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Carbon nanotubes represent new emergent multifunctional materials that have potential applications for

structural and electrically conductive composites. In the current paper we present a suitable technique

for the integration of Double Walled Carbon Nanotubes (DWCNTs) in a unidirectional Carbon Fiber Rein-

forced Polymer (CFRP) with high volume content of carbon fiber. We showed that the electrical conduc-

tivity of the laminates versus temperature follows a non-linear variation which can be well described by

the Fluctuation-Induced Tunneling Conduction (FITC) model. The parameters of this model for CFRP/

DWCNTs and CFRP without DWCNTs were determined using best fit curves of the experimental data. This

study has shown that DWCNTs have strong influence in the conductivity through laminate thickness.

However, there are no significant effects on the electrical conductivity measured in the other two prin-

ciple directions of the composite laminate. Furthermore, it was found that electron conduction mecha-

nism of carbon fibers is dominated by the FITC.

1. Introduction

Significant progress has been made in the investigation of the

multifunctionality of fiber reinforced polymers (FRPs). Beside their

structural role, composite materials have the potential for defor-

mation or temperature sensing when monitoring the electrical

changes in the material. This self-sensing property is an attractive

non-destructive evaluation method that undergoes intensive re-

search. We believe that improving this sensing functionality or/

and achieving new functionalities in conventional FRP can necessi-

tate the addition of fillers in particular carbon nanotubes (CNTs).

Carbon nanotubes are considered to be new emergent multifunc-

tional materials that have potential applications for structural

and electrically conductive composites [1–3]. The electrical con-

ductivity of CFRP composites has interested many researchers for

various applications such as damage and structural health moni-

toring of composite materials [4–7] and using carbon fibers as

heating element [8]. The use of CNTs has made it possible to extend

these applications to other dielectric composites such as glass fi-

bers reinforced polymers (GFRPs). Intensive investigations are

undertaken on the piezoresistivity of CNTs based-composites for

damages and structural health monitoring of composite materials

[9–16]. Besides, other topic dealing with processing and character-

ization of conventional fibers reinforced polymer matrix filled with

CNTs are up-to-date [3,17].

Regarding the CFRP composites and FRP containing CNTs com-

posites, only few papers have investigated the effect of the temper-

ature on the electrical conductivity of these composites. In

practice, during their service, CFRP structures undergo thermal

variation in different situations. For instance CRFP structures can

be subjected to environmental changes where an increase in tem-

perature can occur during different mechanical loads. When the

variation of the temperature is not important, one can assume a

linear relation between the temperature and the resistivity

[16,19]. As in the work of Kupke et al. [18] in which the authors

have monitored the mechanical damage during fatigue tests by

measuring the electrical resistance in the specimens. To compen-

sate the increase of temperature in composites during experi-

ments, they proposed a linear relation between the electrical

resistance and the temperature variation. However, in case of a

strong variation of the temperature inside the composite structure

this assumption can lead to significant errors if an accurate model

is not used. To our knowledge, no work has been yet undertaken to

investigate the effect of wide range temperature variation on the

electrical conductivity of CFRP structures.

In order to process fiber reinforced polymers containing CNTs,

there are mainly three techniques proposed in the literature,
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depending on the nature of the polymer matrix and the reinforce-

ment fibers structure and volume content. The first technique is

the impregnation of the reinforcement fibers with a polymer ma-

trix filled with carbon nanotubes which is the most used technique

because it is easy to implement. The dispersion of CNTs in the poly-

mer matrix can be properly controlled [20]. CNTs/Liquid Polymer

mix can be transferred to the fibers reinforcement (Preform) via re-

sin transfer molding (RTM) or vacuum assisted RTM (VARTM) pro-

cess. One major constraint of this method is the fiber volume

content that must be relatively low because of the permeability

of conventional fibers to CNTs [3]. Another constraint of this pro-

cessing technique is the increase of the matrix viscosity caused

by the CNTs [21,22]. The second technique is the deposition of

CNTs on reinforcement surface [23,24]. This technique can be ap-

plied either by chemical functionalization of CNTs and carbon fi-

bers to create chemical bonds or without chemical treatment. It

was found that the chemical functionalization impairs the physical

properties of CNTs and carbon fibers [25,26]. The third method of

manufacturing FRP/CNTs composite consists of depositing dried

CNTs on the surface of the prepregs plies. A prepreg is made of

one layer of long fibers (woven or unidirectional) impregnated

with a polymer matrix. This method has been used by Veedu

et al. [1] and García et al. [27] to place layers of vertically aligned

multi-walled CNTs named ‘‘forests of CNTs’’. This technique in-

creases considerably the out-of-plane mechanical properties of

the composite but it has a limited influence on the electrical con-

ductivity of the composite laminate.

In the present work we aim to manufacture CFRP composites

with high carbon fiber content and filled with DWCNTs. We pro-

pose to study the frequency and temperature dependency of the

electrical conductivity of the composites for a wide range of tem-

perature; varying between ÿ150 °C and +130 °C. The polymer sub-

jected to this study is an epoxy-based resin (RTM6) developed for

processing high performance composite materials reinforced with

unidirectional carbon fibers. Attention has been given to the anal-

ysis of the microstructure and the dispersion state of DWCNTs in

the composite laminate.

2. Materials and methods

2.1. Materials and Epoxy/DWCNTs suspension preparation

2.1.1. Materials

The epoxy resin (RTM6) used in this investigation is provided by

Hexcel composites (Hexcel Corporation, France). It is a mono-

component resin in which the stoichiometric ratio of epoxy and

amine hardener is already mixed and degassed. Carbon nanotubes

used in this study are almost (80%) Double Walled Carbon Nano-

tubes (DWCNTs) [28] and were synthesized and purified at Paul

Sabatier University (Institute Carnot-CIRIMAT) using Catalytic

Chemical Vapor Deposition (CCVD) method [29]. Important charac-

teristics of the present DWCNTs include their purity in Carbon atom

(98% atomic), their average (BET) specific surface area (700 g/m2)

and the density 1.8 g/cm3 [30]. The aspect ratio (length/diameter)

of an individual DWCNT can be estimated to range between

1 � 103 and 1 � 104. Carbon fibers are unidirectional (UD) reinforc-

ing fabrics made of Toray T700S carbon fiber-type.

2.1.2. Preparation of the Epoxy/DWCNTs mixture

To process the CFRP containing DWCNTs we first prepared an

Epoxy/DWCNTs suspension. DWCNTs suspended in water were

sonicated in the presence of a suitable dispersion agent called

Hexadecylamine using an ultrasonic bath for 1 h at room temper-

ature. Then a strong sonication for 15 min was performed using a

13 mm probe tip. The power source for the probe sonication was

adjusted to 100W. The weight ratio HDA:DWCNTs was taken as

1:1. This ratio was chosen based on a previous study conducted

by Barrau et al. [31] on the dispersion of DWCNTs with amphiphilic

molecules. The DWCNTs–HDA suspension was then mixed with

the epoxy resin and stirred at 1000 rpm for 30 min at 80 °C. The

mixture was subsequently degassed for 2 h and 30 min at 80 °C.

Differential scanning calorimetric analysis and thermogravimetric

analysis were performed on the degassed mixtures to ensure that

they do not contain traceable water. Finally we used this suspen-

sion (Epoxy/DWCNTs) to impregnate UD carbon fabrics.

A preliminary study on Epoxy/DWCNTs nanocomposites

showed that the electrical percolation threshold is achieved

around 0.04 wt.% (0.025 vol.%) of DWCNTs. In order to achieve a

high level of electrical conductivity in the material a concentration

of DWCNTs in the epoxy resin equal to 0.4 wt.% (0.29 vol.%) has

been used for processing the final CFRP composite.

2.2. Optical microscopy and scanning electron microscopy

The distribution and the quality of the carbon nanotubes disper-

sion in the composite laminates were examined using High Resolu-

tion Field Emission Scanning Electron Microscopy (HRFE-SEM). The

samples were frozen in liquid nitrogen and subsequently fractured.

The fractured surfaces were observed without any conductive

coating using a field emission scanning electron microscope (JEOL

JSM 6700-F) at a relatively low voltage of 0.7 kV.

For a qualitative and a quantitative analysis of the laminate, an

optical microscope equipped with a camera was used. Five samples

with dimensions of 30 mm � 30 mm � 2 mm were randomly cut

out of each [0°]8 laminate plate. On each sample, two perpendicu-

lar edges (one \ to fibers and one // to fibers) were polished. The

magnification is chosen as a function of the size of the largest void

detected. Then, a large number of images (up to 100 images per

kind of laminate) were analyzed using image analysis software

(imageJ), which is a free image processing software developed by

the National Institutes of Health—US. We calculated the void con-

tent in each laminate by counting the ratio of voids (dark contrast)

to the remaining surface area for each image and finally we took

the average. The quantitative analysis of micrographic images

can provide us with an estimation of the void content in the mate-

rial with a good accuracy [32,33].

2.3. Electrical conductivity—theory and experiment

Measurements were carried out by recording the impedance

using a Solartron–Schlumberger frequency response analyzer to-

gether with a Novocontrol interface (broad-band dielectric con-

verter). The alternative voltage is set to a maximum of 1 V so

that self-heating of the samples can be neglected. The measure-

ments were performed in the frequency ranged between 10ÿ2

and 107 Hz at isothermal temperatures varying from ÿ150 °C to

+130 °C with a 10 °C step. Two samples were cut randomly from

each composite plate. The dimensions samples used were

20 mm � 10 mm � 2 mm. The electrical conductivity measure-

ments were performed on Epoxy/DWCNTs nanocomposites and

Carbon fiber/Epoxy/DWCNTs composites. In order to ensure the

electrical contact silver paint was applied to the surfaces. A preli-

minary study has been conducted in order to verify the repeatabil-

ity and the accuracy of the two-point contact tests. Five samples

were cut randomly from each composite plate and tested at room

temperature with DC source using both two-point contact and

four-point contact electrical measurements. To perform these mea-

surements we used a DC current source (KEITHLEY Model 6221)

coupled with a voltmeter (KEITHLEY 2182A). Four-point and

two-point measurements gave similar values of conductivity.



The complex conductivity r
⁄derived from the complex imped-

ance is written as function of the frequency (x):

r
� ¼ r

0 þ jr00ðxÞ

j
2
¼ ÿ1

ð1Þ

In this study we are interested in the real part r0(x) of the com-

plex conductivity which characterizes the Ohmic conduction that

occurs in the material. r0(x) can be expressed in the following

form:

r
0ðxÞ ¼ rð0Þ þ rACðxÞ ¼ rDC þ rAC ð2Þ

where rDC represents the Direct Current conductivity and appears

at low frequency and rAC represents the Alternative Current con-

ductivity which appears at very high frequency domain.

Jonscher [34] showed that the r0(x) can be written in the form

of:

r
0ðxÞ ¼ rDC þ Axs ð3Þ

where A is a constant dependent on temperature and s is an expo-

nent function of temperature and frequency: 0 6 s 6 1. This behav-

ior of r
0(x) is identified by Jonscher [34,35] as the ‘‘Universal

Dielectric Response (UDR)’’ which describes the behavior of conduc-

tive systems in a disordered medium. It is therefore assumed that r0

reflects the mechanism of charge transport and the interactions

Fig. 1. (a) Process for impregnation of a carbon fiber UD ply by epoxy resin. (b) Impregnated carbon fiber eight plies lay up in vacuum bagging.

Fig. 2. (a) Cure cycle in autoclave. (b) Vacuum bagging products after the curing cycle. (c) The laminate principal axis system.

Fig. 3. Illustration of a CFRP composite cross-section; carbon fiber has a diameter of

7 lm and the inter-plies space is typically 20 lm.



between charge carriers when following its dependence with re-

spect to frequency and temperature r0(x,T).

The temperature dependence of the DC conductivity was mod-

eled using the Fluctuation Induced Tunneling Conductivity (FITC)

developed by Sheng [36,37]. This model predicts temperature

dependence for the conductivity of the type:

rDC ¼ r0 exp
ÿT1

T þ T0

� �

ð4Þ

Sichel et al. [38,39] stated that T1 may be regarded as the en-

ergy required for an electron to cross the insolating gap between

the conductive medium (carbon fibers or CNTs clusters in our case)

Fig. 4. HRFE-SEMmicrographs of CFRP/DWCNTs composites laminate representing its section on the XY plane (a1) and (a2), on the XZ plane (b1) and (b2) and on the YZ plane

(c1) and (c2).

Fig. 5. Optical micrograph of the composite laminates showing distinct phases. The dark gray contrast represents voids. (a) CFRP and (b) CFRP/DWCNTs.



and T0 determines the temperature below which conventional

elastic tunneling conduction dominates (i.e. temperature-

independent conductivity below T0). The pre-exponential facto

r0 is treated as a constant.

The FITC can successfully explain the nonmetallic temperature

dependence of the electrical conductivity in diverse materials such

as carbon-black/polyvinylchloride films [35,28], CNTs thin films

[40] and CNTs/Epoxy composites [41].

3. Results and discussion

3.1. Processing of carbon fiber/Epoxy/DWCNTs laminate and

microscopic studies

Since we aim for processing a composite material containing

DWCNTs with high volume content of carbon fibers (Vfibers > 60%)

a classic resin transfer molding process is not appropriate. This

process will lead to a high filtration of DWCNTs by the carbon fi-

bers preform and non-uniform distribution of DWCNTs in the

laminate.

The Epoxy/DWCNTs mixture we prepared can be used in a pre-

pregger as shown in the work of Siddiqui et al. [42], to impregnate

dry carbon fibers and prepare prepregs. An alternative way of using

a prepregger is to impregnate the dry carbon fibers using resin film

infusion which is suitable for lab-scale production of prepregs.

Hence, to manufacture our Carbon Fiber/Epoxy/DWCNTs compos-

ites laminate we setup a liquid resin infusion process in order to

impregnate individual UD plies of carbon fibers by the epoxy resin

filed with DWCNTs see Fig. 1a. Series of eight individual UD plies

with 300 mm � 300 mm surface dimensions were impregnated

by this process. Then the impregnated plies of carbon fiber were

laid-up [0°]8 and cured in an autoclave using the temperature cure

cycle recommended by Hexcel Composites (Figs. 1b and 2a). We

must notice that the top plies were not impregnated with resin.

For a comparative study the same process was performed to pro-

duce Carbon fibers/Epoxy composites unfilled with DWCNTs.

Despite the low permeability of carbon fibers to the DWCNTs,

when examining the breather and bleeder plies after the curing

process, we can see very few dark spots which evidence the migra-

tion of DWCNs through thickness during the cure cycle; see Fig. 2b.

Microscopic structure and submicroscopic structure of our

composite laminates were examined using an optical microscope

and HREF-SEM. The scanning electron microscope enables us to

study the distribution of DWCNTs in the composite laminate. The

carbon fibers UD fabric structure contains gaps of different scales

that can be filled with the polymer as illustrated in Fig. 3. DWCNTs

are present in the resin rich regions. In the composite laminates we

can distinguish two resin rich regions. The first one is between

plies (inter-plies) of carbon fiber laminate and the second one is

the resin rich area between tows (inter-tows) of carbon fiber in

the same ply. Another resin space that can be identified is the resin

inside carbon fibers tows (intra-tow).

All SEM images show homogeneous distribution of DWCNTs in

the regions between plies; see Fig. 4a1 and a2. However, we obser-

ve that DWCNTs have not reached inside carbon fiber tows or in-

tra-tow (Fig. 4b1, b2, c1 and c2) because DWCNTs aggregates are

larger than the gaps inside the tows therefore they are filtrated.

However, we noticed that DWCNTs do migrate through thickness,

as seen in Fig. 2b, this is due to the structure of the UD fabric; one

ply of UD fabric is made from assembling of carbon fiber tows, this

assembling leads to some regular paths between tows (inter-tows)

through which DWCNTs can migrate. Fig. 2b shows a regular pat-

tern of DWCNTs dark spots on the vacuum bagging products.

The analysis of the optical microscope images reveals slightly

more porosity in the material when the laminate is manufactured

Table 1

Void content the composites in determined by image analysis and acid digestion (EN

2564) and fiber volume content determined by acid digestion.

Void (% vol) Void (% vol) Carbon fiber (% vol)

Image analysis Acid digestion Acid digestion

CFRP 0.6 ± 0.3 0.9 ± 0.4 67 ± 2

CFRP/DWCNTs 1.4 ± 0.5 1.2 ± 0.4 66 ± 2

Fig. 6. Frequency dependence of conductivity r
0(x) of Epoxy/0.4 wt.% DWCNTs

nanocomposite at isothermal temperature ranging from ÿ150 °C to +130 °C.

Fig. 7. Frequency dependence of conductivity r
0(x) at isothermal temperature ranging from ÿ150 °C to +130 °C. Measurement along the Z-direction (a) CFRP (b) CFRP/

DWCNTs.



with DWCNTs but the overall microstructure of the composites is

very similar; see Fig. 5a and b.

We determined the void content in the composite by analyzing

the optical micrographs. Data from the quantitative analysis are

presented in Table 1. These results are compared to the results ob-

tained by using the acid digestion standard method (EN 2564) for

determining fiber and void content, see Table 1. CFRP made with

DWCNTs contain slightly more voids compared to the CFRP made

without DWCNTs. We assigned the increase of voids to the increase

of the viscosity induced by the addition of 0.4 wt.% of DWCNTs. The

viscosity of the epoxy resin at 80 °C increases from 0.4 Pa s to 6 Pa s

when filled with 0.4 wt.% of DWCNTs.

3.2. Electrical conductivity of the CFRP

3.2.1. Frequency dependence of the electrical conductivity

The electrical conductivity measured as function of the fre-

quency and at different temperatures is presented in Figs. 6–9.

The real part of the complex conductivity as a function of fre-

quency at various temperatures r
0(x,T) of the Epoxy/DWCNTs

nanocomposite in Fig. 6 shows typical behavior observed in for

conduction in disordered materials [34]. The curves presented re-

veal similar features: a DC plateau up to certain critical frequency

(xC) followed by a gradual increase of the conductivity at higher

frequencies. According to Jonscher [34], in polymers filled with

electrically conductive particles the charge transport occurs be-

tween localized states is produced by a disorder. This mechanism

explains the frequency dependence of the conductivity. At a given

temperature the critical frequency (xC) above which the conduc-

tivity behaves as a power law of the frequency depends strongly

on the distribution, the size and the concentration of the conduc-

tive medium [43].

The results of electrical conductivity measurements through

thickness (Z direction) for the CFRP laminate unfilled and filled

with DWCNTs are presented in Fig. 7a and b respectively. The elec-

trical conductivity measurements in the transverse (Y direction)

are presented in Fig. 8a and b and along the fibers (X direction)

Fig. 9a and b. At very high frequency, the AC electrical conductivity

Fig. 8. Frequency dependence of conductivity r
0(x) at isothermal temperature ranging from ÿ150 °C to +130 °C. Measurement along the Y-direction (a) CFRP. (b) CFRP/

DWCNTs.

Fig. 9. Frequency dependence of conductivity r
0(x) at isothermal temperature ranging from ÿ150 °C to +130 °C. Measurement along the X-direction; (a) CFRP. (b) CFRP/

DWCNTs.

Fig. 10. DC electrical conductivity versus inverse of temperature for (e) Epoxy/

0.4 wt.% DWCNTs, (h) CFRP Z-direction, (j) CFRP/DWCNTs Z-direction, (D) CFRP Y-

direction, (M) CFRP/DWCNTs Y-direction, (s) CFRP X-direction, (d) CFRP/DWCNTs

X-direction (- - -) FITC mechanism, Eq. (4).



determined perpendicular to the fibers axis (Z and Y directions)

shows a frequency dependence in the form of a power law (r0(x)

/ Axs). This behavior disappears when the CFRP is filled with

DWCNTs and the conductivity appears to be constant r
0
x
¼ r

0
DC

ÿ �

.

Carbon nanotubes contribute to increase the electrical conductivity

level of the laminate in Z and Y direction and shift xC toward high-

er frequencies. The frequency dependence of the conductivity ap-

pears to be due to the existence of barriers (resin regions)

between conductive media. This can be evidenced by the fact that

the AC electrical conductivity measured along carbon fibers direc-

tion is independent of the frequency for both laminates (filled and

unfilled with DWCNTs). The conductivity of the laminate along X

direction is dominated by the electron transport through carbon fi-

bers which can be considered as an infinite size conductive cluster.

Although the carbon fibers we used are transversally isotropic

we found that the electrical conductivity values measured in the

laminates perpendicular to the fibers-axe (Y and Z direction) are

different due to the structure of the laminate as mentioned earlier

in Figs. 3 and 5. The presence of resin rich regions between plies

decreases the number of conductive paths through the thickness

of the laminate. Consequently, this decreases the level of the elec-

trical conductivity. For the CFRP unfilled with DWCNTs the DC

electrical conductivity through the thickness at room temperature

is 6.6 � 10ÿ5 S cmÿ1 and 5.3 � 10ÿ3 S cmÿ1, Figs. 7a and 8a. The dif-

ference between the electrical conductivity in Y and Z direction in

CFRP laminate filled with DWCNTs is less pronounced, namely

6.3 � 10ÿ4 S cmÿ1 in Z direction and 1.2 � 10ÿ2 S cmÿ1 in Y direc-

tion, Figs. 7b and 8b.

3.2.2. Temperature dependence of the electrical conductivity

In order to study the temperature dependence of the DC con-

ductivity (rDC) of the composite laminates we assumed that the

values of r0(x), presented in Figs. 6–9, at x = 10ÿ1 sÿ1 is equal to

(rDC). The results presented in Fig. 10 showed about one decade

variation of rDC over the considered range of temperature. The FITC

mechanism modeled by Eq. (4) is in a good accordance with the

experimental data. The values of the parameters T0 and T1 are

listed in Table 2.

The values of T0 and T1 are strongly dependant on the nature

and the distribution of the conductive phase. Hence it is not sur-

prising to find different values for each measured direction.

As expected, DWCNTs increase the throughout thickness elec-

trical conductivity of the laminate. This increase was about one or-

der of magnitude and this in spite of the presence of conductive

paths between carbon fibers through the thickness of CFRP,

namely, contacts between carbon fibers due to the fibers misalign-

ment. An increase of conductivity by the same order of magnitude

has been reported by Yoo and Kim [44] after the addition of Single-

Walled CNTs in CFRP. The value of T0 decreases when carbon nano-

tubes are added in the laminate from 382 ± 5 K to 200 ± 3 K for the

conductivity measured through thickness (Z-direction) and from

234 ± 3 K to 147 ± 3 K for the conductivity measured in the lami-

nate plane, traverse to carbon fibers (Y-direction). This shows that

carbon nanotubes reduce the energy required for an electron to

overcome the energy barrier as predicted by the FITC model.

Furthermore the FITC model predicts that the ratio of T1/T0 is

proportional to the gap width between adjacent conductive phases

separated by an insulating phase. This ratio is reported in Table 2.

We can see that the insolating gap between the conductive med-

ium is reduced except for the conductivity value in carbon fiber

axes for which this ratio remains almost constant. These results

evidence that the CFRP and CFRP/DWCNTs laminates can be well

described by the FTIC model.

A non-expected result is that the electrical conductivity of the

composite along the carbon fiber axis follows a FTIC mechanism.

This result supposes that the conduction along a single carbon fiber

axis involves a thermally assisted tunneling mechanism. In fact

carbon fibers structure can be described as fibrils of short and tur-

bostratic graphite crystallites partially bonded to each other

[45,46]. Thus the electrical conduction mechanism of our carbon fi-

bers involves many transverse jumps beside direct current flow be-

tween fibrils in physical contact.

4. Conclusions

Lab-scale production of high performance CFRP laminate filled

with CNTs can be implemented by impregnating individual carbon

fibers plies with polymer matrix filled with CNTs then by lay-up.

The characterization of these composites allows us to draw the fol-

lowing conclusions:

1. The relation between the electrical conductivity of CFRP lami-

nates and the temperature is not linear.

2. The conductivity of CFRP and CFRP/DWCNTs is dominated by

the fluctuation induced tunneling conduction mechanism for

all measured direction and over a wide range of temperature.

3. The FITC is a pertinent model to predict the conductivity

changes in FRP and in Epoxy/DWCNTs composites with respect

to temperature.

4. Carbon nanotubes increase the electrical conductivity through

thickness by one order of magnitude while in the other two

directions the conductivity is not considerably affected. This

could have an interesting application in detecting polymer

matrix cracking and delamination detection.
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