7 research outputs found

    A Fusion Approach for Multi-Frame Optical Flow Estimation

    Full text link
    To date, top-performing optical flow estimation methods only take pairs of consecutive frames into account. While elegant and appealing, the idea of using more than two frames has not yet produced state-of-the-art results. We present a simple, yet effective fusion approach for multi-frame optical flow that benefits from longer-term temporal cues. Our method first warps the optical flow from previous frames to the current, thereby yielding multiple plausible estimates. It then fuses the complementary information carried by these estimates into a new optical flow field. At the time of writing, our method ranks first among published results in the MPI Sintel and KITTI 2015 benchmarks. Our models will be available on https://github.com/NVlabs/PWC-Net.Comment: Work accepted at IEEE Winter Conference on Applications of Computer Vision (WACV 2019

    Optical Flow Requires Multiple Strategies (but only one network)

    Full text link
    We show that the matching problem that underlies optical flow requires multiple strategies, depending on the amount of image motion and other factors. We then study the implications of this observation on training a deep neural network for representing image patches in the context of descriptor based optical flow. We propose a metric learning method, which selects suitable negative samples based on the nature of the true match. This type of training produces a network that displays multiple strategies depending on the input and leads to state of the art results on the KITTI 2012 and KITTI 2015 optical flow benchmarks

    A sparse-to-dense method for 3D optical flow estimation in 3D light microscopy image sequences

    Get PDF
    International audienceWe present a two-stage 3D optical flow estimation method for light microscopy image volumes. The method takes a pair of light microscopy image volumes as input, segments the 2D slices of the source volume in superpixels and sparsely estimates the 3D displacement vectors in the volume pair. A weighted interpolation is then introduced to get a dense 3D flow field. Edges and motion boundaries are considered during the interpolation. Our experimental results show good gain in execution speed, and accuracy evaluated in computer generated 3D data. Promising results on real 3D image sequences are reported

    Model and Appearance Based Analysis of Neuronal Morphology from Different Microscopy Imaging Modalities

    Get PDF
    The neuronal morphology analysis is key for understanding how a brain works. This process requires the neuron imaging system with single-cell resolution; however, there is no feasible system for the human brain. Fortunately, the knowledge can be inferred from the model organism, Drosophila melanogaster, to the human system. This dissertation explores the morphology analysis of Drosophila larvae at single-cell resolution in static images and image sequences, as well as multiple microscopy imaging modalities. Our contributions are on both computational methods for morphology quantification and analysis of the influence of the anatomical aspect. We develop novel model-and-appearance-based methods for morphology quantification and illustrate their significance in three neuroscience studies. Modeling of the structure and dynamics of neuronal circuits creates understanding about how connectivity patterns are formed within a motor circuit and determining whether the connectivity map of neurons can be deduced by estimations of neuronal morphology. To address this problem, we study both boundary-based and centerline-based approaches for neuron reconstruction in static volumes. Neuronal mechanisms are related to the morphology dynamics; so the patterns of neuronal morphology changes are analyzed along with other aspects. In this case, the relationship between neuronal activity and morphology dynamics is explored to analyze locomotion procedures. Our tracking method models the morphology dynamics in the calcium image sequence designed for detecting neuronal activity. It follows the local-to-global design to handle calcium imaging issues and neuronal movement characteristics. Lastly, modeling the link between structural and functional development depicts the correlation between neuron growth and protein interactions. This requires the morphology analysis of different imaging modalities. It can be solved using the part-wise volume segmentation with artificial templates, the standardized representation of neurons. Our method follows the global-to-local approach to solve both part-wise segmentation and registration across modalities. Our methods address common issues in automated morphology analysis from extracting morphological features to tracking neurons, as well as mapping neurons across imaging modalities. The quantitative analysis delivered by our techniques enables a number of new applications and visualizations for advancing the investigation of phenomena in the nervous system
    corecore