10 research outputs found

    Path Coordination Planning and Control in Robotic Material Handling and Processing

    Get PDF
    This chapter presents a unified approach to coordination planning and control for robotic position and orientation trajectories in Cartesian space and its applications in robotic material handling and processing. The unified treatment of the end-effector positions and orientations is based on the robot pose ruled surface concept and used in trajectory interpolations. The focus of this chapter is on the determination and control of the instantaneous change laws of position and orientation, i.e., the generation and control of trajectories with good kinematics and dynamics performances along such trajectories. The coordination planning and control is implemented through controlling the motion laws of two end points of the orientation vector and calculating the coordinates of instantaneous corresponding points. The simulation and experiment in robotic surface profiling/finishing processes are presented to verify the feasibility of the proposed approach and demonstrate the capabilities of planning and control models. Keywords: Robot pose ruled surface, Unified approach, Trajectory planning and control, Off-line programming, Robotics polishin

    Direct off-line robot programming via a common CAD package

    Get PDF
    This paper focuses on intuitive and direct off-line robot programming from a CAD drawing running on a common 3-D CAD package. It explores the most suitable way to represent robot motion in a CAD drawing, how to automatically extract such motion data from the drawing, make the mapping of data from the virtual (CAD model) to the real environment and the process of automatic generation of robot paths/programs. In summary, this study aims to present a novel CAD-based robot programming system accessible to anyone with basic knowledge of CAD and robotics. Experiments on different manipulation tasks show the effectiveness and versatility of the proposed approach

    Introduction to an Efficient Process for Automatic Offline Pro-gram Generation for a Robotic Spot Welding Assembly Line.

    Get PDF
    One of the most important applications of industrial robots is spot welding which is used in high production applications mostly in automotive industries where mass production is required. The speed, precision, efficiency and the resulting cost reduction due to mass production are well accepted and well documented advantages of automation of spot welding process using robots. In order to meet the new challenges of increased global competition, manufacturers are forced to seek new technologies for improved production and cost reduction. Such cost cutting efforts can only be achieved by improving the offline programming method. Offline programming is one of the most crucial parts of modern automotive manufacturing process. In this Master’s thesis a process was developed for faster and efficient offline programming of industrial manipulators in spot welding application. The thesis work has been conducted in Visual Components Oy, Espoo, Finland. In traditional practice there are lots of manual steps involved in the robotic spot welding area. The whole process design of the robotic spot welding is not simple and includes CAD design of the part, shape and complexity of the parts which needs to be spot weld, design of the robot work cell, design and selection of spot weld gun, required production rate, offline programming tool, robot calibration, work cell calibration, work piece positioner design etc. In this report an approach to implement the offline programming of robot based on simulation software with the process knowledge of car-body in white was proposed and partially developed. Some common problems such as motion simulation, collision detection and calibration can be partly solved by this approach. The thesis consisted of a theoretical section to investigate the current state of art of offline programming tools and methods and a practical section to develop working prototype for demonstration. The implementation of the prototype used the application programmer’s interface (API) available with the simulation software. A prototype was developed to propose an efficient process for putting the whole spot welding process starting for CAD design, work cell setup, offline programming and calibration in a closed loop

    Development of a robot-based magnetic flux leakage inspection system

    Get PDF
    Surface cracking is one of the primary factors leading to failure of mechanical components. One of the most sensitive methods for surface or near surface crack detection is MFL inspection. Magnetic sensor based MFL inspection, MSI, has shown many advantageous over MPI and gives the opportunity for automated MFL inspection after its equivalent detectability to MPI is validated. A standard industrial robot is introduced and applied in this work as an automated solution for precise sensor guidance and a more accurate, flexible and efficient automatic MSI system is developed as an extension of the already existing automatic MFL inspection scheme at IZFP. Performance of the system is demonstrated by applying the system on different inspection situations of concern. The measurement results obtained validate the application of the system on the inspection.Oberflächenrisse sind eine der wichtigsten Faktoren, die zum Versagen von mechanischen Komponenten führen können. Eine der empfindlichsten Methoden für Überprüfung von Oberflächen auf Risse im Bereich der Werkstückoberfläche ist die magnetische Streuflussprüfung. Die auf dem Magnetsensor basierte magnetische Streuflussprüfung, MSI, hat viele Vorteile bei der praktischen Anwendung gegenüber MPI gezeigt und bietet die Möglichkeit zur automatisierten MFL mit dem Gegenwert der Validierung des MPI Verfahrens. In dieser Arbeit wird ein Standard-Industrieroboter vorgestellt, welcher für eine automatisierte Lösung zur Prüfungsdurchführung verwendet wird. So kann die präzise Sensorführung für ein genaues, flexibles und effizientes automatisches MSI-System gewährleistet werden. Das System dient auch als Erweiterung zu den bereits bestehenden automatischen MFL Prüfsystem besteht. Schließlich wird die Leistungsfähigkeit des Gesamtsystems durch die Anwendungen in unterschiedlichen Prüfsituationen demonstriert. Die erhaltenen Prüfergebnisse bestätigen die Anwendung des Systems als Grundlage für unterschiedliche Prüfaufgaben im mechanisierten Prüfbetrieb auch im Produktionsprozeß
    corecore