6,932 research outputs found

    Musemo: Express Musical Emotion Based on Neural Network

    Get PDF
    Department of Urban and Environmental Engineering (Convergence of Science and Arts)Music elicits emotional responses, which enable people to empathize with the emotional states induced by music, experience changes in their current feelings, receive comfort, and relieve stress (Juslin & Laukka, 2004). Music emotion recognition (MER) is a field of research that extracts emotions from music through various systems and methods. Interest in this field is increasing as researchers try to use it for psychiatric purposes. In order to extract emotions from music, MER requires music and emotion labels for each music. Many MER studies use emotion labels created by non-music-specific psychologists such as Russell???s circumplex model of affects (Russell, 1980) and Ekman???s six basic emotions (Ekman, 1999). However, Zentner, Grandjean, and Scherer suggest that emotions commonly used in music are subdivided into specific areas, rather than spread across the entire spectrum of emotions (Zentner, Grandjean, & Scherer, 2008). Thus, existing MER studies have difficulties with the emotion labels that are not widely agreed through musicians and listeners. This study proposes a musical emotion recognition model ???Musemo??? that follows the Geneva emotion music scale proposed by music psychologists based on a convolution neural network. We evaluate the accuracy of the model by varying the length of music samples used as input of Musemo and achieved RMSE (root mean squared error) performance of up to 14.91%. Also, we examine the correlation among emotion labels by reducing the Musemo???s emotion output vector to two dimensions through principal component analysis. Consequently, we can get results that are similar to the study that Vuoskoski and Eerola analyzed for the Geneva emotion music scale (Vuoskoski & Eerola, 2011). We hope that this study could be expanded to inform treatments to comfort those in need of psychological empathy in modern society.clos

    Stacked Convolutional and Recurrent Neural Networks for Music Emotion Recognition

    Get PDF
    This paper studies the emotion recognition from musical tracks in the 2-dimensional valence-arousal (V-A) emotional space. We propose a method based on convolutional (CNN) and recurrent neural networks (RNN), having significantly fewer parameters compared with the state-of-the-art method for the same task. We utilize one CNN layer followed by two branches of RNNs trained separately for arousal and valence. The method was evaluated using the 'MediaEval2015 emotion in music' dataset. We achieved an RMSE of 0.202 for arousal and 0.268 for valence, which is the best result reported on this dataset.Comment: Accepted for Sound and Music Computing (SMC 2017

    Fusion of Learned Multi-Modal Representations and Dense Trajectories for Emotional Analysis in Videos

    Get PDF
    When designing a video affective content analysis algorithm, one of the most important steps is the selection of discriminative features for the effective representation of video segments. The majority of existing affective content analysis methods either use low-level audio-visual features or generate handcrafted higher level representations based on these low-level features. We propose in this work to use deep learning methods, in particular convolutional neural networks (CNNs), in order to automatically learn and extract mid-level representations from raw data. To this end, we exploit the audio and visual modality of videos by employing Mel-Frequency Cepstral Coefficients (MFCC) and color values in the HSV color space. We also incorporate dense trajectory based motion features in order to further enhance the performance of the analysis. By means of multi-class support vector machines (SVMs) and fusion mechanisms, music video clips are classified into one of four affective categories representing the four quadrants of the Valence-Arousal (VA) space. Results obtained on a subset of the DEAP dataset show (1) that higher level representations perform better than low-level features, and (2) that incorporating motion information leads to a notable performance gain, independently from the chosen representation

    Deep Cross-Modal Correlation Learning for Audio and Lyrics in Music Retrieval

    Get PDF
    Deep cross-modal learning has successfully demonstrated excellent performance in cross-modal multimedia retrieval, with the aim of learning joint representations between different data modalities. Unfortunately, little research focuses on cross-modal correlation learning where temporal structures of different data modalities such as audio and lyrics should be taken into account. Stemming from the characteristic of temporal structures of music in nature, we are motivated to learn the deep sequential correlation between audio and lyrics. In this work, we propose a deep cross-modal correlation learning architecture involving two-branch deep neural networks for audio modality and text modality (lyrics). Data in different modalities are converted to the same canonical space where inter modal canonical correlation analysis is utilized as an objective function to calculate the similarity of temporal structures. This is the first study that uses deep architectures for learning the temporal correlation between audio and lyrics. A pre-trained Doc2Vec model followed by fully-connected layers is used to represent lyrics. Two significant contributions are made in the audio branch, as follows: i) We propose an end-to-end network to learn cross-modal correlation between audio and lyrics, where feature extraction and correlation learning are simultaneously performed and joint representation is learned by considering temporal structures. ii) As for feature extraction, we further represent an audio signal by a short sequence of local summaries (VGG16 features) and apply a recurrent neural network to compute a compact feature that better learns temporal structures of music audio. Experimental results, using audio to retrieve lyrics or using lyrics to retrieve audio, verify the effectiveness of the proposed deep correlation learning architectures in cross-modal music retrieval

    Music Similarity Estimation

    Get PDF
    Music is a complicated form of communication, where creators and culture communicate and expose their individuality. After music digitalization took place, recommendation systems and other online services have become indispensable in the field of Music Information Retrieval (MIR). To build these systems and recommend the right choice of song to the user, classification of songs is required. In this paper, we propose an approach for finding similarity between music based on mid-level attributes like pitch, midi value corresponding to pitch, interval, contour and duration and applying text based classification techniques. Our system predicts jazz, metal and ragtime for western music. The experiment to predict the genre of music is conducted based on 450 music files and maximum accuracy achieved is 95.8% across different n-grams. We have also analyzed the Indian classical Carnatic music and are classifying them based on its raga. Our system predicts Sankarabharam, Mohanam and Sindhubhairavi ragas. The experiment to predict the raga of the song is conducted based on 95 music files and the maximum accuracy achieved is 90.3% across different n-grams. Performance evaluation is done by using the accuracy score of scikit-learn
    corecore