3,238 research outputs found

    Limits on Fundamental Limits to Computation

    Full text link
    An indispensable part of our lives, computing has also become essential to industries and governments. Steady improvements in computer hardware have been supported by periodic doubling of transistor densities in integrated circuits over the last fifty years. Such Moore scaling now requires increasingly heroic efforts, stimulating research in alternative hardware and stirring controversy. To help evaluate emerging technologies and enrich our understanding of integrated-circuit scaling, we review fundamental limits to computation: in manufacturing, energy, physical space, design and verification effort, and algorithms. To outline what is achievable in principle and in practice, we recall how some limits were circumvented, compare loose and tight limits. We also point out that engineering difficulties encountered by emerging technologies may indicate yet-unknown limits.Comment: 15 pages, 4 figures, 1 tabl

    Interconnect Scaling Implications for CAD

    Full text link

    An Electromigration and Thermal Model of Power Wires for a Priori High-Level Reliability Prediction

    Get PDF
    In this paper, a simple power-distribution electrothermal model including the interconnect self-heating is used together with a statistical model of average and rms currents of functional blocks and a high-level model of fanout distribution and interconnect wirelength. Following the 2001 SIA roadmap projections, we are able to predict a priori that the minimum width that satisfies the electromigration constraints does not scale like the minimum metal pitch in future technology nodes. As a consequence, the percentage of chip area covered by power lines is expected to increase at the expense of wiring resources unless proper countermeasures are taken. Some possible solutions are proposed in the paper

    DESIGN, MODELING, OPTIMIZATION, AND BENCHMARKING OF INTERCONNECTS AND SCALING TECHNOLOGIES AND THEIR CIRCUIT AND SYSTEM LEVEL IMPACT

    Get PDF
    This research focuses on the future of integrated circuit (IC) scaling technologies at the device and back end of line (BEOL) level. This work includes high level modeling of different technologies and quantifying potential performance gains on a circuit and system level. From the device side, this research looks at the scaling challenges and the future scaling drivers for conventional charge-based devices implemented at the 7nm technology node and beyond. It examines the system-level performance of stacking device logic in addition to tunneling field effect transistors (TFET) and their potential as beyond-CMOS devices. Finally, this research models and benchmarks BEOL scaling challenges and evaluates proposed technological advancements such as metal barrier scaling for copper interconnects and replacing local interconnects with ruthenium. Potential impact on performance, power, and area of these interconnect technologies is quantified for fully placed and routed circuits.Ph.D

    An Overview of MCC and Its Research

    Get PDF
    Viewgraphs on Microelectronics and Computer Technology Corporation (MCC) are presented. The MCC is a cooperative enterprise whose mission is to strengthen and sustain America's competitiveness in information technologies. Their objective is excellence in meeting broad industry needs through application-driven research, development, and timely deployment of innovative technology. Research programs include: software technology; VLSI/computer aided design; packaging/interconnect; electronic applications of high temperature superconductors; and advanced computing technology

    Choose-Your-Own Adventure: A Lightweight, High-Performance Approach To Defect And Variation Mitigation In Reconfigurable Logic

    Get PDF
    For field-programmable gate arrays (FPGAs), fine-grained pre-computed alternative configurations, combined with simple test-based selection, produce limited per-chip specialization to counter yield loss, increased delay, and increased energy costs that come from fabrication defects and variation. This lightweight approach achieves much of the benefit of knowledge-based full specialization while reducing to practical, palatable levels the computational, testing, and load-time costs that obstruct the application of the knowledge-based approach. In practice this may more than double the power-limited computational capabilities of dies fabricated with 22nm technologies. Contributions of this work: • Choose-Your-own-Adventure (CYA), a novel, lightweight, scalable methodology to achieve defect and variation mitigation • Implementation of CYA, including preparatory components (generation of diverse alternative paths) and FPGA load-time components • Detailed performance characterization of CYA – Comparison to conventional loading and dynamic frequency and voltage scaling (DFVS) – Limit studies to characterize the quality of the CYA implementation and identify potential areas for further optimizatio
    • …
    corecore