2,891 research outputs found

    Identifiability of Graphs with Small Color Classes by the Weisfeiler-Leman Algorithm

    Get PDF

    Maximizing five-cycles in Kr-free graphs

    Get PDF
    The Erdos Pentagon problem asks to find an n-vertex triangle-free graph that is maximizing the number of 5-cycles. The problem was solved using flag algebras by Grzesik and independently by Hatami, Hladky, Kral, Norin, and Razborov. Recently, Palmer suggested the general problem of maximizing the number of 5-cycles in K_{k+1}-free graphs. Using flag algebras, we show that every K_{k+1}-free graph of order n contains at most 110k4(k4−5k3+10k2−10k+4)n5+o(n5) copies of C_5 for any k≥3, with the Turan graph begin the extremal graph for large enough n

    Lower Bounds for Symmetric Circuits for the Determinant

    Get PDF
    Dawar and Wilsenach (ICALP 2020) introduce the model of symmetric arithmetic circuits and show an exponential separation between the sizes of symmetric circuits for computing the determinant and the permanent. The symmetry restriction is that the circuits which take a matrix input are unchanged by a permutation applied simultaneously to the rows and columns of the matrix. Under such restrictions we have polynomial-size circuits for computing the determinant but no subexponential size circuits for the permanent. Here, we consider a more stringent symmetry requirement, namely that the circuits are unchanged by arbitrary even permutations applied separately to rows and columns, and prove an exponential lower bound even for circuits computing the determinant. The result requires substantial new machinery. We develop a general framework for proving lower bounds for symmetric circuits with restricted symmetries, based on a new support theorem and new two-player restricted bijection games. These are applied to the determinant problem with a novel construction of matrices that are bi-adjacency matrices of graphs based on the CFI construction. Our general framework opens the way to exploring a variety of symmetry restrictions and studying trade-offs between symmetry and other resources used by arithmetic circuits

    Choiceless Computation and Symmetry: Limitations of Definability

    Get PDF

    Improved Cheeger's Inequality: Analysis of Spectral Partitioning Algorithms through Higher Order Spectral Gap

    Get PDF
    Let \phi(G) be the minimum conductance of an undirected graph G, and let 0=\lambda_1 <= \lambda_2 <=... <= \lambda_n <= 2 be the eigenvalues of the normalized Laplacian matrix of G. We prove that for any graph G and any k >= 2, \phi(G) = O(k) \lambda_2 / \sqrt{\lambda_k}, and this performance guarantee is achieved by the spectral partitioning algorithm. This improves Cheeger's inequality, and the bound is optimal up to a constant factor for any k. Our result shows that the spectral partitioning algorithm is a constant factor approximation algorithm for finding a sparse cut if \lambda_k$ is a constant for some constant k. This provides some theoretical justification to its empirical performance in image segmentation and clustering problems. We extend the analysis to other graph partitioning problems, including multi-way partition, balanced separator, and maximum cut

    Symmetric Arithmetic Circuits.

    Get PDF
    We introduce symmetric arithmetic circuits, i.e. arithmetic circuits with a natural symmetry restriction. In the context of circuits computing polynomials defined on a matrix of variables, such as the determinant or the permanent, the restriction amounts to requiring that the shape of the circuit is invariant under row and column permutations of the matrix. We establish unconditional, nearly exponential, lower bounds on the size of any symmetric circuit for computing the permanent over any field of characteristic other than 2. In contrast, we show that there are polynomial-size symmetric circuits for computing the determinant over fields of characteristic zero

    Choiceless Polynomial Time, Symmetric Circuits and Cai-F\"urer-Immerman Graphs

    Full text link
    Choiceless Polynomial Time (CPT) is currently the only candidate logic for capturing PTIME (that is, it is contained in PTIME and has not been separated from it). A prominent example of a decision problem in PTIME that is not known to be CPT-definable is the isomorphism problem on unordered Cai-F\"urer-Immerman graphs (the CFI-query). We study the expressive power of CPT with respect to this problem and develop a partial characterisation of solvable instances in terms of properties of symmetric XOR-circuits over the CFI-graphs: The CFI-query is CPT-definable on a given class of graphs only if: For each graph GG, there exists an XOR-circuit CC, whose input gates are labelled with edges of GG, such that CC is sufficiently symmetric with respect to the automorphisms of GG and satisfies certain other circuit properties. We also give a sufficient condition for CFI being solvable in CPT and develop a new CPT-algorithm for the CFI-query. It takes as input structures which contain, along with the CFI-graph, an XOR-circuit with suitable properties. The strongest known CPT-algorithm for this problem can solve instances equipped with a preorder with colour classes of logarithmic size. Our result implicitly extends this to preorders with colour classes of polylogarithmic size (plus some unordered additional structure). Finally, our work provides new insights regarding a much more general problem: The existence of a solution to an unordered linear equation system Aâ‹…x=bA \cdot x = b over a finite field is CPT-definable if the matrix AA has at most logarithmic rank (with respect to the size of the structure that encodes the equation system). This is another example that separates CPT from fixed-point logic with counting
    • …
    corecore