544 research outputs found

    Inferring Unusual Crowd Events From Mobile Phone Call Detail Records

    Full text link
    The pervasiveness and availability of mobile phone data offer the opportunity of discovering usable knowledge about crowd behaviors in urban environments. Cities can leverage such knowledge in order to provide better services (e.g., public transport planning, optimized resource allocation) and safer cities. Call Detail Record (CDR) data represents a practical data source to detect and monitor unusual events considering the high level of mobile phone penetration, compared with GPS equipped and open devices. In this paper, we provide a methodology that is able to detect unusual events from CDR data that typically has low accuracy in terms of space and time resolution. Moreover, we introduce a concept of unusual event that involves a large amount of people who expose an unusual mobility behavior. Our careful consideration of the issues that come from coarse-grained CDR data ultimately leads to a completely general framework that can detect unusual crowd events from CDR data effectively and efficiently. Through extensive experiments on real-world CDR data for a large city in Africa, we demonstrate that our method can detect unusual events with 16% higher recall and over 10 times higher precision, compared to state-of-the-art methods. We implement a visual analytics prototype system to help end users analyze detected unusual crowd events to best suit different application scenarios. To the best of our knowledge, this is the first work on the detection of unusual events from CDR data with considerations of its temporal and spatial sparseness and distinction between user unusual activities and daily routines.Comment: 18 pages, 6 figure

    Big Data for Social Sciences: Measuring patterns of human behavior through large-scale mobile phone data

    Full text link
    Through seven publications this dissertation shows how anonymized mobile phone data can contribute to the social good and provide insights into human behaviour on a large scale. The size of the datasets analysed ranges from 500 million to 300 billion phone records, covering millions of people. The key contributions are two-fold: 1. Big Data for Social Good: Through prediction algorithms the results show how mobile phone data can be useful to predict important socio-economic indicators, such as income, illiteracy and poverty in developing countries. Such knowledge can be used to identify where vulnerable groups in society are, reduce economic shocks and is a critical component for monitoring poverty rates over time. Further, the dissertation demonstrates how mobile phone data can be used to better understand human behaviour during large shocks in society, exemplified by an analysis of data from the terror attack in Norway and a natural disaster on the south-coast in Bangladesh. This work leads to an increased understanding of how information spreads, and how millions of people move around. The intention is to identify displaced people faster, cheaper and more accurately than existing survey-based methods. 2. Big Data for efficient marketing: Finally, the dissertation offers an insight into how anonymised mobile phone data can be used to map out large social networks, covering millions of people, to understand how products spread inside these networks. Results show that by including social patterns and machine learning techniques in a large-scale marketing experiment in Asia, the adoption rate is increased by 13 times compared to the approach used by experienced marketers. A data-driven and scientific approach to marketing, through more tailored campaigns, contributes to less irrelevant offers for the customers, and better cost efficiency for the companies.Comment: 166 pages, PHD thesi

    Routine pattern discovery and anomaly detection in individual travel behavior

    Full text link
    Discovering patterns and detecting anomalies in individual travel behavior is a crucial problem in both research and practice. In this paper, we address this problem by building a probabilistic framework to model individual spatiotemporal travel behavior data (e.g., trip records and trajectory data). We develop a two-dimensional latent Dirichlet allocation (LDA) model to characterize the generative mechanism of spatiotemporal trip records of each traveler. This model introduces two separate factor matrices for the spatial dimension and the temporal dimension, respectively, and use a two-dimensional core structure at the individual level to effectively model the joint interactions and complex dependencies. This model can efficiently summarize travel behavior patterns on both spatial and temporal dimensions from very sparse trip sequences in an unsupervised way. In this way, complex travel behavior can be modeled as a mixture of representative and interpretable spatiotemporal patterns. By applying the trained model on future/unseen spatiotemporal records of a traveler, we can detect her behavior anomalies by scoring those observations using perplexity. We demonstrate the effectiveness of the proposed modeling framework on a real-world license plate recognition (LPR) data set. The results confirm the advantage of statistical learning methods in modeling sparse individual travel behavior data. This type of pattern discovery and anomaly detection applications can provide useful insights for traffic monitoring, law enforcement, and individual travel behavior profiling

    Urban Anomaly Analytics: Description, Detection, and Prediction

    Get PDF
    Urban anomalies may result in loss of life or property if not handled properly. Automatically alerting anomalies in their early stage or even predicting anomalies before happening is of great value for populations. Recently, data-driven urban anomaly analysis frameworks have been forming, which utilize urban big data and machine learning algorithms to detect and predict urban anomalies automatically. In this survey, we make a comprehensive review of the state-of-the-art research on urban anomaly analytics. We first give an overview of four main types of urban anomalies, traffic anomaly, unexpected crowds, environment anomaly, and individual anomaly. Next, we summarize various types of urban datasets obtained from diverse devices, i.e., trajectory, trip records, CDRs, urban sensors, event records, environment data, social media and surveillance cameras. Subsequently, a comprehensive survey of issues on detecting and predicting techniques for urban anomalies is presented. Finally, research challenges and open problems as discussed.Peer reviewe
    • …
    corecore