20 research outputs found

    A Local Algorithm for the Sparse Spanning Graph Problem

    Get PDF
    Constructing a sparse spanning subgraph is a fundamental primitive in graph theory. In this paper, we study this problem in the Centralized Local model, where the goal is to decide whether an edge is part of the spanning subgraph by examining only a small part of the input; yet, answers must be globally consistent and independent of prior queries. Unfortunately, maximally sparse spanning subgraphs, i.e., spanning trees, cannot be constructed efficiently in this model. Therefore, we settle for a spanning subgraph containing at most (1+Δ)n(1+\varepsilon)n edges (where nn is the number of vertices and Δ\varepsilon is a given approximation/sparsity parameter). We achieve query complexity of O~(poly(Δ/Δ)n2/3)\tilde{O}(poly(\Delta/\varepsilon)n^{2/3}), (O~\tilde{O}-notation hides polylogarithmic factors in nn). where Δ\Delta is the maximum degree of the input graph. Our algorithm is the first to do so on arbitrary bounded degree graphs. Moreover, we achieve the additional property that our algorithm outputs a spanner, i.e., distances are approximately preserved. With high probability, for each deleted edge there is a path of O(poly(Δ/Δ)log⁥2n)O(poly(\Delta/\varepsilon)\log^2 n) hops in the output that connects its endpoints

    Verification of Quantum Computation and the Price of Trust

    Get PDF
    International audienc

    Expander Decomposition in Dynamic Streams

    Get PDF
    In this paper we initiate the study of expander decompositions of a graph G = (V, E) in the streaming model of computation. The goal is to find a partitioning ? of vertices V such that the subgraphs of G induced by the clusters C ? ? are good expanders, while the number of intercluster edges is small. Expander decompositions are classically constructed by a recursively applying balanced sparse cuts to the input graph. In this paper we give the first implementation of such a recursive sparsest cut process using small space in the dynamic streaming model. Our main algorithmic tool is a new type of cut sparsifier that we refer to as a power cut sparsifier - it preserves cuts in any given vertex induced subgraph (or, any cluster in a fixed partition of V) to within a (?, ?)-multiplicative/additive error with high probability. The power cut sparsifier uses O?(n/??) space and edges, which we show is asymptotically tight up to polylogarithmic factors in n for constant ?

    A Centralized Local Algorithm for the Sparse Spanning Graph Problem

    Get PDF
    Constructing a sparse spanning subgraph is a fundamental primitive in graph theory. In this paper, we study this problem in the Centralized Local model, where the goal is to decide whether an edge is part of the spanning subgraph by examining only a small part of the input; yet, answers must be globally consistent and independent of prior queries. Unfortunately, maximally sparse spanning subgraphs, i.e., spanning trees, cannot be constructed efficiently in this model. Therefore, we settle for a spanning subgraph containing at most (1+epsilon)n edges (where n is the number of vertices and epsilon is a given approximation/sparsity parameter). We achieve a query complexity of O~(poly(Delta/epsilon)n^{2/3}), where Delta is the maximum degree of the input graph. Our algorithm is the first to do so on arbitrary bounded degree graphs. Moreover, we achieve the additional property that our algorithm outputs a spanning subgraph of bounded stretch i.e., distances are approximately preserved. With high probability, for each deleted edge there is a path of O(log n * (Delta+log n)/epsilon) hops in the output that connects its endpoints

    Detecting and counting small subgraphs, and evaluating a parameterized Tutte polynomial: lower bounds via toroidal grids and Cayley graph expanders

    Get PDF
    Given a graph property Ω\Phi, we consider the problem EdgeSub(Ω)\mathtt{EdgeSub}(\Phi), where the input is a pair of a graph GG and a positive integer kk, and the task is to decide whether GG contains a kk-edge subgraph that satisfies Ω\Phi. Specifically, we study the parameterized complexity of EdgeSub(Ω)\mathtt{EdgeSub}(\Phi) and of its counting problem #EdgeSub(Ω)\#\mathtt{EdgeSub}(\Phi) with respect to both approximate and exact counting. We obtain a complete picture for minor-closed properties Ω\Phi: the decision problem EdgeSub(Ω)\mathtt{EdgeSub}(\Phi) always admits an FPT algorithm and the counting problem #EdgeSub(Ω)\#\mathtt{EdgeSub}(\Phi) always admits an FPTRAS. For exact counting, we present an exhaustive and explicit criterion on the property Ω\Phi which, if satisfied, yields fixed-parameter tractability and otherwise #W[1]\#\mathsf{W[1]}-hardness. Additionally, most of our hardness results come with an almost tight conditional lower bound under the so-called Exponential Time Hypothesis, ruling out algorithms for #EdgeSub(Ω)\#\mathtt{EdgeSub}(\Phi) that run in time f(k)⋅∣G∣o(k/log⁡k)f(k)\cdot|G|^{o(k/\log k)} for any computable function ff. As a main technical result, we gain a complete understanding of the coefficients of toroidal grids and selected Cayley graph expanders in the homomorphism basis of #EdgeSub(Ω)\#\mathtt{EdgeSub}(\Phi). This allows us to establish hardness of exact counting using the Complexity Monotonicity framework due to Curticapean, Dell and Marx (STOC'17). Our methods can also be applied to a parameterized variant of the Tutte Polynomial TGkT^k_G of a graph GG, to which many known combinatorial interpretations of values of the (classical) Tutte Polynomial can be extended. As an example, TGk(2,1)T^k_G(2,1) corresponds to the number of kk-forests in the graph GG. Our techniques allow us to completely understand the parametrized complexity of computing the evaluation of TGkT^k_G at every pair of rational coordinates (x,y)(x,y)

    Covering and separation for logical fragments with modular predicates

    Full text link
    For every class C\mathscr{C} of word languages, one may associate a decision problem called C\mathscr{C}-separation. Given two regular languages, it asks whether there exists a third language in C\mathscr{C} containing the first language, while being disjoint from the second one. Usually, finding an algorithm deciding C\mathscr{C}-separation yields a deep insight on C\mathscr{C}. We consider classes defined by fragments of first-order logic. Given such a fragment, one may often build a larger class by adding more predicates to its signature. In the paper, we investigate the operation of enriching signatures with modular predicates. Our main theorem is a generic transfer result for this construction. Informally, we show that when a logical fragment is equipped with a signature containing the successor predicate, separation for the stronger logic enriched with modular predicates reduces to separation for the original logic. This result actually applies to a more general decision problem, called the covering problem

    Counting Problems in Parameterized Complexity

    Get PDF
    This survey is an invitation to parameterized counting problems for readers with a background in parameterized algorithms and complexity. After an introduction to the peculiarities of counting complexity, we survey the parameterized approach to counting problems, with a focus on two topics of recent interest: Counting small patterns in large graphs, and counting perfect matchings and Hamiltonian cycles in well-structured graphs. While this survey presupposes familiarity with parameterized algorithms and complexity, we aim at explaining all relevant notions from counting complexity in a self-contained way

    The Sketching Complexity of Graph and Hypergraph Counting

    Full text link
    Subgraph counting is a fundamental primitive in graph processing, with applications in social network analysis (e.g., estimating the clustering coefficient of a graph), database processing and other areas. The space complexity of subgraph counting has been studied extensively in the literature, but many natural settings are still not well understood. In this paper we revisit the subgraph (and hypergraph) counting problem in the sketching model, where the algorithm's state as it processes a stream of updates to the graph is a linear function of the stream. This model has recently received a lot of attention in the literature, and has become a standard model for solving dynamic graph streaming problems. In this paper we give a tight bound on the sketching complexity of counting the number of occurrences of a small subgraph HH in a bounded degree graph GG presented as a stream of edge updates. Specifically, we show that the space complexity of the problem is governed by the fractional vertex cover number of the graph HH. Our subgraph counting algorithm implements a natural vertex sampling approach, with sampling probabilities governed by the vertex cover of HH. Our main technical contribution lies in a new set of Fourier analytic tools that we develop to analyze multiplayer communication protocols in the simultaneous communication model, allowing us to prove a tight lower bound. We believe that our techniques are likely to find applications in other settings. Besides giving tight bounds for all graphs HH, both our algorithm and lower bounds extend to the hypergraph setting, albeit with some loss in space complexity
    corecore