33,470 research outputs found

    Computational study on shear strengthening of RC continuous beams using CFRP sheet

    Get PDF
    This research studied the feasibility and effectiveness of a new method of strengthening existing RC continuous beams in shear by using CFRP strips. The CFRP composite strips were used to strengthen concrete externally at a known failure plane to resist shear stresses in shear friction. All beams were design to fails in shear with av/d 2.5. This research describes the computational study on shear strengthening of RC continuous beams using CFRP strips. In this study, a computational program consisting of 5 beams were performed subjected to experimental program with the same size and details of the beams where the experimental study was performed by other student in the laboratory. Here in this part the study done through simulation by ABAQUS Software version 6.9. Therefore, this research aims to investigate the effectiveness of using externally bonded CFRP strips in repair and strengthen of RC continuous beams and also to know the behavior of RC continuous beams strengthened in shear with CFRP sheet. So in this study there are five specimens with different CFRP wrapping scheme as 90 degree and 45 degree with three sides and four sides each beam. The computational results were compare with the experimental results that obtained by other student. The computational results show great agreement with the experimental results

    Comparative study of Steel-FRP, FRP and steel reinforced coral concrete beams in their flexural performance

    Get PDF
    In this paper, a comparative study of Carbon Fiber Reinforced Polymer (CFRP) Bar and Steel-Carbon Fiber Composite Bar (SCFCB) reinforced coral concrete beams are made through a series experimental tests and theoretical analysis. The flexural capacity, crack development and failure modes of CFRP and SCFCB reinforced coral concrete were investigated in detail. They are also compared to ordinary steel reinforced coral concrete beams. The results show that under the same condition of reinforcement ratio, the SCFCB reinforced beam exhibits better performance than those of the CFRP reinforced beams, and its stiffness is slightly lower than that of the steel reinforced beam. Under the same load condition, the crack width of the SCFCB beam is between the steel reinforced beam and the CFRP bar reinforced beam. Before the steel core yields, the crack growth rate of SCFCB beam is similar to the steel reinforced beam. SCFCB has a higher strength utilization rate, about 70% -85% of its ultimate strength. The current design guidance was also examined based on the test results. It was found that the existing design specifications for FRP reinforced normal concrete is not suitable for SCFCB reinforced coral concrete structures

    Extrapancreatic actions of incretin-based therapies on bone in diabetes mellitus

    Get PDF
    Diabetes mellitus is correlated with modifications in bone microarchitectural and mechanical strength, leading to increased bone fragility. The incretin hormones, with a classical effect to increase insulin secretion following food ingestion, are now postulated to have important direct effects on bone. As such, glucose-dependent insulinotropic polypeptide (GIP) has dual actions on bone cells; enhancing bone�forming activity of osteoblasts and suppressing bone resorption by osteoclasts. The sister incretin of GIP, glucagon-like peptide-1 (GLP-1), is also suspected to directly influence bone health in a beneficial manner, although mechanism are less clear at present. The physiological actions of incretins are attenuated by dipeptidyl peptidase (DPP-4) activity and it is speculated that introduction of DPP-4 inhibitor may also positively affect quality of the skeleton. As such, this thesis evaluates the potential beneficial effects of a DPP-4 resistant GIP analogue, namely [D-Ala2 ]GIP, on osteoblastic-derived, SaOS-2 cells, and also preliminary in vivo studies on the impact of genetic deficiencies of GIPRs and GLP-1Rs on bone mineral density and content. Further studies characterised the beneficial effects of incretin-based therapies on metabolic control, bone microstructure and bone mechanical integrity in animal models of pharmacologically-, genetically- and environmentally-induced diabetes. GIP and related stable analogue increased bone-forming biomarkers in SaOS-2 cells and importantly, [D-Ala2 ]GIP was shown to be more potent than native GIP. Knockout mouse studies revealed that both GIPR and GLP-1R signaling are important for optimum bone mass. All diabetic mouse models displayed reduced bone mass, altered bone micromorphology and impairment of bone mechanical strength, similar to the human situation, confirming their appropriateness. The incretin-based therapeutics, [D-Ala2 ]GIP and Liraglutide, in streptozotocin-diabetic significantly increased bone matrix properties, indicating recovery of bone strength at the tissue level. The beneficial effects of administration of [D-Ala2 ]GIP�oxyntomodulin on bone health in db/db mice were more prominent as the Oxm analogue did not only improve bone strength at tissue level, but also at whole-bone level. These modifications were independent of metabolic status. Twice-daily Exendin-4 therapy improved glycaemic control and increased work required to resist bone fracture in high-fat fed mice. It was also established that Sitagliptin had neutral effects on bone microstructure and mechanical strength in high-fat mice. In summary, these data demonstrate the negative impact of diabetes mellitus on normal skeleton development and bone quality. Moreover, this thesis highlights the growing potential of incretin-based therapies for ameliorating bone defects and improving the increased fragility fracture risk associated with diabete

    Bond Strength Degradation for Prestressed Steel and Carbon FRP Bars in High-Performance Self-Consolidating Concrete at Elevated Temperatures and in Fire

    Get PDF
    Novel structures are emerging utilizing high performance, self-consolidating, fibre-reinforced concrete (HPSCC) reinforced with high-strength, lightweight, and non-corroding prestressed reinforcement. One example of this is a new type of precast carbon fibre reinforced polymer (CFRP) pretensioned HPSCC panel intended as load-bearing panels for building envelopes. As for all load-bearing structural members in building applications, the performance of these members in fire must be understood before they can be used with confidence. In particular, the bond performance of CFRP prestressing reinforcement at elevated temperatures is not well known. This paper examines the fire performance of these new types of structural elements, placing particular emphasis on the bond performance of CFRP and steel wire prestressing reinforcement at elevated temperatures. The results of large-scale fire tests and transient high temperature tensile and bond-pullout tests on CFRP and steel prestressing bars embedded in HPSCC cylinders are presented and discussed to shed light on the fire performance of these structural elements

    CFRP truss for the CCAT 25 m diameter submillimeter-wave telescope

    Get PDF
    CCAT will be a 25 m diameter submillimeter-wave telescope that will operate inside a dome located on Cerro Chajnantor in the Atacama Desert. The telescope must have high aperture efficiency at a wavelength of 350 microns and good performance out to a wavelength of 200 microns. A conceptual design for a carbon fiber reinforced plastic (CFRP) truss and primary reflector support truss has been developed. This design yields a telescope with a net �½ wave front error of <10 microns using a lookup table to adjust the segment actuators to compensate for gravitational deflections. Minor corrections may be required to compensate for the expected 20 C temperature excursions. These can be handled using a coarse lookup table

    Quantification of flexural fatigue life and 3D damage in carbon fibre reinforced polymer laminates

    Get PDF
    Carbon fibre reinforced polymer (CFRP) laminated composites have become attractive in the application of wind turbine blade structures. The cyclic load in the blades necessitates the investigation on the flexural fatigue behaviour of CFRP laminates. In this study, the flexural fatigue life of the [+45/−45/0]2s CFRP laminates was determined and then analysed statistically. X-ray microtomography was conducted to quantitatively characterise the 3D fatigue damage. It was found that the fatigue life data can be well represented by the two-parameter Weibull distribution; the life can be reliably predicted as a function of applied deflections by the combined Weibull and Sigmodal models. The delamination at the interfaces in the 1st ply group is the major failure mode for the flexural fatigue damage in the CFRP laminate. The calculated delamination area is larger at the interfaces adjacent to the 0 ply. The delamination propagation mechanism is primarily matrix/fibre debonding and secondarily matrix cracking

    Processing and electrical characterization of a unidirectional CFRP composite filled with double walled carbon nanotubes

    Get PDF
    Carbon nanotubes represent new emergent multifunctional materials that have potential applications for structural and electrically conductive composites. In the current paper we present a suitable technique for the integration of Double Walled Carbon Nanotubes (DWCNTs) in a unidirectional Carbon Fiber Reinforced Polymer (CFRP) with high volume content of carbon fiber. We showed that the electrical conductivity of the laminates versus temperature follows a non-linear variation which can be well described by the Fluctuation-Induced Tunneling Conduction (FITC) model. The parameters of this model for CFRP/ DWCNTs and CFRP without DWCNTs were determined using best fit curves of the experimental data. This study has shown that DWCNTs have strong influence in the conductivity through laminate thickness. However, there are no significant effects on the electrical conductivity measured in the other two principle directions of the composite laminate. Furthermore, it was found that electron conduction mechanism of carbon fibers is dominated by the FITC

    Extrapancreatic actions of incretin-based therapies on bone in diabetes mellitus

    Get PDF
    Diabetes mellitus is correlated with modifications in bone microarchitectural and mechanical strength, leading to increased bone fragility. The incretin hormones, with a classical effect to increase insulin secretion following food ingestion, are now postulated to have important direct effects on bone. As such, glucose-dependent insulinotropic polypeptide (GIP) has dual actions on bone cells; enhancing bone�forming activity of osteoblasts and suppressing bone resorption by osteoclasts. The sister incretin of GIP, glucagon-like peptide-1 (GLP-1), is also suspected to directly influence bone health in a beneficial manner, although mechanism are less clear at present. The physiological actions of incretins are attenuated by dipeptidyl peptidase (DPP-4) activity and it is speculated that introduction of DPP-4 inhibitor may also positively affect quality of the skeleton. As such, this thesis evaluates the potential beneficial effects of a DPP-4 resistant GIP analogue, namely [D-Ala2 ]GIP, on osteoblastic-derived, SaOS-2 cells, and also preliminary in vivo studies on the impact of genetic deficiencies of GIPRs and GLP-1Rs on bone mineral density and content. Further studies characterised the beneficial effects of incretin-based therapies on metabolic control, bone microstructure and bone mechanical integrity in animal models of pharmacologically-, genetically- and environmentally-induced diabetes. GIP and related stable analogue increased bone-forming biomarkers in SaOS-2 cells and importantly, [D-Ala2 ]GIP was shown to be more potent than native GIP. Knockout mouse studies revealed that both GIPR and GLP-1R signaling are important for optimum bone mass. All diabetic mouse models displayed reduced bone mass, altered bone micromorphology and impairment of bone mechanical strength, similar to the human situation, confirming their appropriateness. The incretin-based therapeutics, [D-Ala2 ]GIP and Liraglutide, in streptozotocin-diabetic significantly increased bone matrix properties, indicating recovery of bone strength at the tissue level. The beneficial effects of administration of [D-Ala2 ]GIP�oxyntomodulin on bone health in db/db mice were more prominent as the Oxm analogue did not only improve bone strength at tissue level, but also at whole-bone level. These modifications were independent of metabolic status. Twice-daily Exendin-4 therapy improved glycaemic control and increased work required to resist bone fracture in high-fat fed mice. It was also established that Sitagliptin had neutral effects on bone microstructure and mechanical strength in high-fat mice. In summary, these data demonstrate the negative impact of diabetes mellitus on normal skeleton development and bone quality. Moreover, this thesis highlights the growing potential of incretin-based therapies for ameliorating bone defects and improving the increased fragility fracture risk associated with diabete

    Tool wear monitoring and hole surface quality during CFRP drilling

    Get PDF
    The present investigation focuses on the evaluation of tool wear and surface integrity in the context of CFRP cutting. Series of drilling experiments were performed on CFRP plates using cemented carbide solid drills with the aim to investigate correlations between tool damage, cutting forces, temperature and hole surface quality. In particular, a new methodology has been developed to measure the drilling temperature and to assess the quality of the hole surfaces where occurred uncut fibers. As the surface roughness criterion is not relevant for such work materials, a discussion on the definition of the surface topography is proposed for CFRP work material

    Abrasive water jet drilling of advanced sustainable bio-fibre-reinforced polymer/hybrid composites : a comprehensive analysis of machining-induced damage responses

    Get PDF
    This paper aims at investigating the effects of variable traverse speeds on machining-induced damage of fibre-reinforced composites, using the abrasive water jet (AWJ) drilling. Three different types of epoxy-based composites laminates fabricated by vacuum bagging technique containing unidirectional (UD) flax, hybrid carbon-flax and carbon fibre-reinforced composite were used. The drilling parameters used were traverse speeds of 20, 40, 60 and 80 mm/min, constant water jet pressure of 300 MPa and a hole diameter of 10 mm. The results obtained depict that the traverse speed had a significant effect with respect to both surface roughness and delamination drilling-induced damage responses. Evidently, an increase in water jet traverse speed caused an increase in both damage responses of the three samples. Significantly, the CFRP composite sample recorded the lowest surface roughness damage response, followed by C-FFRP, while FFRP exhibited the highest. However, samples of FFRP and hybrid C-FFRP recorded lowest and highest delamination damage responses, respectively. The discrepancy in both damage responses, as further validated with micrographs of colour video microscopy (CVM), scanning electron microscopy (SEM) and X-ray micro-computed tomography (X-ray μCT), is attributed to the different mechanical properties of the reinforced fibres, fibre orientation/ply stacking and hybridisation of the samples.Peer reviewe
    corecore