7 research outputs found

    On the Benefits of Edge Caching for MIMO Interference Alignment

    Full text link
    In this contribution, we jointly investigate the benefits of caching and interference alignment (IA) in multiple-input multiple-output (MIMO) interference channel under limited backhaul capacity. In particular, total average transmission rate is derived as a function of various system parameters such as backhaul link capacity, cache size, number of active transmitter-receiver pairs as well as the quantization bits for channel state information (CSI). Given the fact that base stations are equipped both with caching and IA capabilities and have knowledge of content popularity profile, we then characterize an operational regime where the caching is beneficial. Subsequently, we find the optimal number of transmitter-receiver pairs that maximizes the total average transmission rate. When the popularity profile of requested contents falls into the operational regime, it turns out that caching substantially improves the throughput as it mitigates the backhaul usage and allows IA methods to take benefit of such limited backhaul.Comment: 20 pages, 5 figures. A shorter version is to be presented at 16th IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC'2015), Stockholm, Swede

    Degrees of Freedom of Certain Interference Alignment Schemes with Distributed CSIT

    Full text link
    In this work, we consider the use of interference alignment (IA) in a MIMO interference channel (IC) under the assumption that each transmitter (TX) has access to channel state information (CSI) that generally differs from that available to other TXs. This setting is referred to as distributed CSIT. In a setting where CSI accuracy is controlled by a set of power exponents, we show that in the static 3-user MIMO square IC, the number of degrees-of-freedom (DoF) that can be achieved with distributed CSIT is at least equal to the DoF achieved with the worst accuracy taken across the TXs and across the interfering links. We conjecture further that this represents exactly the DoF achieved. This result is in strong contrast with the centralized CSIT configuration usually studied (where all the TXs share the same, possibly imperfect, channel estimate) for which it was shown that the DoF achieved at receiver (RX) i is solely limited by the quality of its own feedback. This shows the critical impact of CSI discrepancies between the TXs, and highlights the price paid by distributed precoding.Comment: This is an extended version of a conference submission which will be presented at the IEEE conference SPAWC, Darmstadt, June 201

    CSI Feedback Reduction for MIMO Interference Alignment

    Full text link
    Interference alignment (IA) is a linear precoding strategy that can achieve optimal capacity scaling at high SNR in interference networks. Most of the existing IA designs require full channel state information (CSI) at the transmitters, which induces a huge CSI signaling cost. Hence it is desirable to improve the feedback efficiency for IA and in this paper, we propose a novel IA scheme with a significantly reduced CSI feedback. To quantify the CSI feedback cost, we introduce a novel metric, namely the feedback dimension. This metric serves as a first-order measurement of CSI feedback overhead. Due to the partial CSI feedback constraint, conventional IA schemes can not be applied and hence, we develop a novel IA precoder / decorrelator design and establish new IA feasibility conditions. Via dynamic feedback profile design, the proposed IA scheme can also achieve a flexible tradeoff between the degree of freedom (DoF) requirements for data streams, the antenna resources and the CSI feedback cost. We show by analysis and simulations that the proposed scheme achieves substantial reductions of CSI feedback overhead under the same DoF requirement in MIMO interference networks.Comment: 30 pages, 7 figures, accepted for publication by IEEE transactions on signal processing in June, 201

    Downlink Cellular Interference Alignment

    Get PDF
    Cellular networks have been notoriously interference-limited systems in dense urban areas, where base stations are deployed in close proximity to one-another. Recently, a signal processing method called Interference Alignment has emerged, making use of the increasing signal dimensions available in the system through multiple-input multiple output (MIMO) and Orthogonal Frequency Division Multiplexing (OFDM) technologies. In this report, we review the state of the art of interference alignment since its foundation, and we detail algorithms and baseline comparisons to make when applying interference alignment schemes to downlink cellular networks. We also propose a number of research directions of interest which are not yet answered in the current literature.Les réseaux cellulaires ont été l'exemple typique de réseaux dont les performances sont limités par les interférences, particulièrement dans les régions urbaines. Récemment, une nouvelle technique de traitement du signal appelée "alignement d'interférences" a été dévelopée, et permet d'utiliser les dimensions du signal reçu à travers les technologies MIMO (multiple input multiple output) et OFDM (orthogonal frequency division multiplexing) pour annuler tout ou partie de l'interférence reçue par les mobiles. Dans ce rapport, nous évaluons la littérature liée à l'alignement d'interférence et nous détaillons les algorithmes existants et leur application aux réseaux cellulaires en voie descendante. Nous proposons ensuite un ensemble de directions de recherche d'intérêt par rapport à l'état de l'art actuel
    corecore