turbines belonging to different partitions. It is worthwhile to note that

increasing the value of w3 at the expense of the weight w1 might yield a different result

since the difference among the numbers of turbines in the subset gets close to zero.

Control design

In order to design the MPC strategies, the time constant in (6.9) was set to η = 0.125 s.

For the PLC, the sampling time used to discretize the partition model in (6.9) was set to

0.05 s, the prediction horizon to H = 3, and the weights in (6.11a) to γ1 = 0.5, γ2 = 0.4

and γ3 = 0.1. For the CC in (6.12), the sampling time was set to 0.1 s, the prediction

horizon at Hmathcalp = 3, and the weights to Qξ = 0.8 and S = 0.2 · I6. The time

constants ηl for each partition l ∈ K are given in Table 6.2. As the number of turbines

in each subsets is different, the time constants ηl needed to approximate the dynamics

of each subset are also different.

In order to highlight the effect of redistributing the power contribution of each wind

turbine in the partition, in all simulations, for all t < t0 = 50 s the weight on the control

input in (6.11) is selected as R = Inl
, i.e., equal contribution is required for every turbine,

whereas, for all t ≥ t0 the contribution are distributed as discussed in Section 6.3.
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6.4.1 Test 1: Power Regulation

First, the proposed control strategy was evaluated in the case of a predominant wind

speed direction of φ = 30◦ and a power demanded by the TSO of Pdem = 60 MW.

Hence, the wind farm operates in derated mode. The total available power Pav,tot is

higher (about 53%) . The partitioning in this case results in the following subsets:

P1 = {8, 16, 17, 24, 25, 33, 34, 35, 42},
P2 = {1, 2, 9, 10, 18, 19, 26, 27},
P3 = {15, 22, 23, 31, 32, 39, 40, 41},
P4 = {29, 30, 36, 37, 38},
P5 = {5, 6, 7, 13, 14},
P6 = {3, 4, 11, 12, 20, 21, 28}.

Figure 6.4 illustrates the partitioning and the wake effect.

Figure 6.5a shows the total power generated Pw,tot (black line), the set-point Pdem (gray

line) and the total available power Pav,tot (blue line). The redistribution of the power

contribution starts to affect the available power only after t = t0 + t, where t ≈ 60 s

is the time the wind takes to travel from one turbine to the next downstream one [31].

Comparing the initial and final values of Pav,tot, it can be observed that the power

contributions imposed by each PLC are capable of increasing the power reserve with

about 2.7% (from 167.5 MW at t = t0 to 172 MW at t = 600 s) without affecting the

power demand tracking.

Figure 6.5b and Figure 6.5c show the available and generated powers, P p
av,l and P p

w,l

respectively, for each subset. It can be observed that Subsets P4 and P5 make the higher

contributions (P p
w,5 = 12.4 MW, P p

w,4 = 11 MW), whereas the lowest ones are observed

in case of Subsets P1 and P2 (P p
w,1 = 8.5 MW, P p

w,2 = 8.8 MW). The remaining subsets

produce P p
w,3 = P p

w,6 = 9.6 MW. In Figure 6.5b, the available power P p
av,l increases in all

subsets compared with the initial values, except for Subsets P3 showing a small reduction

(close to 1.5%).

Figure 6.6 shows the power generated by each turbine in each partition. It can be

observed the backward distribution of the power contribution of each turbine imposed

by the PLCs in each partition. The largest contribution is done by the most downstream
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Figure 6.5: Test 1: Closed-loop response for Pdem = 60 MW, φ = 30◦, and v∞ =
11 m/s. a) Total generated and available power, b) Available power for each partition,
c) Generated power for each partition.
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turbines whereas the most upstream ones tend to reduce the power generation. In this

scheme, the power generation of some of the upstream turbines reaches the minimum

value Pmin.
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Figure 6.6: Test 1: Closed loop response for Pdem = 60 MW, φ = 30◦, and v∞ = 11 m/s.
Generated power by every turbine in each partition.

Figure 6.7(a) shows the total available power for different values of power demand:

Pdem = 60MW (blue line), 70MW (red line), 80MW (yellow line) and 100MW (purple

line). It can be observed that, in cases of high derating operations (Pdem < 80 MW), the

total available power increases compared to the values obtained with the uniform power

contribution scheme (t < t0). In these circumstances, the coefficient µ used in the weight

R in (6.11a) results to be 0.64 and 0.5, respectively, and the power contribution of each

turbine at each subset is determined according to the backward distribution. On the

other hand, when the power demand is close to Pav,tot, µ is close to zero and the matrices

R tend to Inl
. As a result, the set-points Pr,i are similar and every turbine in the partition
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is required to contribute approximately the same power level. The motivation for using

this scheme is due to the fact that when Pdem is high, turbines reach their maximum

power limits, especially the most downstream ones, and the backward distribution stops

being effective. In order to see this, Figure 6.7(b) shows the wind farm available power for

different values of power demand, given as percentage of Pgreedy, when the power among

the turbines is regulated on the basis of the backward distribution. Two wind speed

directions at 0 and 30 degrees are investigated. At low power demand, the backward

distribution improves the available power with a better performance when the wind

turbines are totally in the wakes of the upstream turbines, i.e., the wind speed is coming

from 0 degrees. In fact, in this case the wake reduction has more effect on the overall

wind farm power losses. However, above 82% of Pgreedy the benefit of following the

backward distribution is not significant. Going further to increase the power demand,

this distribution might not be the best solution and the equal contribution from all the

turbines can provide a better performance. Finally, in the case the wind farm is asked

to generate more power than Pgreedy for short time period, the distribution of the power

among the turbines has not effect on the overall performance.

6.4.2 Test 2: Sensitivity to Wind Speed Directions

In this test, the proposed non-centralized control strategy is evaluated when the parti-

tioning does not correspond to the exact predominant wind speed direction. As previ-

ously mentioned, the subset is computed off-line for a set of directions and selected from

a table with an estimated wind speed direction. The aim of this test is to analyze the

effect of this approximation.

Figure 6.8 presents both the total available and the total generated power for the actual

predominant wind directions φreal ∈ { 15◦, 20◦, 30◦, 40◦, 50◦} while the MPC controller

is designed for φ = 30◦. It can be observed that in all cases, the controller is able to

deliver the power demanded by the TSO, Pdem = 60 MW. Moreover, the backward

power distribution is also capable of increasing the total available power. Nevertheless,

when the direction φ used for the design does not correspond to the real predominant

wind speed direction φreal, some deterioration in the system response can be observed.

The available power profiles in Figure 6.8b indicate that the largest increase regarding

the initial values (t < t0), when the backward distribution is not active, is observed in
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Figure 6.7: Test 1:Total available for several set-points of Pdem. Figure(a): Time re-
sponse. Figure(b): Power improvements obtained with the backward distribution with
respect to the equal distribution.
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the case where the φ used in the controller design coincides with φreal. Notice that the

initial values are different for each φreal as wind speed deficit depends on this angle. The

increase in the available power can be compared using the expression

∆Pav =
Pav,tot(t = 600 s)− Pav,tot(t0)

Pav,tot(t0)
· 100%, (6.14)

with Pav,tot(t = 600 s) and Pav,tot(t0) respectively the available power at the steady-state

when the backward distribution is followed and the available power when the turbines

provide the same power. Figure 6.8c shows the values of ∆Pav corresponding to the

aforementioned cases.

The previous analysis can be repeated to cover the entire 360◦ range and to propose a

set of sectors in which a controller designed for a given direction will work properly also

for different wind direction belonging to the same sector. This approximation avoids the

problem of changing the controllers for any change of wind speed direction and provides

a more robust control strategy. Table 6.3 lists the directions used to compute the subsets

and the sectors in which the corresponding controllers are valid. Here, the entire 360◦

range was divided in equal sectors. If a wind speed history of the farm site is available,

the identification of the sectors in Table 6.3 can be defined using the corresponding wind

rose information. In fact, if the specific distribution of the wind speed direction is known,

then the partitions (and the size of each angle sector) can be updated according to the

frequency of the wind direction.

6.4.3 Test 3: Comparison between Non-centralized and Centralized
Control Approaches

One of the aims of proposing a non-centralized control approach is to reduce the com-

putation time. In order to evaluate this point, in this section, the proposed scheme

is compared with a centralized control scheme. The simulations were performed for

a predominant wind speed direction of 30◦ and for three different partition schemes:

m = 4, 5, 6. The centralized control scheme corresponds to the PLC with one partition.

The total generated and the total available power for all cases can be seen in Figure 6.9.

Clearly, the best performance is achieved with the centralized scheme, which has more

information but also requires more computation time. Nevertheless, it can be observed

that the non-centralized schemes are able to achieve values of total available power close
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Figure 6.8: Test 2: Closed-loop response when the controller is based on a wind speed
direction of 30◦ but the real direction is φreal. a) Total generated power, b) Total available
power. c) Total available power increment (6.14).
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Table 6.3: Test 2: Angle φ used in partitioning and the sectors in which the controller
performs properly.

Design angle φ [◦] Validity sector [◦]

0 −10 ≤ φ ≤ 10
30 15 ≤ φ ≤ 50
60 55 ≤ φ ≤ 80
90 85 ≤ φ ≤ 100
120 105 ≤ φ ≤ 140
150 145 ≤ φ ≤ 170
180 175 ≤ φ ≤ 190
210 195 ≤ φ ≤ 230
240 235 ≤ φ ≤ 260
270 265 ≤ φ ≤ 280
300 285 ≤ φ ≤ 320
330 325 ≤ φ ≤ 350

to the centralized option. The increase in the available power ∆Pav (6.14) results in

0.6% for the case m = 4 (blue line) and in 2.6% for the case m = 6 (yellow line), which

is close to the centralized values.

With the aim of comparison, Table 6.4 lists computation times, total available power

and the increase in the power reserve. The computation times were determined using

a computer with an Intel i7 processor, 8 GB of RAM running Windows 10. The first

and second rows in Table 6.4 present the time the solver needs to find the solution of

the optimization problems (6.12), (6.8). Notice that in the non-centralized cases, the

solver times for local controllers correspond to the worst case (partitions with the highest

number of turbines). As the CC and each PLC run in parallel (on different computers),

the estimation of the total solver time must be taken as the largest time value, which

is indicated as ts,tot = max (max (ts(PLC)i) , ts(CC)), with i ∈ K and ts(CC) the solver

time for the central controller. The computation improvement between the centralized

case and the case of 6 partitions can be evaluated as

∆ts =
ts(CMPC)− ts,tot

ts(CMPC)
· 100%. (6.15)

Therefore, the proposed scheme achieves an improvement of almost 70% of the compu-

tation time, with a similar response for the total available power.
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Figure 6.9: Test 3: Comparison among non-centralized schemes with several numbers of
partitions m and a centralized approach. a) Total generated power. b) Total available
power.

Table 6.4: Solver time for the centralized and non-centralized MPC approaches (PLC
and CC) together with the percentage of improvement with respect to the centralized
case and total available power at steady state.

Centralized (CMPC) Decentralized

m 4 5 6

Solver time [s] 0.1081 ts(PLC): 0.009 0.0079 0.0046
ts(CC): 0.0898 0.0401 0.0328

Computational
improvement (∆ts) 0 0.18 0.63 0.7

∆Pav,tot [%] 3.06 0.68 1.07 2.59
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6.5 Summary

This chapter has presented a novel active power control strategy for wind farms based

on non-centralized predictive control with a wake-based partitioning approach. Such

novel control strategy aims to reduce the high communication and computational burden

that can be an issue for guaranteeing online control of large wind farms. To this end,

a partitioning algorithm, stated as a mixed-integer multi-objective problem, has been

designed to divide the wind farm into smaller subsets of turbines such that the amount

of information shared with the central control could be reduced and the overall system

resiliency is improved. The subsets are identified such that the couplings due to the wake

effects among the turbines within different partitions are minimized. Therefore, each

partition is considered as an independent unit controlled by a local predictive controller

defined to solve a multi-objective optimal control problem in order to provide the power

profile set by the central controller and optimally regulate the power set-points among

the turbines such that the overall available power is improved.

The results show that the non-centralized approach reduces consistently the computa-

tional costs with respect to a fully centralized strategy, allowing the proposed controller

to be suitable for real-time applications. Moreover, the drawback due to the reduction

of the information sharing only slightly affects the overall performance of the wind farm

generation. In fact, the results show that the decreasing of the available power is lower

than 1% respect to the centralized case and, increasing the number of partitions, the

available power converges to the centralized case.
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Chapter 7

Conclusions

In this doctoral thesis, novel advanced control strategies for the design of optimization-

based wind farm controllers have been presented. In the first part of this dissertation,

an identification of the expectations and the major issues nowadays related to wind

farm operation, as well as new opportunities to improve wind generation and participa-

tion in electrical grid support were discussed. Then, as first contribution of this thesis,

these main challenges have been translated into control objectives to be addressed by

wind farm and wind turbine controllers to improve the existing control systems while

optimizing the wind farm operation whenever possible. The second part of this thesis

was devoted to design the aforementioned wind farm controllers in a centralized manner

considering wind farms with relatively low number of turbines to validate the proposed

control approaches. As second contribution of this dissertation, model-based control

strategies formulated according to the receding horizon idea have been stated to solve

multi-objectives optimization problems to basically optimize the automatic generation

of the wind farm while considering operational limits and constraints. Specifically, in

order to ensure the priority among the objective functions such that the main objective

of following a power profile imposed by the electrical grid treated as the most important

one, the lexicographic minimizers procedure was proposed in Chapter 4. The resulting

optimal regulation of the power set-points among the turbines was used to set the ele-

ments of a weighting vector used to ensure the minimization of the overall wake effect

when designing a multi-objective MPC as presented in Chapter 5. In that chapter, also

the electrical cable losses in the inter-array collection grid have been considered in the

minimization problem. Therefore, a trade-off between electrical power and wake mini-
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mizations has been found to provide both the objectives by properly assigning specific

weights at each objective. As third contribution of this thesis, a new power distribution

algorithm has been presented in order to exploit the degree-of-freedom for distributing

the power among the turbines in the case of de-loading operation modes, such that the

capability of wind farm to provide frequency support was improved. The latter approach

has been compared with other commonly used regulation approaches to highlight its ben-

efits in terms of power reserve maximization. In order to cope with the limitations of

centralized control that requires full-information exchange among the turbines, Part III

was devoted to present a novel non-centralized control approach. The main issue that

has been addressed in this part of the thesis is the high computational burden caused by

the large number of turbines that nowadays are placed in a wind farm, which affects the

reliability and robustness of the centralized control architecture. As fourth contribution

of this thesis, a partitioning approach considering the dynamic variation of the couplings

among the turbines due to the wake effect is presented to divide the turbines in subsets.

These were identified such that the couplings due to the wake effects among the turbines

within different partitions were minimized. Each subset was, therefore, considered as

an independent unit controlled by local controllers in a decentralized manner as pre-

sented in Chapter 6. It has been shown that the non-centralized approach has reduced

consistently the computational costs, allowing the proposed controller to be suitable for

real-time applications.

7.1 Answering the Research Questions

The main conclusions of the arguments addressed through this thesis can be summarized

by answering at the research questions presented in Chapter 2.

Q1: Which kind of wind farm controllers can be designed to provide grid support?

Closed-loop wind farm controllers are nowadays the best solution to provide a robust

control that can adapt the control actions according to the changing of wind farm opera-

tion, atmospheric conditions and fast variation of grid requirements. Finding a trade-off

between robustness and performance was the main criterion followed to design wind
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farm controllers able to enhance the participation of wind farms in grid support. In

this thesis, the proposed controllers were based on simplified models describing the wind

turbine and wind farm dynamics, however accurate enough to guarantee proper control

performance while keeping the computational time within the time-span (approximately

10 ms - 2 s) for ensuring grid support. The results have shown that for all the proposed

control strategies, it has been possible to follow the fast variation of the power demanded

by the grid while, whenever possible, ensuring other control objectives to improve the

power reserve. In particular, for the case of full-waked conditions an improvement of

about 8% resulted with respect to the case where no maximization of capacity reserve

is considered.

Q2: How the operation of a wind turbine can influence the power delivered by a wind
farm?

Aerodynamics interactions among the wind turbines in a wind farm affect the maximum

power that a wind turbine can generate. Hence, considering them when optimizing

the wind farm production is crucial. In this circumstance, greedy control that extracts

the maximum power from each turbine (MPPT operation), no longer guarantees the

maximization of power generation at the farm level. Therefore, advanced control strate-

gies have been proposed in this thesis to properly regulate the power set-points for the

turbines, they must be regulated by a higher control level that ensures the wind farm

provides the aforementioned grid requirements. In particular, when a wind turbine is re-

quired to track a deloaded power reference to sustain the grid, e.g., for frequency support

purposes or power curtailment constraints, the linear programming problem presented

in Chapter 3 to optimally regulate the power among the turbines has resulted to improve

the overall power reserve with respect to the more common proportional distribution and

equal distribution [76]. It seeks to distribute the power contribution of each turbine in

order to reduce the wind speed deficits caused by wake effects by prioritizing the power

contribution of the most downstream turbines and thus attenuating the wake distur-

bances. As a result, with this approach the frequency, dropped from the nominal value

for some imbalances in the grid, can be driven back to an higher steady-state value.
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Q3: Which wind farm dynamics are needed to be considered when designing a wind
farm model such that a control strategy can be used in an online closed-loop framework?

Modeling assumptions are necessary to make the wind farm controller suitable for on-line

control. In Chapter 4 it has been shown that in order to design a predictive controller,

a surrogate steady-state model of the wind farm dynamics is required. To keep the

computational costs and the complexity of the optimal control problem formulation

low, a first-order system has been used to describe the power response of a wind turbine.

With the aim of ensuring power reference tracking, the dynamics of the wind farm power

generation could be described as the sum over the power generated by the turbines. In

fact, since the automatic generation control requires to follow the fast variation of power

demand (about within 1-2 seconds), the slower and highly non-linear dynamics of the

wake effects could be neglected by avoiding the need of including a full wake model in

the MPC formulation. It can be concluded that, if for this application there was not

need of a wake model, it could be indispensable in other cases, for instance, when the

yaw control settings is included in the optimal formulation. However, this latter case has

been only partially treated during this doctoral study and partial results are presented

in Appendix B.

Q4: Which control objective should be stated in an optimization-based control for
wind farm to provide frequency support?

Over this thesis, three main objectives besides following the power reference imposed by

the grid have been considered:

1. Maximization of power reserve.

2. Minimization of wind speed deficits due to the wake effect.

3. Minimization of electrical cable-losses within the wind farm.

When solving a multi-objective optimization problem, different regulations of the con-

trol signals among the turbines could be found according to the priority associated with

each objective. In Chapter 4, the strict priority between the minimization of tracking

error and maximization of power reserve has been ensured by solving the problem with
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the lexicographic programming method. Therefore, the optimization problem has been

stated as a set of optimization problems, such that the two objectives are considered

separately, thus treating the non-convex nature of the overall cost function. In Chap-

ter 5, also the minimization of cable-losses have been included in the MPC formulation.

However, the priority among the latter objective and the minimization of wake effect

is influenced by dynamic external factors, such as atmospheric conditions and the level

of the power demanded by the grid. Therefore, the prioritization among the objec-

tives has been dynamically adapted by properly tuning the weighting terms in the MPC

formulation.

Q5: How the computational burden can be reduced while ensuring the reliability of
the controller when the number of turbines in the wind farm becomes larger?

Once the wind farm operations have been concerned according to the answer to key

research question Q4, then in Chapter 6 the constrained optimization problem has been

solved in a non-centralized manner. The main reason of doing so has been to provide

a wind farm control strategy able to provide real-time control when the large number

of turbines made difficult to control with the centralized approach presented over this

thesis. It resulted that the reduction of information sharing among the turbines in

the non-centralized approach has decreased the overall performance with respect to the

centralized scheme but also has decreased the computational time for more than 70%.

Nevertheless, it can be observed that the non-centralized scheme has been able to achieve

values of total available power close to the centralized counterpart.

Q6: How can optimally distributed the wind controllers? Is a centralized approach
the best solution?

In this thesis, for dividing the wind farm into smaller subsets a partitioning algorithm,

which could lead to better control the wind farm in order to mitigate the overall wake

effect, has been presented. A mixed-integer multi-objective problem has been designed

such that the couplings among the turbines due to the wake effects within different parti-

tions were minimized. Therefore, the communication links among the turbines belonging

from different subsets were weak, thus each partition could be treated as an independent

unit. In order to keep the time convergence of the partitioning problem low, the dynamic
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variations of the couplings with the wake propagation have been estimated in the parti-

tioning formulation based on the Jensen’s wake model. Moreover, an heuristic strategy

to determine the optimal number of subsets presented for a drinking water network in

[15] has been adapted to wind farms such that the performance of the controller could

be maintained as close as possible to the centralized case.

Q7: How the non-centralized control approach influences the overall performance of
controlling a wind farm with respect the centralized approach?

In the hierarchical non-centralized architecture, two control levels have been identified:

1) the PLC, each partition has been considered as an independent unit controlled by a

local MPC; 2) the CC, designed to ensure the grid requirements. Therefore, each subset

at the CC level has been treated as an aggregated wind turbine drastically reducing the

information to be shared with the central controller. Proportionally to the increasing

of the number of subsets, i.e., the number of aggregated turbines to optimally regu-

late, the performance of the non-centralized approach has been increased. Driven by a

trade-off between computational time and performance (measured as the capability to

improve the overall available power), the non-centralized controller showed a reduction

of the performance for almost 1% with respect to the centralized case but, increasing

the number of partitions, the performance converges to the centralized case.

7.2 Directions for Future Research

There are still many aspects and open problems regarding the closed-loop dynamical

wind farm control that need to be investigated. This thesis has made efforts to show

novel approaches in the design of on-line optimization-based wind farm controllers, either

formulating the well known MPC approach or fully designing novel control algorithms

for the wind farm control purposes. In the following, some suggested ideas for future

directions are given:

• The MPC strategy presented in Chapter 4 could be improved developing a wind

speed estimator that can predict the effect of the optimal wind turbine power set-

points on the available power some steps ahead, required by the wake to reach the
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downstream turbine. Predicting the wake effect could improve the performance

on maximizing the overall power reserve, however the practical implementation

of such wind estimator is not trivial. Linearized wake models have resulted to

not work properly [21], thus the use of non-linear models should be considered.

Moreover, the issue of designing an MPC strategy managing two different time

scales should be considered, since it has to predict the fast dynamics of the wind

turbine response as well as the slow dynamics of the wake propagation.

• The use of Kalman filters or similar methodologies to help addressing some of

model error or external disturbance could be considered in the closed-loop control.

• Eventually, some of the presented control tools could be employed to address an-

other important issue in wind farm control: the fatigue reduction. Both wind

turbine and wind farm controllers could be adapted in order to integrate the sys-

tem mechanical stress reduction.

• The partitions used for designing the non-centralized MPC in Chapter 6 have

been obtained considering that the wind speed direction can be considered con-

stant within 10 min. It is still an open problem to proof the on-line feasibility of

the proposed control approach when considering more realistic environments and

operations. In the case of quicker variation of the wind speed direction, faster up-

dating of the sub-sets should be ensured. Therefore, further work should be done

to synchronize the partitioning problem with the time horizon within the new set

of optimal control actions is provided, for instance the use of a look-up table could

neglect such a problem.

• Distributed controllers can be designed for controlling wind farms, in this case the

main issue is how treating the problem constraints. The wind turbines need to

share information with the drawback of increasing in the number of required di-

rect communications among them. The partitioning algorithm in 6.8 could be used

to reduce the number of coupled constraints, therefore the computational burden,

in the same way as done in the presented non-centralized approach when system

constraints are not active. For the distributed case, the grid requirements should

be directly sent to each subsets by neglecting the need of a central unit. This
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will increase the system resiliency, however a detailed estimation of the perfor-

mance should be done with respect to the centralized and non-centralized control

approaches.

• As the var capacity of a wind turbine converter, i.e., the capability of providing

reactive power, depends on active power generated by the turbines, the MPC could

be stated to solve an active and reactive power optimization problems. Beyond

tracking and power reserve maximization, adding an extra cost function at the

multi-objective MPC in Chapter 5, the wind farm controller could also provide

minimization of voltage variation at the PCC such as suddenly manage a fault

event. Preliminary results have been already obtained during the last part of this

doctoral program, but further work is required on this topic.

• Another interesting aspect is to explore the economic profits due to the partici-

pation of wind farms in balancing market. It is clear that in the case the wind

generation is not high, the best economic compensation is obtained by maximizing

the generation of the wind farm. However, for those countries where RE genera-

tion is significant, the participation in primary market is, or will be, mandatory.

An additional cost function taking into account the economic benefits to opti-

mally regulate the wind farm power generation could be included into the MPC

formulation.
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Appendix A

PALM Simulation Model

The true wind farm is replaced by the high-fidelity “PArallelized Large-eddy simulation

Model (PALM)” [99], this is programmed in FORTRAN, while almost all academic wind

farm control algorithms are implemented in MATLAB or Python. One of the contribu-

tions of this thesis is the development of the PALM Supervisory Controller, which pro-

vides a communication interface between PALM and wind farm controllers implemented

in MATLAB. This allows the straight-forward evaluation of such control algorithms in

a high-fidelity simulation environment. The PArallelized large-eddy simulation model

PALM is a meteorological model for atmospheric and oceanic boundary-layer flows. It

has been developed as a turbulence resolving large-eddy simulation (LES) model and is

open source, available in the public domain [75]. In the LES approach, only the large

eddies are simulated due to spatially filtering the Navier-Stokes equations. The dynamic

influence of the small turbulent scales are consequently not resolved, but their influ-

ence is accounted for with a so called subgrid model. PALM is based on the unsteady,

filtered, incompressible Navier-Stokes equations and the subgrid-scale turbulent kinetic

energy (SGS-TKE) model [39]. PALM can simulate the effect of the Coriolis forces and

if non-cyclic boundary conditions are imposed, it can generate time dependent turbulent

inflow data by using a turbulence recycling method. Two different turbine models are

available in PALM. The ADM model and the rotating actuator disk model [23]. Both

these turbine models can be utilized with the PALM Supervisory Controller that is a

MATLAB/FORTRAN interface allowing for communicating with a wind farm controller

implemented in MATLAB. This communication infrastructure is used for evaluating the
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Chapter A. PALM Simulation Model

Figure A.1: Block scheme of the control strategy for yaw γ and thrust coefficient C ′T
optimization.

set of control signals U by using measurements from PALM Y. According to the turbine

model used, the control signals are

• PALM+ADM

– Y: wind speed vi, power generated Pg,i, axial force Ft,i

– U: thrust coefficient C ′Ti , yaw angle γ∗i

• PALM+ADM-R

– Y: wind speed vi, power generated Pg,i, axial force Ft,i, generator speed ωg,i

– U: generator torque Tg,i, yaw angle γ∗i , pitch angle β∗i

For the present work the PALM-ADM option is employed.
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Appendix B

A Constrained Wind Farm
Controller: Yaw Angle
Optimization

As part of this doctoral thesis a collaborative work was carried out at the Delft Center for

Systems and Control. Here, starting from the original idea of providing power tracking

at the farm level, the author has contributed to design an MPC controller to provide: 1)

minimization of the dynamical loading on a farm level by optimal regulating the power

reference among the turbines for de-loading operation, and 2) optimize the yaw angle

settings to maximize the possible power that can be harvested by the farm for ensuring

tracking also when the power demand exceeds the available for non-yawed operation. In

the literature, to the best of the author knowledge, yaw control is almost employed to

maximize the power generation at the farm level [52], [21], [64], but considering time-

varying yaw actuation to provide power tracking is a novelty of this work. For this reason,

this appendix is devoted to summarize part of the results obtained by the collaboration

with Sjoerd Boersma, Bart M. Doekemeijer and Jan-Willem van Wingerden as presented

in [25]. Figure B.1 shows a block scheme of the proposed control approach. As presented

in chapter chapter 4, when using PALM the dynamics of the turbines are described by the

first-order response of the thrust coefficient C ′T,i, which corresponds also to the variable

manipulated by the MPC controller, see 4.20. Basically, the description of the controller

design is very similar to the one presented in the previous chapter Chapter 4, however

an additional state vector corresponding to the vector of axial forces acting on the rotor
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Figure B.1: Block scheme of the control strategy for yaw γ and thrust coefficient C ′T
optimization. Figure adapted from [25].

turbines Ft is added in this work. Being,

Ft,i =
πR2

2
(vi cos[γi])

2C ′T,i. (B.1)

According to the PALM block scheme in appendix A, the sets of measurements and

control signals are respectively, Y = {Ft,i, Pg,i, vi} and U = {C ′T,ri , γ
∗
i }. In order to find

optimal yaw settings, the FLOw Redirection and Induction in Steady-state (FLORIS)

optimization tool [60] is employed, which uses the steady-state surrogate wake model

presented in [? ]. Under the assumption that the power reference is known for the

upcoming 15-minutes, the optimal yaw angles are kept constant within this time-span.

Nevertheless, the turbines are aligned with the mean wind direction, i.e., the yaw is

kept at zero, every-time the power demand is estimated to be ensured operating in de-

loading operation. Under this circumstance, the available power can be maximized by

properly setting the induction factors as proposed in part II and consequently reducing

the additional loading due to the yaw actuation [33]. Therefore, yaw angles different

from zero are only set when the power available is below the demand to guarantee the

tracking objective; in this circumstances, the optimal yaw angles γ∗i are obtained as

minimizing

J = −
nt∑
i=1

P ssg,i(γ
ss
i ), s.t. − 25◦ ≤ γssi ≤ 25◦, (B.2)

being the yaw limited to avoid high loads generation and P ssg,i the power generated in

steady-state conditions.
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The MPC controller solves a multi-objective optimization-based problem on seconds-

scale with the aim of tracking the power reference and minimizing the axial loads. That

is,

minimize
Ĉ
′
T,r(k)

(Pdem −
nt∑
i=1

Pg,i)
′Q(Pdem −

nt∑
i=1

Pg,i) + (Fk − Fk−1)′S(Fk − Fk−1)

subject to

x(k+j+1|k) = Adx(k+j|k) + Bd(γ0, v0)C′T,r(k+j|k)
+ BlPdem

Pg(k+j|k)
≤ Pav,k

C ′T,min ≤ C ′T,min(k+j|k)
≤ C ′T,max

(B.3)

with j ∈ [0, Hp − 1] ∩ Z≥0, C ′T,min = 0.1 and C ′T,max = 2. The parameter used to set-up

the PALM simulator are referred to Table 4.1. For a more detailed statement of the

control approach, the reader is referred to the paper [25].

Results

The value of the weighting matrixes Q = q ∈ R and S = sInt×nt
in B.3 were found with

a proper tuning process. Figure B.2 shows, for different values of s ∈ R, the values of

the performance index used to estimate the effect of axial force minimization for each

turbine, ∆Fi = (Fi,k − Fi,k−1)2 and ∆Ftot =
∑nt

i=1 ∆Fi. It can be seen that the latter,

i.e., the overall axial force, decreases when the minimization of the loads is included

in the objective function. However, only small improvements on this reduction can be

obtained by changing the weights s. Furthermore, the increasing of s has major effect

on the upstream turbines, e.g., T1, T2, T3, for which the dynamical loads decreases.

Meanwhile, for the downstream turbines the effect of adding the loads minimization

is not observed, this could be related with the highly waked wind flow faced by these

turbines.

Finally, Figure B.3 shows the improvements in power tracking performance when the

yaw control is activated. In this case study, the power reference signal, computed as

formulated in 4.21 for p = 0.9, is high enough to overcome the greedy power for certain

period. Under this circumstance, the optimal yaw settings were found equal to γ∗i =

[−24.3 ,−24.3 ,−16.2 ,−16.2 , 0 , 0] degrees. Hence, the downstream turbines are kept

non-yawed to avoid additional dynamical loads on the rotor. Top plot in Figure B.3
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Figure B.2: Performance valued of dynamical loads variation for each turbine and for
the overall wind farm. Figure adapted from [25].

shows the power demand (red dashed line), the power generated (blue line) and the

power greedy (black dashed line) at the farm level for no yawed turbines case. From

time t = 300 s to t = 450 s, the power reference signal cannot be ensured being below

the wind farm available power. However, when the yaw control is activated (bottom

plot) the power generated by the farm improves to follow the power demand.

Conclusions

In this Appendix it has been briefly described the feedback control loop extensively

investigated in [25] with the aim of showing the possibility to use the additional degree-

of-freedom available in the case of deloading wind farm operation to minimize the dy-

namical loads acting on the wind turbines. Furthermore, the possibility of improving

the available power for high power generation conditions by properly setting the yaw

angles of the turbines was also discussed. The proposed control strategy tested with the

high fidelity simulation-environment PALM was able to ensure the fast variation of the

power demanded by the grid with a MPC controller operating on a sample time of 1 s.

In the case of deloading operations, it has been shown that the dynamical loads could be

reduced by smoothing the backward distribution among the turbines, i.e., the controller

tends to regulate the power such that the turbines are derated proportionally to their
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Figure B.3: Power tracking response for no-yawed γ = 0, top plot, and yawed γ = γ∗

conditions. Figure adapted from [25].

available power. Finally, the yaw control has shown to really be useful for improving the

power tracking performance, however the assumption of knowing the power demanded by

the grid 15-minute in advance could represent a critical point for such a control strategy.
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and Francisco González-Longatt. A review and recent developments in the optimal

wind-turbine micro-siting problem. Renewable and Sustainable Energy Reviews,

30:133–144, 2014. [Cited on page 102]

[70] Juan M Grosso, Carlos Ocampo-Mart́ınez, and Vicenç Puig. Learning-based tuning
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[135] Mesut E Sezer and DD Šiljak. Nested ε-decompositions and clustering of complex

systems. Automatica, 22(3):321–331, 1986. [Cited on page 50]

[136] Rabia Shakoor, Mohammad Yusri Hassan, Abdur Raheem, and Yuan-Kang Wu.

Wake effect modeling: A review of wind farm layout optimization using jensen’s

model. Renewable and Sustainable Energy Reviews, 58:1048–1059, 2016. [Cited on

page 33]

[137] Carl R Shapiro, Johan Meyers, Charles Meneveau, and Dennice F Gayme. Wind

farms providing secondary frequency regulation: evaluating the performance of

model-based receding horizon control. Wind Energy Science, 3(1):11–24, 2018.

[Cited on pages 35, 57, and 74]

[138] C.R. Shapiro, P Bauweraerts, J Meyers, C Meneveau, and D F Gayme. Model-

based receding horizon control of wind farms for secondary frequency regulation.

Wind Energy, 20:1261–1275. [Cited on pages 40 and 51]

[139] Sara Siniscalchi-Minna, Fernando Bianchi, Mikel De Prada Gil, and Carlos

Ocampo-Martinez. A wind farm control strategy for power reserve maximization.

Renewable Energy, under review. [Cited on pages 39 and 58]

[140] Sara Siniscalchi-Minna, Fernando D Bianchi, Mikel De-Prada-Gil, and Carlos

Ocampo-Martinez. A wind farm control strategy for power reserve maximization.

Renewable Energy, 131:37–44, 2019. [Cited on pages 36 and 139]

[141] Sara Siniscalchi-Minna, Fernando D Bianchi, and Carlos Ocampo-Martinez. Pre-

dictive control of wind farms based on lexicographic minimizers for power reserve

maximization. In Annual American Control Conference (ACC), pages 701–706.

IEEE, 2018. [Cited on pages 42 and 73]

188



REFERENCES

[142] Sara Siniscalchi-Minna, Mikel De-Prada-Gil, Fernando Daniel Bianchi, Carlos

Ocampo-Mart́ınez, and Bart De Schutter. A multi-objective predictive control

strategy for enhancing primary frequency support with wind farms. In Journal

of Physics: Conference Series, volume 1037, page 032034. IOP Publishing, 2018.

[Cited on page 101]

[143] Sara Siniscalchi-Minna, Carlos Ocampo-Martinez, Fernando D Bianchi, Mikel De-

Prada-Gil, and Bart De-Schutter. Partitioning approach for large wind farms:

Active power control for optimizing power reserve. In IEEE Conference on Decision

and Control (CDC), pages 3183–3188. IEEE, 2018. [Cited on pages 128 and 129]

[144] Maryam Soleimanzadeh and Rafael Wisniewski. Wind speed dynamical model in a

wind farm. In IEEE ICCA 2010, pages 2246–2250. IEEE, 2010. [Cited on page 35]

[145] Maryam Soleimanzadeh, Rafael Wisniewski, and Kathryn Johnson. A distributed

optimization framework for wind farms. Journal of Wind Engineering and Indus-

trial Aerodynamics, 123:88–98, 2013. [Cited on pages 40 and 50]

[146] Vedrana Spudic and Mato Baotic. Fast coordinated model predictive control of

large-scale distributed systems with single coupling constraint. In European Con-

trol Conference (ECC),, pages 2783–2788. IEEE, 2013. [Cited on pages 98 and 128]

[147] Vedrana Spudic, M Jelavic, M Baotic, and Nedjeljko Peric. Hierarchical wind

farm control for power/load optimization. The science of making torque from

wind (Torque2010), 2010. [Cited on pages 51 and 98]

[148] Rodrigo Toro, Carlos Ocampo-Mart́ınez, Filip Logist, Jan Van Impe, and Vicenç
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