89 research outputs found

    Room temperature InGaAs/InP distributed feedback laser directly grown on silicon

    Get PDF
    We report an optically pumped room-temperature O-band DFB laser, based on the buffer-less epitaxial growth of high quality InGaAs/InP waveguides directly on silicon wafer

    Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler

    Get PDF
    We report on a heterogeneously integrated InP/silicon-on-insulator (SOI) laser source realized through divinylsiloxane-bis-benzocyclobutene (DVS-BCB) wafer bonding. The hybrid lasers present several new features. The III-V waveguide has a width of only 1.7 mu m, reducing the power consumption of the device. The silicon waveguide thickness is 400 nm, compatible with high-performance modulator designs and allowing efficient coupling to a standard 220-nm high index contrast silicon waveguide layer. In order to make the mode coupling efficient, both the III-V waveguide and silicon waveguide are tapered, with a tip width for the III-V waveguide of around 800 nm. These new features lead to good laser performance: a lasing threshold as low as 30 mA and an output power of more than 4 mW at room temperature in continuous-wave operation regime. Continuous wave lasing up to 70 degrees C is obtained

    Mid-IR heterogeneous silicon photonics

    Get PDF
    In this paper we discuss silicon-based photonic integrated circuit technology for applications beyond the telecommunication wavelength range. Silicon-on-insulator and germanium-on-silicon passive waveguide circuits are described, as well as the integration of III-V semiconductors, IV-VI colloidal nanoparticle films and GeSn alloys on these circuits for increasing the functionality. The strong nonlinearity of silicon combined with the low nonlinear absorption in the mid-infrared is exploited to generate picosecond pulse based supercontinuum sources and optical parametric oscillators that can be used as spectroscopic sensor sources

    Wavelength-multiplexed duplex transceiver based on III-V/Si hybrid integration for off-chip and on-chip optical interconnects

    Get PDF
    A six-channel wavelength-division-multiplexed optical transceiver with a compact footprint of 1.5 x 0.65 mm(2) for off-chip and on-chip interconnects is demonstrated on a single silicon-on-insulator chip. An arrayed waveguide grating is used as the (de)multiplexer, and III-V electroabsorption sections fabricated by hybrid integration technology are used as both modulators and detectors, which also enable duplex links. The 30-Gb/s capacity for each of the six wavelength channels for the off-chip transceiver is demonstrated. For the on-chip interconnect, an electrical-to-electrical 3-dB bandwidth of 13 GHz and a data rate of 30 Gb/s per wavelength are achieved

    Monolithic InGaAs nanowire array lasers on silicon-on-insulator operating at room temperature

    Get PDF
    Chip-scale integrated light sources are a crucial component in a broad range of photonics applications. III–V semiconductor nanowire emitters have gained attention as a fascinating approach due to their superior material properties, extremely compact size, and capability to grow directly on lattice-mismatched silicon substrates. Although there have been remarkable advances in nanowire-based emitters, their practical applications are still in the early stages due to the difficulties in integrating nanowire emitters with photonic integrated circuits. Here, we demonstrate for the first time optically pumped III–V nanowire array lasers monolithically integrated on silicon-on-insulator (SOI) platform. Selective-area growth of InGaAs/InGaP core/shell nanowires on an SOI substrate enables the nanowire array to form a photonic crystal nanobeam cavity with superior optical and structural properties, resulting in the laser to operate at room temperature. We also show that the nanowire array lasers are effectively coupled with SOI waveguides by employing nanoepitaxy on a prepatterned SOI platform. These results represent a new platform for ultracompact and energy-efficient optical links and unambiguously point the way toward practical and functional nanowire lasers
    corecore