
Choiceless Computation and Symmetry:
Limitations of Definability
Benedikt Pago
Mathematical Foundations of Computer Science, RWTH Aachen University, Germany
pago@logic.rwth-aachen.de

Abstract
The search for a logic capturing PTIME is a long standing open problem in finite model theory. One
of the most promising candidate logics for this is Choiceless Polynomial Time with counting (CPT).
Abstractly speaking, CPT is an isomorphism-invariant computation model working with hereditarily
finite sets as data structures.
While it is easy to check that the evaluation of CPT-sentences is possible in polynomial time, the
converse has been open for more than 20 years: Can every PTIME-decidable property of finite
structures be expressed in CPT?
We attempt to make progress towards a negative answer and show that Choiceless Polynomial Time
cannot compute a preorder with colour classes of logarithmic size in every hypercube. The reason is
that such preorders have super-polynomially many automorphic images, which makes it impossible
for CPT to define them.
While the computation of such a preorder is not a decision problem that would immediately separate
P and CPT, it is significant for the following reason: The so-called Cai-Fürer-Immerman (CFI)
problem is one of the standard “benchmarks” for logics and maybe best known for separating
fixed-point logic with counting (FPC) from P. Hence, it is natural to consider this also a potential
candidate for the separation of CPT and P. The strongest known positive result in this regard says
that CPT is able to solve CFI if a preorder with logarithmically sized colour classes is present in the
input structure.
Our result implies that this approach cannot be generalised to unordered inputs. In other words,
CFI on unordered hypercubes is a PTIME-problem which provably cannot be tackled with the
state-of-the-art choiceless algorithmic techniques.

2012 ACM Subject Classification Theory of computation → Finite Model Theory; Mathematics of
computing → Permutations and combinations

Keywords and phrases finite model theory, descriptive complexity, choiceless computation, symmet-
ries of combinatorial objects

Digital Object Identifier 10.4230/LIPIcs.CSL.2021.33

Acknowledgements I would like to thank my advisor Erich Grädel for helpful comments and
discussions.

1 Introduction

One of the big open questions in descriptive complexity theory is whether there exists a logic
capturing PTIME (see [4], [10], [11], [13]). Towards an answer to this question, several logics
of increasing expressive power within PTIME have been devised, the best-studied of which
is probably FPC, fixed-point logic with counting (see [5] for a survey). However, FPC only
corresponds to a strict subset of PTIME because it cannot express the so-called CFI query, a
version of the graph isomorphism problem on certain graphs constructed by Cai, Fürer and
Immerman in 1992 [3]. This problem is in P and has turned out to be extremely valuable as a
benchmark for PTIME-logics as well as for certain classes of graph isomorphism algorithms.

© Benedikt Pago;
licensed under Creative Commons License CC-BY

29th EACSL Annual Conference on Computer Science Logic (CSL 2021).
Editors: Christel Baier and Jean Goubault-Larrecq; Article No. 33; pp. 33:1–33:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/373012112?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:pago@logic.rwth-aachen.de
https://doi.org/10.4230/LIPIcs.CSL.2021.33
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2 Limitations of Choiceless Definability

The most important candidate logics for capturing PTIME, which have not yet fallen prey
to the CFI problem, are Rank logic [6] and Choiceless Polynomial Time (CPT). CPT was
introduced in 1999 by Blass, Gurevich and Shelah [2] as a machine model that comes as close
to Turing machines as possible, while enforcing isomorphism-invariance of the computations
– this property is precisely the main difference between logics and classical Turing machines.
Since its original invention, various different formalisations of CPT have emerged but the
underlying principle is always the same: Symmetric computation on polynomially-sized
hereditarily finite sets as data structures.

Not many lower bound results for Choiceless Polynomial Time are known so far, and of
course, no decision problem in P has been shown to be undefinable in CPT. However, what
has been achieved is a non-definability statement for a functional problem: Rossman showed
that CPT cannot define the dual of any given finite vector space [15]. Our contribution
is a result of a similar kind, but stronger in a sense: We show non-definability not only
for a concrete functionally determined object, but for all objects satisfying a certain set of
properties. Concretely, no CPT program can define a hereditarily finite set representing
a preorder with colour classes of logarithmic size in every hypercube. This can be seen –
potentially – as a first step towards a non-definability result for a decision problem: the
already mentioned CFI query; this would separate CPT from PTIME. Let us explain what
undefinable preorders have to do with the CFI problem (see Section 3 for details).

Recall that a preorder in a structure can be seen as a linear order on a collection of
colour classes, which form a partition of the universe: These colour classes are subsets of the
structure whose elements are pairwise indistinguishable. The smaller the colour classes are,
the “finer” is the preorder, and the more closely it resembles a linear order. By the famous
Immerman-Vardi Theorem ([12], [17]), fixed-point logic, and therefore also CPT, captures
PTIME on linearly ordered structures. Therefore, intuitively speaking, hard problems like
CFI should become easier to handle if CPT is able to define a sufficiently fine preorder, or
even a linear order, on the input structure. Indeed, Pakusa, Schalthöfer and Selman showed
that CPT can define the CFI query if a preorder with colour classes of logarithmic size is
available [14]. This is the strongest known positive result concerning the solvability of CFI
in CPT.
Our contribution implies that this result cannot be generalised to the CFI problem on
unordered input structures: Instances of CFI can be obtained by applying the Cai-Fürer-
Immerman construction to any family of connected graphs, in particular also to hypercubes.
Since CPT cannot define a sufficiently fine preorder in all hypercubes, and the CFI construc-
tion preserves the hypercube-structure, the algorithmic technique from [14] which heavily
relies on such preorders cannot be applied to all unordered CFI structures.
Therefore, if CFI on unordered structures is solvable in CPT, entirely new choiceless al-
gorithmic techniques are needed to show this. Otherwise, if CFI is indeed a separating
problem for CPT and P, one possible approach to prove this would be to identify further
hereditarily finite sets over hypercubes which are not CPT-definable.

Technically, what we show in this paper is a statement concerning the orbit size of certain
hereditarily finite objects over hypercubes: For every n ∈ N, fix a h.f. object representing
a preorder in the n-dimensional hypercube. If the colour classes of each preorder are of
logarithmic size w.r.t. the hypercube, then the orbit size (w.r.t. the hypercube-automorphisms)
of these h.f. objects grows super-polynomially in 2n, which is the size of the n-dimensional
hypercube.

Since CPT is a logic and therefore isomorphism-invariant, it has to define any object
together with its entire orbit – if the size of the orbit is not polynomially bounded, then this
is not possible in Choiceless Polynomial Time. In fact, we can interpret this non-definability

B. Pago 33:3

result as an inherent weakness of choiceless polynomial time computation in general: It holds
for any isomorphism-invariant polynomial time (or even polynomial space) computation
model on hereditarily finite sets. Hence, should it be the case that CPT fails to capture
PTIME because of a super-polynomial orbit argument like this one, we could conclude that
the quest for a PTIME-logic should continue with other data structures than hereditarily
finite sets.

Finally, we remark that the main combinatorial tool we use in our proof – so-called
supporting partitions – is taken from [1], where Anderson and Dawar show a correspondence
between FPC and Symmetric Circuits. There, it is used for the calculation of orbit sizes of
circuit gates. The fact that this tool also helps to understand the symmetries of hereditarily
finite objects over hypercubes demonstrates its versatility and usefulness for the study of
symmetric objects in general.

2 Choiceless computation and the undefinability of preorders

In this paper, we will not give a definition of CPT, but only state its properties that our
lower bound depends on. Thereby, our result also holds for a much broader class of choiceless
computation models that includes CPT.
For details on CPT, we refer to the literature: A concise survey on the subject can be found
in [8]. It should be noted that there are multiple different ways to formalise CPT: The
original definition was via abstract state machines [2], but there are also more “logic-like”
presentations such as Polynomial Interpretation Logic (see [9], [16]) and BGS-logic [15]. The
latter is essentially a fixed-point logic that allows for the isomorphism-invariant creation
and manipulation of hereditarily finite sets over the input structure. In fact, it has been
shown in [7] that any CPT-program (the words “program” and “sentence” are often used
interchangeably in the context of CPT) is equivalent to a sentence in FPC (fixed-point logic
with counting) evaluated in the input structure enriched with all the necessary hereditarily
finite sets. Therefore, let us make this notion precise.

Hereditarily finite sets and choiceless computation

Let A be a nonempty set. The set of hereditarily finite objects over A, HF(A), is defined as⋃
i∈N HFi(A), where HF0(A) := A ∪ {∅},HFi+1(A) := HFi(A) ∪ 2HFi(A). The size of an h.f.

set x ∈ HF(a) is measured in terms of its transitive closure tc(x): The set tc(x) is the least
transitive set such that x ∈ tc(x). Transitivity means that for every a ∈ tc(x), a ⊆ tc(x).
If the atom set A is the universe of a structure A, then the action of Aut(A) ⊆ Sym(A), the
automorphism group of A, extends naturally to HF(A): For x ∈ HF(A), π ∈ Aut(A), xπ is
obtained from x by replacing each occurrence of an atom a in x with π(a).
The orbit (w.r.t. the action of Aut(A)) of an object x ∈ HF(A) is the set of all its automorphic
images, i.e. {xπ | π ∈ Aut(A)}. The stabiliser Stab(x) of x is the subgroup {π ∈ Aut(A) |
xπ = x}.

I Definition 1. Let A be a finite relational structure with universe A, and p : N −→ N a
polynomial. We say that a h.f. object x ∈ HF(A) is

symmetric (w.r.t. A) if x is stabilised by all automorphisms of A, i.e. Stab(x) = Aut(A);
p-bounded if |tc(x)| ≤ p(|A|).

Every CPT-program comes with an explicit polynomial bound p that limits both the
length of its runs as well as the size of the h.f. sets that it may use in the computation.
Further, due to its nature as a logic, all operations of CPT are symmetry-invariant. This is

CSL 2021

33:4 Limitations of Choiceless Definability

already everything that our lower bound depends on. The following abstract view on the
execution of CPT-programs is true regardless of the concrete presentation of CPT, and this
level of abstraction is sufficient for the purposes of this paper:

Let Π be a CPT-program with bound p, and A be a structure of matching signature. Then
the run of Π on A is a sequence of h.f. sets x1, x2, ... ∈ HF(A), each of which is symmetric
and p-bounded w.r.t. A.

Consequently, no CPT-program – and generally, no computation model operating on
symmetric p-bounded h.f. sets – can compute a h.f. set x with super-polynomial orbit size
because the corresponding stage of the run must contain x along with its entire orbit in order
to fulfil the symmetry-condition. Now, we are almost ready to state our general lower bound
theorem, which applies to CPT as a special case by the facts just mentioned.

Preorders and colour classes

A preorder ≺ on a set A induces a partition of A into colour classes C1, ..., Cm. A colour class
is a set of ≺-incomparable elements, and ≺ induces a linear order on the colour classes. The
canonical representation of such a preorder as a h.f. set is {C1, {C2, {C3, {...}}}}. However,
our lower bound holds for any representation that places elements from the same colour class
at the same “nesting depth” within the h.f. set (see Section 4 for the formal definition). This
is sufficient because even a representation that does not distinguish colour classes by nesting
depth can easily be transformed into the canonical representation above by a CPT-program.

I Theorem 2. Let (Hn)n∈N be the sequence of n-dimensional hypercubes. In each Hn, fix
any preorder ≺n on the vertex set with colour classes of size O(n) = O(log |Hn|). Let xn be
any symmetric (w.r.t. Hn) h.f. set over Hn that contains a h.f. representation of ≺n. Then
there exists no polynomial p such that xn is also p-bounded w.r.t. the corresponding Hn.

The proof can be found in Section 6. As already explained, this implies the following
nondefinability statement for CPT.

I Corollary 3. There is no CPT-program that computes in every hypercube Hn a (h.f. set
representation of a) total preorder with colour classes of size O(n).

3 Previous work and the significance of undefinable preorders

As already mentioned, our contribution is a non-definability result for a functional problem,
the computation of certain preorders.
However, our research is motivated by the study of a decision problem which is seen as a
potential candidate for the separation of CPT from PTIME: The so-called CFI problem, that
we briefly introduce next. Whether CFI in its general version is solvable in CPT is an open
question, but at least for restricted versions, where the structures possess a certain degree of
built-in order, it is known to be in CPT. Our non-definability result implies that being able
to solve the restricted version of CFI in CPT is of no help for solving CFI in the general case.

The CFI problem

For a detailed account of the CFI problem and the construction of the so-called CFI graphs,
we refer the reader to the original paper [3] by Cai, Fürer and Immerman. Here, we only
review it to an extent sufficient for our purposes.

Essentially, CFI is the Graph Isomorphism problem on specific pairs of graphs that are
obtained by applying the so-called CFI construction to a family of connected graphs, for
example, to hypercubes. These are referred to as the underlying graphs. The construction

B. Pago 33:5

replaces every edge and every vertex of the underlying graph with a gadget. Importantly, the
symmetries of the underlying graph are preserved this way. Any underlying graph G can be
transformed into an odd and an even CFI graph, G0 and G1. It holds G0 6∼= G1, and there is
a simple polynomial time algorithm which can determine, given a CFI graph Gx, whether it
is odd or even, i.e. if Gx ∼= G0, or Gx ∼= G1. This is what the CFI problem asks for.
However, on the logical side, that is, in FO with counting, G0 andG1 can only be distinguished
with a linear number of variables. As a consequence, no FPC-sentence can solve the CFI-
problem (on a suitable class of underlying graphs). Since this very expressive “reference logic”
within PTIME fails to solve CFI, this raises the question whether CPT is strong enough to
achieve this, or if CFI is indeed a problem that separates CPT from P.

Solving CFI in CPT

If the underlying graphs of the CFI construction satisfy certain properties, then CFI can be
solved in CPT:

I Theorem 4 ([14]). Let K be the class of connected, preordered graphs G = (V,E,≺) where
the size of each colour class is bounded by log |V |. The CFI problem on underlying graphs in
K can be solved in Choiceless Polynomial Time.

This is the strongest known positive result concerning CFI and CPT. It is a generalisation
of the CPT-algorithm by Dawar, Richerby and Rossman from [7] for the CFI problem on
linearly ordered graphs. Note that not the CFI graphs G0, G1 are ordered/preordered in
these settings, but only the underlying graph G (otherwise, the Immerman-Vardi Theorem
could be applied). The order/preorder on G allows for the algorithmic creation of a so-called
“super-symmetric” h.f. object with polynomial orbit which makes it possible to determine the
parity of the input CFI graph Gx. This object reflects in its structure the preorder on the
input, and is therefore not definable in unordered inputs according to our Theorem 2: It
can be checked that Theorem 2 not only holds for hypercubes but also for the CFI graphs
obtained from them; this is true because Aut(G) embeds into Aut(Gx) for any graph G

and corresponding CFI graph Gx. Hence, the algorithmic technique that proves Theorem 4
cannot be generalised to the CFI problem on unordered graphs. In fact, any CPT algorithm
that is to solve the unordered CFI problem must avoid the construction of a h.f. object whose
nesting structure induces a too fine preorder on the input.

We remark that there are of course families of graphs where the undefinability of such
preorders is much easier to show than on hypercubes. For instance, on complete graphs, it is
clear that the orbit of a preorder with logarithmic colour classes grows super-polynomially.
However, the size of any CFI graph G0 is exponential in the maximal degree of G. Therefore,
the polynomial resources of CPT suffice to solve CFI on unordered graphs of linear maximal
degree (this is another result from [14]). Hence, complete graphs do not yield hard CFI
instances. In contrast, CFI on hypercubes is well-suited as a benchmark for CPT because
their degree is logarithmic and thus the CFI construction only increases the size polynomially.

Our lower bound is a first piece of evidence that the CFI problem on hypercubes is hard
(and maybe even unsolvable) for CPT and we believe that it deserves further investigation.
The results in [7] indirectly suggest a systematic way to do so: Namely, Dawar, Richerby
and Rossman showed that – as long as the CFI structures satisfy a certain homogeneity
condition – solving the CFI problem in CPT always requires the construction of a h.f. set
which contains a large subset of the input structure as atoms. If it were possible to show
that no sufficiently large h.f. object over hypercubes has a polynomial orbit, then this could
be used to separate CPT from PTIME. Our result is a step in that direction as it suggests
that this large object cannot be structurally similar to a preorder.

CSL 2021

33:6 Limitations of Choiceless Definability

4 Analysing orbits of hereditarily finite objects over hypercubes

Let Hn = (Vn, En) be the n-dimensional hypercube, i.e. Vn = {0, 1}n,
En = {{u, v} ∈ V 2

n | d(u, v) = 1}, where d(u, v) is the Hamming-distance.
It is well-known that its automorphism group Aut(Hn) is isomorphic to the semidirect
product of Symn and ({0, 1}n,⊕), where Symn is the symmetric group on [n] = {1, 2, ..., n},
and ({0, 1}n,⊕) is the group formed by the length-n binary strings together with the bitwise
XOR-operation. More precisely, any automorphism σ ∈ Aut(Hn) corresponds to the pair
(π,w) ∈ Symn × {0, 1}n with σ(v) = vπ ⊕ w, where vπ = vπ−1(1)vπ−1(2)...vπ−1(n) (i.e. vπ
is obtained from v by permuting the positions of the word according to π). This means:
|Aut(Hn)| = n! · 2n. Note that it is the factor n! which makes the size of this group
super-polynomial in |Vn| = 2n.

Our main technical theorem, Theorem 13 concerns a fixed sequence of h.f. objects over
the n-dimensional hypercubes, (xn)n∈N, where xn ∈ HF(Vn). We aim for a lower bound
on the orbit size of the objects xn w.r.t. the action of Aut(Hn) extended to HF(Vn). For
our purposes, it only matters whether this lower bound is super-polynomial in 2n = |Vn|,
or not. For this question, we can restrict ourselves to automorphisms corresponding to
permutation-word pairs of the form (π, 0n), for π ∈ Symn. Therefore, for the rest of this
paper, we simply let Symn act on Vn by permuting the positions of the binary strings as
described above. In this sense, Symn embeds into Aut(Hn), and hence, whenever an object
x ∈ HF(Vn) has a super-polynomial orbit with respect to this action of Symn, this is also
true with respect to the action of Aut(Hn).

To sum up, our task is to lower-bound the orbit-sizes of h.f. objects over length-n binary
strings with respect to Symn acting on the positions of the strings. We do this via the
Orbit-Stabiliser Theorem. Let ρ : Symn −→ Aut(Hn) denote the aforementioned embedding.
For the rest of the paper, let Stabn(xn) and Orbitn(xn) denote the stabiliser and orbit,
respectively, of xn w.r.t. the action of Symn on the string positions:

Stabn(xn) := {π ∈ Symn | xρ(π)
n = xn}, Orbitn(xn) := {xρ(π)

n | π ∈ Symn}.

(we will usually write xπ instead of xρ(π)).

I Proposition 5 (Orbit-Stabiliser).

|Orbitn(xn)| = |Symn|
|Stabn(xn)| = n!

|Stabn(xn)| .

This means that we have to upper-bound |Stabn(xn)|. As arbitrary nested sets are not easy to
handle, we will not analyse xn directly, but work with an abstraction that is just a collection
of sets over Vn = {0, 1}n. We call these sets the levels of xn. To define them formally, let
HFn := (HF(Vn),∈) be the directed acyclic graph whose nodes are all h.f. objects over Vn
and whose edges are given by the element-relation. Then,

Leveli(xn) := {v ∈ Vn | in HFn there is an ∈ -path of length i from xn to v}.

We let I(xn) ⊆ N be the index-set of the non-empty levels of xn, i.e. I(xn) := {i ∈ N |
Leveli(xn) 6= ∅}. It is easy to see that any automorphism that stabilises xn must stabilise
each of its levels (not necessarily pointwise, but as a set).

I Proposition 6.

Stabn(xn) ⊆
⋂

i∈I(xn)

Stabn(Leveli(xn)).

B. Pago 33:7

In other words, we have reduced our problem to upper-bounding the size of the simultaneous
stabiliser group of a collection of sets of bitstrings. In the next section, we introduce a tool
that we need in order to accomplish this: So-called supporting partitions.

5 Approximating permutation groups with supporting partitions

The notions and results in this section are mostly taken from the paper on Symmetric Circuits
and FPC by Anderson and Dawar [1].

I Definition 7. Let P be a partition of [n].
The pointwise stabiliser of P is Stab•n(P) := {π ∈ Symn | π(P) = P for all P ∈ P}.
The setwise stabiliser of P is Stabn(P) := {π ∈ Symn | π(P) ∈ P for all P ∈ P} (these
are all π ∈ Symn that induce a permutation on the parts of P).

I Definition 8 (Supporting Partition, [1]). Let G ⊆ Symn be a group. A supporting partition
P of G is a partition of [n] such that Stab•n(P) ⊆ G.

A group G ⊆ Symn may have several supporting partitions but there always exists a unique
coarsest supporting partition. A partition P ′ is as coarse as a partition P, if every part in P
is contained in some part in P ′. For any two partitions P,P ′ there exists a finest partition
E(P,P ′) that is as coarse as either of them:

I Definition 9 ([1]). Let P,P ′ be partitions of [n]. Let ∼ be a binary relation on [n] such
that x ∼ y iff there exists a part P ∈ P or P ∈ P ′ such that x, y ∈ P . Then E(P,P ′) is the
partition of [n] whose parts are the equivalence classes of [n] under the transitive closure of
∼.

As shown in [1], the property of being a supporting partition of a group G ⊆ Symn is
preserved under the operation E . Therefore it holds:

I Lemma 10 ([1]). Each permutation group G ⊆ Symn has a unique coarsest supporting
partition, denoted SP(G).

When we write SP(a) for a ∈ HF({0, 1}n), we mean SP(Stabn(a)), that is, the coarsest
supporting partition of the stabiliser of a, where – as in the previous section – we consider
the stabiliser as the subgroup of Symn acting on the positions of the binary strings. Note
that if a ∈ {0, 1}n, then SP(a) is just the partition of [n] into {k ∈ [n] | ak = 0} and
{k ∈ [n] | ak = 1}.

The reason why coarsest supporting partitions are useful for estimating the sizes of certain
stabiliser subgroups is the following result:

I Lemma 11 ([1]). Let G ⊆ Symn be a group. Then:

Stab•n(SP(G)) ⊆ G ⊆ Stabn(SP(G)).

This lemma enables us to upper-bound stabilisers of arbitrary objects in HF({0, 1}n) by the
stabilisers of their supporting partitions.
Finally, because we will frequently need it later in our proof, we define the operation u as
the “intersection” of two partitions:

I Definition 12 (Intersection of partitions). Let P,P ′ be partitions of [n]. The intersection
P u P ′ is defined like this:

P u P ′ := {P(k) ∩ P ′(k) | k ∈ [n]}.

Here, P(k),P ′(k) denote the parts of the respective partition that contain k.

CSL 2021

33:8 Limitations of Choiceless Definability

6 The Super-Polynomial Orbit Theorem

Our main technical theorem reads as follows:

I Theorem 13. Let (xn)(n∈N) be a sequence with xn ∈ HF(Vn) (recall that Vn = {0, 1}n).
Assume that the xn satisfy the following two properties:
1. In each xn, every v ∈ Vn occurs as an atom.
2. The function maxi∈I(xn) |Leveli(xn)| is in O(n).

Then, |Orbitn(xn)| (as defined in Section 4) grows asymptotically faster than any polynomial
in 2n = |Vn|.

From this, Theorem 2 follows because – as discussed in Section 2 – the canonical h.f. set
representation of a preorder with logarithmic colour classes satisfies the two conditions of
Theorem 13, and because any symmetric (see Definition 1) h.f. object that contains xn must
necessarily contain Orbitn(xn), too.
We start to explain the proof idea of Theorem 13 by stating the following summary of
Proposition 6 and Lemma 11:

I Corollary 14.

Stabn(xn) ⊆
⋂

i∈I(xn)

Stabn(Leveli(xn))) ⊆
⋂

i∈I(xn)

Stabn(SP(Leveli(xn))).

We are going to employ the Orbit-Stabiliser Theorem in order to obtain our lower bound for
the orbit size. Hence, we need to bound |Stabn(xn)| from above, and Corollary 14 already
indicates the basic principle of our proof: Splitting up xn into its levels and analysing the
stabilisers of their respective supporting partitions.
Our analysis of |Stabn(xn)| is divided into two main cases that we treat separately. The
distinction is with respect to the maximum size of the coarsest support of any level of xn,
viewed as a function of n:

Let Bn ⊆ {0, 1}n be the level of xn such that |SP(Bn)| (i.e. its number of parts) is maximal
in {|SP(Leveli(xn))| | i ∈ I(xn)}. Then the two cases we distinguish are:
(1) The maximal level-support size grows sublinearly: |SP(Bn)| ∈ o(n).
(2) The maximal level-support size grows linearly: |SP(Bn)| ∈ Θ(n).

We deal with the two cases in the next two subsections. Their results are summarised in
Lemma 15 and Lemma 21. Together they imply the theorem. Due to space restrictions, we
can only give proof sketches for most lemmas; for some of them, full proofs can be found
in the appendix. In the following lemmas, we always refer to the objects and the setting of
Theorem 13, as well as to the set level Bn just defined.

6.1 The case of sublinearly bounded supports
The result of this subsection is:

I Lemma 15. Assume the following three conditions hold:
1. In each xn, every v ∈ Vn occurs as an atom.
2. The function maxi∈I(xn) |Leveli(xn)| is in O(n).
3. |SP(Bn)| ∈ o(n).
Then the orbit size of xn w.r.t. Symn acting on the positions of the binary strings grows
faster than any polynomial in 2n.

B. Pago 33:9

We prove this lemma on the next few pages. From now on, we use the abbreviation
SPi(xn) := SP(Leveli(xn)). Let us begin by outlining the proof idea. We have to bound
Stabn(xn) ⊆

⋂
i∈I(xn) Stabn(SPi(xn)) (see Corollary 14). Hence, we have to count the

permutations in Symn that simultaneously stabilise the supports of the levels of xn.
For a level i ∈ I(xn), Sym(SPi(xn)) denotes the symmetric group on the parts of SPi(xn)
(in contrast, Symn is the symmetric group on the set [n] that underlies this partition). Every
π ∈ Symn that stabilises SPi(xn) as a set induces (or realises) a σ ∈ Sym(SPi(xn)) in
the sense that σ(P) = {π(k) | k ∈ P} ∈ SPi(xn) for all P ∈ SPi(xn). This can also be
extended to a set J ⊆ I(xn) of several levels: Every π ∈

⋂
i∈J Stabn(SPi(xn)) induces a

σ ∈×i∈J Sym(SPi(xn)). Here, σ is the tuple of permutations that π realises simultaneously
on the parts of the respective SPi(xn).

Now in order to bound |Stabn(xn)|, we will choose a subset J ⊆ I(xn) with certain
properties that will enable us to bound two quantities: Firstly, each σ ∈×i∈J Sym(SPi(xn))
that can be realised by a π ∈ Stabn(xn) will only have a small number of distinct such
realisations. Secondly, there will be a bound on the number of such σ that can be realised
by a π ∈ Stabn(xn) at all. The product of these two bounds is then an upper bound for
|Stabn(xn)|.

We begin with a lemma that generally relates the number of possible distinct realisa-
tions of a given σ ∈×i∈[m] Sym(SP(Ai)), for sets A1, ..., Am ⊆ {0, 1}n, with the partition
dm
i=1 SP(Ai) (recall Definition 12 for the meaning of u).

I Lemma 16. Let A1, ..., Am ⊆ {0, 1}n be a collection of sets of bitstrings. Fix any
simultaneous permutation σ of the parts of the supports of the sets, i.e. σ ∈×m

i=1 Sym(SP(Ai)).
There exists a ϑσ ∈ Sym(

dm
i=1 SP(Ai)) such that every π ∈ Symn that realises σ also realises

ϑσ.

Proof sketch. Via induction on m. If m = 1, then the desired ϑσ is just σ ∈ Sym(SP(A1)).
For the induction step, let there be m+ 1 sets A1, ..., Am+1, and let σ ∈×m+1

i=1 Sym(SP(Ai))
be fixed. Since every π ∈ Symn that realises σ in particular realises the first m entries in σ,
the induction hypothesis gives us a fixed permutation in Sym(

dm
i=1 SP(Ai)) that each such π

has to realise. Further, π has to realise σm+1 ∈ Sym(SP(Am+1)). Putting these constraints
on π together, the desired ϑσ ∈ Sym(

dm+1
i=1 SP(Ai)) is obtained. J

So, intuitively speaking, the finer the partition
dm
i=1 SP(Ai) is, the fewer realisations

exist for any σ ∈×m

i=1 Sym(SP(Ai)). Therefore, we will aim to select a subset of the levels
of xn such that the intersection over the supports is as fine as possible. More precisely, we
would like it to consist of many singleton parts. For the rest of this subsection we denote by
Sn ⊆ [n] the set of positions which are in singleton parts in

d
i∈I(xn) SPi(xn), i.e.

Sn := {k ∈ [n] | {k} ∈
l

i∈I(xn)

SPi(xn)}.

It turns out that there can only be few positions which are not in singleton parts ind
i∈I(xn) SPi(xn); this is a consequence of the assumption that xn contains every element of
{0, 1}n, together with the size bound on the levels:

I Lemma 17. Assume that |Leveli(xn)| ∈ O(n) for each level i of xn. Further, assume that
in each xn, every element of {0, 1}n occurs as an atom. Then, for large enough n:

|[n] \ Sn| < 8 logn.

CSL 2021

33:10 Limitations of Choiceless Definability

Proof sketch. Assume: |[n] \Sn| ≥ 8 logn. We show that this entails the existence of a level
A ⊆ {0, 1}n in the object xn such that |A| is greater than O(n), which is a contradiction.
The partition SP(A) is as least as coarse as

d
i∈I(xn) SPi(xn) and has therefore a certain

number of positions within non-singleton parts according to our assumption. Permuting the
positions within the non-singleton parts of SP(A) leaves the set A intact, by definition of
supporting partitions. Hence, if A contains a string a with a balanced number of zeroes and
ones within each P ∈ SP(A) with |P | ≥ 2, it can be calculated that a has more than O(n)
images under the mentioned permutations. Because every a ∈ {0, 1}n occurs somewhere in
xn, such a level A of xn indeed exists. J

We proceed to construct the announced subset J ⊆ I(xn) of the levels of xn. Its two
properties that are stated in the next lemma are crucial to bound |

⋂
i∈J Stabn(SPi(xn))|. A

full proof of the lemma is included in the appendix.

I Lemma 18. Let f(n) ∈ o(n) such that for all levels i ∈ I(xn), |SPi(xn)| ≤ f(n).
There exists a subset J ⊆ I(xn) of the levels of xn with the following two properties:
(1) Every position in Sn is also in a singleton part of

d
j∈J SPj(xn).

(2) The following bound for the number of realisable simultaneous permutations of the
supporting partitions holds:∣∣∣{σ ∈×

j∈J
Sym(SPj(xn)) | there is a π ∈ Symn that realises σ}

∣∣∣≤ (f(n)!)n/(f(n)−1) ·2n

Proof sketch. Construct the set J stepwise, starting with J0 = ∅, and adding a new level ji
in each step i, such that

d
j∈Ji SPj(xn) is a strict refinement of

d
j∈Ji−1 SPj(xn). This is

done until property (1) is satisfied. Let

ki :=
∣∣∣ l

j∈Ji

SPj(xn)
∣∣∣−∣∣∣ l

j∈Ji−1

SPj(xn)
∣∣∣.

The main part of the proof is to show that in step i + 1, there are at most (ki+1 + 1)!
permutations in Sym(SPji+1(xn)) that can be realised by some π ∈ Symn simultaneously
with any other given σ ∈×j∈Ji Sym(SPj(xn)). Once this is established, we know that the
set of simultaneous permutations from property (2) has size at most

∏s
i=1(ki + 1)!. Further,

for all i we have |Sym(SPi(xn))| ≤ f(n)!. Using the fact that
∑s
i=1 ki ≤ n, one can now make

a typical “redistribute weight argument” to show that the mentioned product of factorials
is maximised if each ki is either 1 or f(n)− 1. This leads to the bound stated in property
(2). J

I Corollary 19. Assume the following three conditions hold:
1. In each xn, every v ∈ Vn occurs as an atom.
2. The function maxi∈I(xn) |Leveli(xn)| is in O(n).
3. |SP(Bn)| ∈ o(n).
Then, for sufficiently large n:

|Stabn(xn)| ≤ (f(n)!)n/(f(n)−1) · 2n · (8 logn)!

Proof. Consider the set J ⊆ I(xn) that exists by Lemma 18. By Corollary 14, every
π ∈ Stabn(xn) induces a tuple of permutations σ ∈×i∈I(xn) Sym(SPi(xn)), so in particular it
also induces a σ ∈×i∈J Sym(SPi(xn)). By Lemma 18, there are at most (f(n)!)n/(f(n)−1) ·2n
possibilities for such a σ. Furthermore, each such σ can be realised by at most (8 logn)!

B. Pago 33:11

distinct permutations π ∈ Stabn(xn): Due to Lemma 16 and property (1) of J (see Lemma 18),
every π realising σ permutes the positions in Sn in the same way, and according to Lemma 17,
there remain at most 8 logn positions which may be permuted arbitrarily by π (that is, if all
positions in [n] \ Sn form a single part in

d
i∈J SPi(xn)). J

With this, we can estimate the asymptotic behaviour of |Orbitn(xn)|, which proves Lemma 15.

I Lemma 20. Under the assumptions of Corollary 19, |Orbitn(xn)| can be estimated as
follows: For any k ∈ N, the limit

lim
n→∞

|Orbitn(xn)|
2kn = lim

n→∞

n!
|Stabn(xn)| · 2kn ≥ lim

n→∞

n!
(f(n)!)n/(f(n)−1) · 2n · (8 logn)! · 2kn

does not exist. That is to say, the orbit of xn w.r.t. the action of Symn grows super-
polynomially in 2n.

Proof sketch. Replace all factorials with the Stirling Formula n! ≈
√

2πn ·
(
n
e

)n. With this,
compute a lower bound for the above fraction that can be seen to tend to infinity as n
grows. J

6.2 The case of linearly-sized supports

This subsection is dedicated to proving the following result for the case that |SP(Bn)| ∈ Θ(n).
In this case, we only need to analyse the orbit size of the level Bn of xn with the largest
supporting partition (see the beginning of Section 6 again for the definition of Bn).

I Lemma 21. Assume that the following conditions hold for Bn:
1. |Bn| ∈ O(n).
2. |SP(Bn)| ∈ Θ(n).
Then the orbit size of Bn (and therefore also of xn) w.r.t. the action of Symn on the positions
of the binary strings grows faster than any polynomial in 2n.

Proving this lemma requires a case distinction again. The relevant measure here is the
number of singleton parts in SP(Bn). Firstly, we show that if the number of singleton parts
in SP(Bn) grows sublinearly in n, while the total number of parts |SP(Bn)| is linear, the
stabiliser of SP(Bn) is small enough. This can be seen solely from the properties of the
partition SP(Bn).

The difficult part of the proof is the case where the number of singleton parts grows
linearly. In the worst case, SP(Bn) consists only of singletons; then, Stabn(SP(Bn)) = Symn.
We solve this by not only looking at the partition SP(Bn) itself but also at properties of the
set Bn that can be inferred from its supporting partition.
In the following, we always denote by Sn ⊆ [n] the set of positions that are in singleton parts
of SP(Bn), i.e.

Sn := {k ∈ [n] | {k} ∈ SP(Bn)}.

(note that the definition of Sn was slightly different in the last subsection).

CSL 2021

33:12 Limitations of Choiceless Definability

Subcase 1: Sublinear number of singleton parts

Let us begin with the easier case, where the number of singleton parts in SP(Bn) grows
sublinearly. The size of Stabn(SP(Bn)) can generally be bounded as follows:

I Lemma 22. Let sn := |Sn|, and tn := |SP(Bn)| − sn.

|Stabn(SP(Bn))| ≤ sn! · tn! · (n− 2(tn − 1))! · 2tn .

Proof. The factors sn! and tn! account for the possible permutations of the parts: All the
singleton parts of SP(Bn) can be mapped to each other, and every non-singleton part can
at most be mapped to every other non-singleton part. An upper bound on the number of
permutations within the non-singleton parts is `1! · `2! · ... · `tn !, where the `i are the sizes of
these parts. This product of factorials is maximised if one value `p is as large as possible
(≤ n− 2(tn− 1)), and `i = 2 for all i 6= p. This is a standard “redistribute weight argument”,
which is also used in [1] multiple times. J

I Corollary 23. Let f(n) ∈ o(n) be a function such that sn ≤ f(n) and let c ≤ 1 be a
positive constant such that |SP(Bn)| ≥ c · n for large enough n. Then, for large enough n,
the following bound holds:

|Stabn(SP(Bn))| ≤ f(n)! · 2n ·max
{

(n/2)! · 2, (cn− f(n))! · ((1− 2c)n+ 2f(n) + 2)!
}
.

Proof. We plug in the right values for sn and tn = |SP(Bn)| − sn into Lemma 22, and use
the simple bound 2tn ≤ 2n. We have sn ≤ f(n) by assumption. As |SP(Bn)| ≥ c · n, and
because every non-singleton part has at least two elements, we can bound tn as follows:

c · n− f(n) ≤ tn ≤
n

2 .

The bound from Lemma 22 contains a product of two factorials which both depend on tn. By
a redistribute-weight argument, one can see that this product is maximised if the two factorials
are maximally imbalanced. This happens if tn attains its maximum or minimum. J

This directly leads to a super-polynomial orbit: In the next lemma, we calculate the growth
of |Orbitn(xn)| ≥ n!

|Stabn((SP(Bn))| (this is due to Lemma 11), using the stabiliser-bound from
Corollary 23.

I Lemma 24. Let f(n) ∈ o(n) be a function such that sn ≤ f(n) and c ≤ 1 be a positive
constant such that |SP(Bn)| ≥ c · n for large enough n. Then for any k ∈ N, the limit

lim
n→∞

n!
f(n)! · 2n ·max

{
(n/2)! · 2, (cn− f(n))! · ((1− 2c)n+ 2f(n) + 2)!

}
· 2kn

does not exist. That is to say, the orbit of Bn w.r.t. the action of Symn grows super-
polynomially in 2n.

Proof sketch. Similar to Lemma 20. J

This proves Lemma 21 under the assumption that |Sn| ∈ o(n).

B. Pago 33:13

Subcase 2: Linear number of singleton parts

The idea for this case is similar to how we solved the case of sublinear supports. There, we
related simultaneous permutations of the parts of the supports SPi(xn) to their realisations in
Symn. Now we do the same with respect to permutations of the elements of Bn: Let Sym(Bn)
be the group of all permutations of the strings in Bn. For π ∈ Symn and σ ∈ Sym(Bn), we
say that π realises or induces σ, if bπ = σ(b) for every b ∈ Bn. The aim is to show that only
a bounded number of σ ∈ Sym(Bn) can be realised by a permutation π ∈ Stabn(Bn) at all,
and that each such σ only has a small number of realisations. In total, this yields a bound
on |Stabn(Bn)|.

We will construct a subset A ⊆ Bn such that: Any σ ∈ Sym(Bn) whose preimages are
fixed on A can only be realised by few π ∈ Symn, and A is small compared to Bn. This
ensures that there are not too many ways to specify a σ ∈ Sym(Bn) on A (if |Bn| ∈ O(n),
there are ≤ n|A| options to fix σ−1(a) for all a ∈ A).
First of all, we show how to bound the number of possible realisations of any σ ∈ Sym(Bn)
if σ is fixed on some subset A ⊆ Bn. The next lemma is similar to Lemma 16. We omit the
proof as it is quite analogous.

I Lemma 25. Let B ⊆ {0, 1}n, A ⊆ B. Let an injective mapping p : A −→ B be given.
Write

d
A :=

d
a∈A SP(a).

There is an assignment of positions to parts Qp : [n] −→
d
A with the property that

|Q−1
p (P)| = |P | for every P ∈

d
A, and such that:

Every π ∈ Symn realising any σ ∈ Sym(B) with σ−1(a) = p(a) (if such a π exists) satisfies:
π(k) ∈ Qp(k) for all k ∈ [n].

We will mainly need this lemma for the restriction of the parts in
d
A to the positions in Sn.

Therefore, we state the following important corollary:

I Corollary 26. Let A ⊆ Bn be arbitrary, and let an injective mapping p : A −→ Bn be given.
Then every π ∈ Symn that realises a σ ∈ Sym(Bn) with σ−1(a) = p(a) for all a ∈ A satisfies:

π−1(P ∩ Sn) = Q−1
p (P) ∩ Sn for all P ∈

l
A,

where Qp : [n] −→
d
A is the assignment that exists by the preceding lemma.

Proof. Lemma 25 says that π−1(P) = Q−1
p (P). Since π realises a permutation in Sym(Bn),

π ∈ Stabn(Bn). Hence, by Lemma 11, π ∈ Stabn(SP(Bn)). This means that π(Sn) = Sn, as
singleton parts can only be mapped to singleton parts. Consequently, it must be the case
that π−1(P ∩ Sn) = Q−1

p (P) ∩ Sn. J

Next, we select our desired subset A ⊆ Bn. It will be such that the partition
d
A =d

a∈A SP(a) is quite fine on Sn. In order to guarantee that A is much smaller than Bn, we
only require a relaxed, but more complicated, notion of “fineness” here. The proof of the
next lemma can be found in the appendix.

I Lemma 27. There exists a subset A ⊆ Bn of size |A| ≤ |Sn|
2 such that for each part

P ∈
d
A, one of the following two statements is true:

1. |P ∩ Sn| ≤ 2; or:
2. |P ∩ Sn| > 2 and for every b ∈ Bn \A, one of these two conditions holds:

b is constant on P ∩ Sn; or
b[P ∩ Sn] is imbalanced and, for every P ′ ∈

d
A with P ′ 6= P , |P ′ ∩ Sn| > 2, b is

constant on P ′ ∩ Sn.

CSL 2021

33:14 Limitations of Choiceless Definability

By b[P ∩ Sn] we mean the substring of b at the positions in P ∩ Sn, and being imbalanced
means that b[P ∩ Sn] contains exactly one 0 and there is a 1 at all other positions, or vice
versa (exactly one 1 and the rest 0).

Proof sketch. Construct A stepwise, starting with A0 = ∅ and adding a new string ai in
each step i. Choose ai+1 such that progress is made. That means, ai+1 should split some
part (P ∩ Sn), for a P ∈

d
Ai with |P ∩ Sn| > 2 (“split” means, ai+1 is non-constant on

P ∩ Sn). However, we take care that ai+1 either splits two parts, or if it splits only one part,
it does not split off a singleton part. This ensures that at most |Sn|/2 such construction
steps can be performed. If no such ai+1 ∈ Bn \Ai exists, then the constructed set fulfils the
properties stated in the lemma. J

Before we can use this to bound |Stabn(Bn)|, we need one more lemma concerning those parts
P ∈

d
A with |P ∩ Sn| > 2. We show that any π ∈ Stabn(Bn) is already fully determined

when it is specified only on the parts P ∈
d
A with |P ∩ Sn| ≤ 2. The full proof of this is

also in the appendix.

I Lemma 28. Let A ⊆ Bn be the subset that exists by Lemma 27, and let p : A −→ Bn be
an injective function. Let

Γp := {π ∈ Stabn(Bn) | p(a)π = a for all a ∈ A}.

Further, let

P>2 := {k ∈ Sn | |P (k) ∩ Sn| > 2, where P (k) ∈
l
A is the part that k is in}.

Then for any π, π′ ∈ Γp such that π−1|([n]\P>2) = π′−1|([n]\P>2), it also holds π−1|P>2 =
π′−1|P>2 .

Proof sketch. Assume for a contradiction the existence of π, π′ ∈ Γp such that their preimages
are the same on [n] \ P>2 but there is a position x such that π(x) ∈ P>2 and π(x) 6= π′(x).
It can then be shown – using the second statement of Lemma 27 and the fact that π, π′ ∈
Stabn(Bn) – that the transposition (π(x) π′(x)) is also an element of Stabn(Bn). This,
however, is a contradiction to the fact that π(x), π′(x) are in distinct singleton parts in
SP(Bn), which is the coarsest possible supporting partition. J

I Lemma 29. Let c be a constant such that |Bn| ≤ c · n (for large enough n). Then, for
large enough n, it holds:

|Stabn(Bn)| ≤ (2cn)|Sn|/2 · (n− |Sn|)!

Proof. Let A ⊆ Bn be the subset of Bn whose existence is stated in Lemma 27. Fix any
injective function p : A −→ Bn. Let Γp and P>2 be as in Lemma 28.
We bound |Γp| by counting the number of possible π ∈ Γp. We know by Lemma 28 that
we only have to count the number of possibilities to choose the preimages of the elements
in [n] \ P>2. For every part P ∈

d
A with |P ∩ Sn| ≤ 2, we know by Corollary 26 that

π−1(P ∩Sn) ⊆ Sn is the same fixed set of size ≤ 2 for all π ∈ Γp, so we only have two options
how π−1 can behave on P ∩ Sn. The number of such parts P is at most |Sn|/2.
For i ∈ [n] \ Sn, we can only say that π−1(i) /∈ Sn (by Lemma 11). Hence, every π ∈ Γp can
in principle permute the set [n] \ Sn arbitrarily. In total, we conclude:

|Γp| ≤ 2(|Sn|/2) · (n− |Sn|)!

B. Pago 33:15

This is for a fixed function p. The number of possible choices for p is bounded by (cn)|Sn|/2,
since |A| ≤ |Sn|/2 (Lemma 27) and we are assuming |Bn| ≤ cn.
Every π ∈ Stabn(Bn) must occur in at least one of the sets Γp for some choice of p, so indeed,
(2cn)|Sn|/2 · (n− |Sn|)! is an upper bound for |Stabn(Bn)|. J

Based on Lemma 29, the orbit size of Bn can be estimated:

I Lemma 30. Let c be a constant such that |Bn| ≤ c · n, and δ > 0 be a constant such that
|Sn| ≥ δ · n (for large enough n). Then for any k ∈ N, the limit

lim
n→∞

|Orbitn(Bn)|
2kn = lim

n→∞

n!
|Stabn(Bn)| · 2kn ≥ lim

n→∞

n!
(2cn)(δn)/2 · ((1− δ)n)! · 2kn

does not exist. That is to say, the orbit of Bn w.r.t. the action of Symn grows super-
polynomially in 2n.

Proof sketch. Again a calculation using Stirling’s approximation for the factorials. J

This lemma together with Lemma 24 proves Lemma 21.

7 Concluding remarks and future research

A question that remains open is what exactly is the threshold of “fineness” of a preorder
where the orbit size changes from super-polynomial to polynomial. In other words: What is
the largest colour class size for which our Super-Polynomial Orbit Theorem for hypercubes
still holds?
One can check that all parts of our proof can be modified such that it also goes through if
we allow colour classes (i.e. levels) of size o(n2). If the size is in Θ(n2), though, the bound in
Lemma 29 becomes too large for Lemma 30 to hold.
On the other hand, the finest preorder with a polynomial orbit that we know so far is one where
the colour class sizes are in O(2n/

√
n): It corresponds to the partition of {0, 1}n according

to Hamming-weight. Obviously, this is precisely the orbit-partition of the vertex-set (w.r.t.
the action of Symn on the positions). Its largest colour class has size

(
n
n/2
)
∈ Θ(2n/

√
n).

Determining the finest preorder that is in principle CPT-definable in hypercubes would
potentially allow to better judge whether a preorder-based CPT-algorithm like the one in
[14] can at all be a candidate for a solution of the unordered CFI problem.
Moreover, it would be helpful to identify further h.f. objects that are undefinable in hypercubes
for symmetry reasons.

References
1 Matthew Anderson and Anuj Dawar. On symmetric circuits and fixed-point logics. Theory of

Computing Systems, 60(3):521–551, 2017. doi:10.1007/s00224-016-9692-2.
2 Andreas Blass, Yuri Gurevich, and Saharon Shelah. Choiceless polynomial time. Annals of

Pure and Applied Logic, 100(1-3):141–187, 1999. doi:10.1016/S0168-0072(99)00005-6.
3 Jin-yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of

variables for graph identification. Combinatorica, 12:389–410, 1992. doi:10.1007/BF01305232.
4 Ashok K Chandra and David Harel. Structure and complexity of relational queries. In 21st

Annual Symposium on Foundations of Computer Science (sfcs 1980), pages 333–347. IEEE,
1980. doi:10.1109/SFCS.1980.41.

5 Anuj Dawar. The nature and power of fixed-point logic with counting. ACM SIGLOG News,
2(1):8–21, 2015.

CSL 2021

https://doi.org/10.1007/s00224-016-9692-2
https://doi.org/10.1016/S0168-0072(99)00005-6
https://doi.org/10.1007/BF01305232
https://doi.org/10.1109/SFCS.1980.41

33:16 Limitations of Choiceless Definability

6 Anuj Dawar, Martin Grohe, Bjarki Holm, and Bastian Laubner. Logics with rank operators.
In 2009 24th Annual IEEE Symposium on Logic In Computer Science, pages 113–122. IEEE,
2009. doi:10.1109/LICS.2009.24.

7 Anuj Dawar, David Richerby, and Benjamin Rossman. Choiceless polynomial time, counting
and the Cai–Fürer–Immerman graphs. Annals of Pure and Applied Logic, 152(1-3):31–50,
2008. doi:10.1016/j.apal.2007.11.011.

8 Erich Grädel and Martin Grohe. Is Polynomial Time Choiceless? In Fields of Logic and
Computation II, pages 193–209. Springer, 2015. doi:10.1007/978-3-319-23534-9_11.

9 Erich Grädel, Wied Pakusa, Svenja Schalthöfer, and Łukasz Kaiser. Characterising Choice-
less Polynomial Time with First-order Interpretations. In Proceedings of the 30th An-
nual ACM/IEEE Symposium on Logic in Computer Science, pages 677–688, 2015. doi:
10.1109/LICS.2015.68.

10 Martin Grohe. The quest for a logic capturing PTIME. In 2008 23rd Annual IEEE Symposium
on Logic in Computer Science, pages 267–271. IEEE, 2008. doi:10.1109/LICS.2008.11.

11 Yuri Gurevich. Logic and the Challenge of Computer Science. In Current Trends in Theoretical
Computer Science. Computer Science Press, 1988.

12 Neil Immerman. Relational queries computable in polynomial time. In Proceedings of the
fourteenth annual ACM symposium on Theory of computing, pages 147–152, 1982. doi:
10.1145/800070.802187.

13 Wied Pakusa. Linear Equation Systems and the Search for a Logical Characterisation of
Polynomial Time. PhD thesis, RWTH Aachen, 2015.

14 Wied Pakusa, Svenja Schalthöfer, and Erkal Selman. Definability of Cai-Fürer-Immerman
problems in Choiceless Polynomial Time. ACM Transactions on Computational Logic (TOCL),
19(2):1–27, 2018. doi:10.1145/3154456.

15 Benjamin Rossman. Choiceless computation and symmetry. In Fields of Logic and Computation,
Essays Dedicated to Yuri Gurevich on the Occasion of His 70th Birthday, volume 6300 of Lecture
Notes in Computer Science, pages 565–580. Springer, 2010. doi:10.1007/978-3-642-15025-8_
28.

16 Svenja Schalthöfer. Choiceless Computation and Logic. PhD thesis, RWTH Aachen, 2020.
17 Moshe Y Vardi. The complexity of relational query languages. In Proceedings of the fourteenth

annual ACM symposium on Theory of computing, pages 137–146, 1982. doi:10.1145/800070.
802186.

8 Appendix

8.1 Proof of Lemma 18
I Lemma 18. Let f(n) ∈ o(n) such that for all levels i ∈ I(xn), |SPi(xn)| ≤ f(n).
There exists a subset J ⊆ I(xn) of the levels of xn with the following two properties:
(1) Every position in Sn is also in a singleton part of

d
j∈J SPj(xn).

(2) The following bound for the number of realisable simultaneous permutations of the
supporting partitions holds:∣∣∣{σ ∈×

j∈J
Sym(SPj(xn)) | there is a π ∈ Symn that realises σ}

∣∣∣≤ (f(n)!)n/(f(n)−1) ·2n

Proof. We construct J stepwise, starting with J0 := ∅ and adding one new level ji ∈ I(xn)
in each step i ≥ 1 in such a way that∣∣∣ l

j∈Ji−1

SPj(xn) u SPji(xn)
∣∣∣> ∣∣∣ l

j∈Ji−1

SPj(xn)
∣∣∣.

https://doi.org/10.1109/LICS.2009.24
https://doi.org/10.1016/j.apal.2007.11.011
https://doi.org/10.1007/978-3-319-23534-9_11
https://doi.org/10.1109/LICS.2015.68
https://doi.org/10.1109/LICS.2015.68
https://doi.org/10.1109/LICS.2008.11
https://doi.org/10.1145/800070.802187
https://doi.org/10.1145/800070.802187
https://doi.org/10.1145/3154456
https://doi.org/10.1007/978-3-642-15025-8_28
https://doi.org/10.1007/978-3-642-15025-8_28
https://doi.org/10.1145/800070.802186
https://doi.org/10.1145/800070.802186

B. Pago 33:17

Let s be the number of construction steps needed, i.e. J := Js is such that property (1) of
the lemma holds for this subset of I(xn). By definition of Sn, it is clear that such a subset
exists because I(xn) itself satisfies property (1).
For each construction step i, we let

Γi := {σ ∈×
j∈Ji

Sym(SPj(xn)) | there is a π ∈ Symn that realises σ}.

Furthermore, for each step i we let ki be the increase in the number of parts in the intersection
that is achieved in this step:

ki := |
l

j∈Ji

SPj(xn)| − |
l

j∈Ji−1

SPj(xn)|.

The main part of the proof consists in showing the following

B Claim 31. For each step i, the size of |Γi| is bounded by

|Γi| ≤
i∏

j=1
(min{(kj + 1), f(n)})!

Proof. Via induction on i. For i = 1, we have k1 = |SPj1(xn)| ≤ f(n), where j1 is the level
chosen in the first step of the construction of J . The group Γ1 is a subgroup of Sym(SPj1(xn)),
whose size is bounded by |SPj1(xn)|!. Therefore, the claim holds. For the inductive step,
consider the step i+ 1 of the construction. Let ji+1 be the level that is added in this step.
In order to bound the size of Γi+1, we consider for each σ ∈ Γi the following set:

Γσi+1 := {σ ∈ Sym(SPji+1(xn)) | there is a π ∈ Symn that realises σ and σ}.

We need to show that for each σ ∈ Γi, it holds |Γσi+1| ≤ (min{(ki+1 + 1), f(n)})!.
Since |SPji+1(xn)| ≤ f(n), the bound |Γσi+1| ≤ f(n)! is clear. It remains to show that for an
arbitrary fixed σ ∈ Γi, it holds |Γσi+1| ≤ (ki+1 + 1)!.
For a part P ∈ SPji+1(xn), let

Q(P) := {Q ∈
l

j∈Ji

SPj(xn) | Q ∩ P 6= ∅}.

We define an equivalence relation ∼⊆ (SPji+1(xn))2: For parts P, P ′ ∈ SPji+1(xn) we let

P ∼ P ′ iff Q(P) = Q(P ′).

The images of each part SPji+1(xn) under permutations in Γσi+1 are contained in a single
equivalence class of ∼: Every π ∈ Symn that realises any σ ∈ Γσi+1 also realises σ ∈ Γi.
Hence, by Lemma 16, all such π induce the same ϑσ ∈ Sym(

d
j∈Ji SPj(xn)). This means

that for any σ ∈ Γσi+1, and every part P ∈ SPji+1(xn), Q ∈
d
j∈Ji SPj(xn),

σ(P) ∩ ϑσ(Q) 6= ∅ iff Q ∈ Q(P).

Therefore, all possible images σ(P) ∈ SPji+1(xn), for all σ ∈ Γσi+1 must be in the same
equivalence class of ∼. Consequently, we can bound |Γσi+1| as follows: Let m be the number
of equivalence classes of ∼ and let `1, .., `m denote the sizes of the respective classes. Then
from our observations so far it follows:

|Γσi+1| ≤
∏
t∈[m]

`t! (?)

CSL 2021

33:18 Limitations of Choiceless Definability

Next, we establish a relationship between the properties of ∼ and the number ki+1:

ki+1 =
∣∣∣SPji+1(xn) u

l

j∈Ji

SPj(xn)
∣∣∣−∣∣∣ l

j∈Ji

SPj(xn)
∣∣∣

=
∑

Q∈
d

j∈Ji SPj(xn)

(|{P ∈ SPji+1(xn) | Q ∈ Q(P)}| − 1)

≥
∑

[P]∼,

P∈SPji+1 (xn)

(|[P]∼| − 1)

= |SPji+1(xn)| −m

The first equality is due to the fact that each part Q ∈
d
j∈Ji is split into as many parts as

there are parts in SPji+1(xn) intersecting Q.
To see why the inequality holds, fix a choice function g that maps each equivalence class
[P]∼ to a part Q ∈ Q(P). By definition of ∼, we have g([P]∼) ∈ Q(P ′) for every P ′ ∈ [P]∼.
Hence, for every Q ∈

d
j∈Ji SPj(xn), it holds:

|{P ∈ SPji+1(xn) | Q ∈ Q(P)}| − 1 ≥
∑

[P]∼∈g−1(Q)(|[P]∼| − 1).
We can sum up the result of these considerations like this:

m ≥ |SPji+1(xn)| − ki+1. (??)

Let us now finish the proof of the claim:

We have already established the upper bound (?) for |Γσi+1|. Let p ∈ [m] be such that `p ≥ `t
for all t ∈ [m]. A consequence of (??) is: `p ≤ ki+1 + 1. It can be checked that the values
`1, ...`m that maximise the bound in (?) and satisfy (??) are such that `t = 1 for all t 6= p.
Therefore, (?) becomes:

|Γσi+1| ≤ `p! ≤ (ki+1 + 1)!

This concludes the proof of the claim. C
Hence, in order to finish the proof of the lemma, we have to bound

|Γs| ≤
s∏
i=1

(min{(ki + 1), f(n)})!

from above (recall that s is the number of steps needed to construct J satisfying property
(1)). We know that

∑s
i=1 ki is some fixed value ≤ n. The value of the above product and

the sum solely depends on the sequence (ki)i∈[s]. One can see by a “redistribute-weight
argument” that the value of the product is maximised for a sequence (ki)i∈[s], where every
ki is either 1 or ki = f(n)− 1 (and there may be exactly one ki with 1 < ki < f(n)− 1). For
such a sequence of kis, the value of the product is at most

|Γs| ≤
s∏
i=1

(min{(ki + 1), f(n)})! ≤ f(n)!n/(f(n)−1) · 2n J

8.2 Proof of Lemma 27
For the proof of Lemma 27, we make use of the following small observation.

I Lemma 32. Let B ⊆ {0, 1}n. The partition
d
B =

d
b∈B SP(b) is a supporting partition

for B.

B. Pago 33:19

Proof. By the definition of the intersection, every string b ∈ Bn is constant on every
part P ∈

d
B. Hence, Stab•n(

d
B) ⊆ Stabn(Bn). This is the definition of a supporting

partition. J

I Lemma 27. There exists a subset A ⊆ Bn of size |A| ≤ |Sn|
2 such that for each part

P ∈
d
A, one of the following two statements is true:

1. |P ∩ Sn| ≤ 2; or:
2. |P ∩ Sn| > 2 and for every b ∈ Bn \A, one of these two conditions holds:

b is constant on P ∩ Sn; or
b[P ∩ Sn] is imbalanced and, for every P ′ ∈

d
A with P ′ 6= P , |P ′ ∩ Sn| > 2, b is

constant on P ′ ∩ Sn.
By b[P ∩ Sn] we mean the substring of b at the positions in P ∩ Sn, and being imbalanced
means that b[P ∩ Sn] contains exactly one 0 and there is a 1 at all other positions, or vice
versa (exactly one 1 and the rest 0).

Proof. We construct A stepwise, starting with A0 := ∅, and adding one string ai ∈ Bn in
step i. For step i+ 1 of the construction, assume we have constructed Ai. For k ∈ [n], we
write Pi(k) for the part of

d
Ai =

d
a∈Ai SP(a) that k is in. Now we let

Ki := {k ∈ Sn | |Pi(k) ∩ Sn| > 2}.

This is the set of positions whose parts need to be refined more. If Ki = ∅, then the
construction is finished because all parts of

d
Ai satisfy condition 1 of the lemma. So assume

Ki 6= ∅. By Lemma 32,
d
Bn is a supporting partition for Bn and therefore at most as coarse

as SP(Bn). Hence, all positions in Sn are in singleton parts of
d
Bn.

We conclude that for all k ∈ Ki, there must be a string b ∈ Bn \Ai that can be added to Ai
in order to make Pi(k) ∩ Sn smaller when it is intersected with SP(b). In fact, there may be
several such strings b that we could choose to add in this step of the construction. So let

Ck := {b ∈ Bn \Ai | b is non-constant on Pi(k) ∩ Sn}

be the non-empty set of such candidate strings. We restrict our candidate set further:

Ĉk := {b ∈ Ck | there are two distinct parts P, P ′ ∈
l
Ai

s.t. b is non-constant on P ∩ Sn and P ′ ∩ Sn, and
|P ∩ Sn| > 2 and |P ′ ∩ Sn| > 2}

∪{b ∈ Ck | b[Pi(k) ∩ Sn] is not imbalanced}.

We pick our next string ai+1 that is added in this step of the construction from one of the
sets Ĉk, where k ranges over all positions in Ki. If Ĉk = ∅ for all these k, then Ai is already
the desired set A because it satisfies the conditions of the lemma.
Otherwise, we choose ai+1 arbitrarily from one of the Ĉk and set Ai+1 := Ai ∪ {ai+1}. Then
we proceed with the construction until Ki = ∅ or all Ĉk are empty. In both cases, the
constructed set is as required by the lemma.
It remains to show: |A| ≤ |Sn|

2 , i.e. that the construction process consists of at most |Sn|
2

steps. We do this by defining a potential function Φ that associates with any partition P of
[n] a natural number ≤ n that roughly says how many further refinement steps of P are at
most possible. Concretely:

Φ(P) :=
∑
P∈P

max{(|P ∩ Sn| − 2), 0}.

CSL 2021

33:20 Limitations of Choiceless Definability

If P contains as its only part the whole set [n], then Φ(P) = |Sn| − 2. Now observe that
a necessary condition for adding a new string ai+1 to A is the existence of a part P with
|P ∩ Sn| > 2 in the current partition P =

d
Ai. This is the case if and only if Φ(P) > 0.

Therefore, all that remains to show is:

Φ
(l

Ai
)
− Φ

(l
Ai+1

)
≥ 2 (?)

for all construction steps i. Consider step i + 1: We add ai+1 ∈ Ĉk (for some k ∈ Ki)
to Ain. It can be checked that the definition of Ĉk ensures that (?) holds for

d
Ai andd

Ai+1 =
d
Ai u ai+1: The new string ai+1 either splits two distinct parts, or, if it only

splits one part, it splits it into two parts of size at least two. J

8.3 Proof of Lemma 28
I Lemma 28. Let A ⊆ Bn be the subset that exists by Lemma 27, and let p : A −→ Bn be
an injective function. Let

Γp := {π ∈ Stabn(Bn) | p(a)π = a for all a ∈ A}.

Further, let

P>2 := {k ∈ Sn | |P (k) ∩ Sn| > 2, where P (k) ∈
l
A is the part that k is in}.

Then for any π, π′ ∈ Γp such that π−1|([n]\P>2) = π′−1|([n]\P>2), it also holds π−1|P>2 =
π′−1|P>2 .

Proof. For a contradiction, we assume that there exist π, π′ ∈ Γp such that π−1|([n]\P>2) =
π′−1|([n]\P>2), but π−1|P>2 6= π′−1|P>2 . Then there is x ∈ [n] such that π(x) ∈ P>2, and
π′(x) 6= π(x) (i.e. π(x) is the point where π−1 and π′−1 differ). Let y := π(x), y′ := π′(x).
Let P (y) ∈

d
A be the part that y is in, and let P̂ (y) := P (y)∩Sn. We know that y′ ∈ P (y),

too, because π, π′ ∈ Γp, so this follows from Lemma 25. As y ∈ P>2, in particular, y ∈ Sn.
Hence, also x, y′ ∈ Sn because π, π′ ∈ Stabn(Bn), and by Lemma 11, singleton parts must
be mapped to singleton parts. We conclude that we even have y′ ∈ P̂ (y).
Now, our goal is to show that the transposition τ := (y y′) is contained in Stabn(Bn). This
is a contradiction because in SP(Bn), y, y′ are both in singleton parts, but if τ ∈ Stabn(Bn),
then the coarsest supporting partition SP(Bn) can be coarsened to another supporting
partition by letting {y, y′} be one single part.
In order to show τ ∈ Stab(Bn), we only need to deal with those strings in Bn which are not
constant on the positions {y, y′}. More precisely, we have to show that every b ∈ Bn with
by 6= by′ has a “swapping partner” b′ ∈ Bn where b′y = by′ and vice versa, and b′i = bi for all
other i.
So take any b ∈ Bn such that w.l.o.g. by = 0, by′ = 1. Note that b /∈ A, as every string in
A is constant on P (y) (otherwise, P (y) would not be a single part in

d
A). Furthermore,

|P̂ (y)| > 2, since y ∈ P>2. Therefore, Lemma 27 implies that the substring b[P̂ (y)] is
imbalanced and b is constant on every P ′∩Sn, for all P ′ ∈

d
A with P ′ 6= P (y), |P ′∩Sn| > 2.

W.l.o.g. let the imbalance of b[P̂ (y)] be such that bi = 1 for every position i ∈ P̂ (y), i 6= y.
We claim that b′ := bπ

′◦π−1 is the desired swapping partner of b, i.e. bτ = b′ and vice versa.
Note that b′ ∈ Bn because π, π′ stabilise the set Bn.
To see that b′ = bτ , consider firstly bπ−1 ∈ Bn. Obviously, (bπ−1)x = 0. Hence, (bπ′◦π−1)y′ = 0.
Moreover, the substring bπ−1 [π−1(P̂ (y))] is imbalanced just like b[P̂ (y)], so (bπ−1)j = 1 for
all j ∈ π−1(P̂ (y)) \ {x}. As a consequence of Corollary 26, we have π−1(P̂ (y)) = π′−1(P̂ (y)),

B. Pago 33:21

so (π′ ◦ π−1)(P̂ (y)) = P̂ (y). Therefore, the substring bπ′◦π−1 [P̂ (y)] is also imbalanced and
has a 1 at each position except y′.
This shows that (bτ)[P̂ (y)] = b′[P̂ (y)]. It remains to show that bi = b′i for all i ∈ [n] \ P̂ (y).
We have (π′ ◦ π−1)(i) = i for i ∈ [n] \ P>2, because π−1|([n]\P>2) = π′−1|([n]\P>2), so bi = b′i
for i ∈ [n] \ P>2.
For i ∈ P>2 \ P̂ (y), let P̂ (i) be the part of

d
A that i is in, intersected with Sn. As already

said, we know from Lemma 27 that b is constant on P̂ (i). Analogously to what we argued
already for P̂ (y), we get that (π′ ◦ π−1)(P̂ (i)) = P̂ (i), so also for i ∈ P>2 \ P̂ (y), we have
bi = b′i.
In total, this shows that indeed, b′ = bτ , and since b′ ∈ Bn, we have τ ∈ Stabn(Bn). This is
a contradiction and finishes the proof of the lemma. J

CSL 2021

	Introduction
	Choiceless computation and the undefinability of preorders
	Previous work and the significance of undefinable preorders
	Analysing orbits of hereditarily finite objects over hypercubes
	Approximating permutation groups with supporting partitions
	The Super-Polynomial Orbit Theorem
	The case of sublinearly bounded supports
	The case of linearly-sized supports

	Concluding remarks and future research
	Appendix
	Proof of Lemma 18
	Proof of Lemma 27
	Proof of Lemma 28

