2,305 research outputs found

    People on Drugs: Credibility of User Statements in Health Communities

    Full text link
    Online health communities are a valuable source of information for patients and physicians. However, such user-generated resources are often plagued by inaccuracies and misinformation. In this work we propose a method for automatically establishing the credibility of user-generated medical statements and the trustworthiness of their authors by exploiting linguistic cues and distant supervision from expert sources. To this end we introduce a probabilistic graphical model that jointly learns user trustworthiness, statement credibility, and language objectivity. We apply this methodology to the task of extracting rare or unknown side-effects of medical drugs --- this being one of the problems where large scale non-expert data has the potential to complement expert medical knowledge. We show that our method can reliably extract side-effects and filter out false statements, while identifying trustworthy users that are likely to contribute valuable medical information

    A cross-benchmark comparison of 87 learning to rank methods

    Get PDF
    Learning to rank is an increasingly important scientific field that comprises the use of machine learning for the ranking task. New learning to rank methods are generally evaluated on benchmark test collections. However, comparison of learning to rank methods based on evaluation results is hindered by the absence of a standard set of evaluation benchmark collections. In this paper we propose a way to compare learning to rank methods based on a sparse set of evaluation results on a set of benchmark datasets. Our comparison methodology consists of two components: (1) Normalized Winning Number, which gives insight in the ranking accuracy of the learning to rank method, and (2) Ideal Winning Number, which gives insight in the degree of certainty concerning its ranking accuracy. Evaluation results of 87 learning to rank methods on 20 well-known benchmark datasets are collected through a structured literature search. ListNet, SmoothRank, FenchelRank, FSMRank, LRUF and LARF are Pareto optimal learning to rank methods in the Normalized Winning Number and Ideal Winning Number dimensions, listed in increasing order of Normalized Winning Number and decreasing order of Ideal Winning Number

    Leveraging Self-Supervised Training for Unintentional Action Recognition

    Get PDF
    Unintentional actions are rare occurrences that are difficult to defineprecisely and that are highly dependent on the temporal context of the action.In this work, we explore such actions and seek to identify the points in videoswhere the actions transition from intentional to unintentional. We propose amulti-stage framework that exploits inherent biases such as motion speed,motion direction, and order to recognize unintentional actions. To enhancerepresentations via self-supervised training for the task of unintentionalaction recognition we propose temporal transformations, called TemporalTransformations of Inherent Biases of Unintentional Actions (T2IBUA). Themulti-stage approach models the temporal information on both the level ofindividual frames and full clips. These enhanced representations show strongperformance for unintentional action recognition tasks. We provide an extensiveablation study of our framework and report results that significantly improveover the state-of-the-art.<br

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    A Survey of Location Prediction on Twitter

    Full text link
    Locations, e.g., countries, states, cities, and point-of-interests, are central to news, emergency events, and people's daily lives. Automatic identification of locations associated with or mentioned in documents has been explored for decades. As one of the most popular online social network platforms, Twitter has attracted a large number of users who send millions of tweets on daily basis. Due to the world-wide coverage of its users and real-time freshness of tweets, location prediction on Twitter has gained significant attention in recent years. Research efforts are spent on dealing with new challenges and opportunities brought by the noisy, short, and context-rich nature of tweets. In this survey, we aim at offering an overall picture of location prediction on Twitter. Specifically, we concentrate on the prediction of user home locations, tweet locations, and mentioned locations. We first define the three tasks and review the evaluation metrics. By summarizing Twitter network, tweet content, and tweet context as potential inputs, we then structurally highlight how the problems depend on these inputs. Each dependency is illustrated by a comprehensive review of the corresponding strategies adopted in state-of-the-art approaches. In addition, we also briefly review two related problems, i.e., semantic location prediction and point-of-interest recommendation. Finally, we list future research directions.Comment: Accepted to TKDE. 30 pages, 1 figur
    • …
    corecore