100,848 research outputs found

    FPGA Implementation of Spectral Subtraction for In-Car Speech Enhancement and Recognition

    Get PDF
    The use of speech recognition in noisy environments requires the use of speech enhancement algorithms in order to improve recognition performance. Deploying these enhancement techniques requires significant engineering to ensure algorithms are realisable in electronic hardware. This paper describes the design decisions and process to port the popular spectral subtraction algorithm to a Virtex-4 field-programmable gate array (FPGA) device. Resource analysis shows the final design uses only 13% of the total available FPGA resources. Waveforms and spectrograms presented support the validity of the proposed FPGA design

    Acoustic echo and noise canceller for personal hands-free video IP phone

    Get PDF
    This paper presents implementation and evaluation of a proposed acoustic echo and noise canceller (AENC) for videotelephony-enabled personal hands-free Internet protocol (IP) phones. This canceller has the following features: noise-robust performance, low processing delay, and low computational complexity. The AENC employs an adaptive digital filter (ADF) and noise reduction (NR) methods that can effectively eliminate undesired acoustic echo and background noise included in a microphone signal even in a noisy environment. The ADF method uses the step-size control approach according to the level of disturbance such as background noise; it can minimize the effect of disturbance in a noisy environment. The NR method estimates the noise level under an assumption that the noise amplitude spectrum is constant in a short period, which cannot be applied to the amplitude spectrum of speech. In addition, this paper presents the method for decreasing the computational complexity of the ADF process without increasing the processing delay to make the processing suitable for real-time implementation. The experimental results demonstrate that the proposed AENC suppresses echo and noise sufficiently in a noisy environment; thus, resulting in natural-sounding speech

    Fog Computing in Medical Internet-of-Things: Architecture, Implementation, and Applications

    Full text link
    In the era when the market segment of Internet of Things (IoT) tops the chart in various business reports, it is apparently envisioned that the field of medicine expects to gain a large benefit from the explosion of wearables and internet-connected sensors that surround us to acquire and communicate unprecedented data on symptoms, medication, food intake, and daily-life activities impacting one's health and wellness. However, IoT-driven healthcare would have to overcome many barriers, such as: 1) There is an increasing demand for data storage on cloud servers where the analysis of the medical big data becomes increasingly complex, 2) The data, when communicated, are vulnerable to security and privacy issues, 3) The communication of the continuously collected data is not only costly but also energy hungry, 4) Operating and maintaining the sensors directly from the cloud servers are non-trial tasks. This book chapter defined Fog Computing in the context of medical IoT. Conceptually, Fog Computing is a service-oriented intermediate layer in IoT, providing the interfaces between the sensors and cloud servers for facilitating connectivity, data transfer, and queryable local database. The centerpiece of Fog computing is a low-power, intelligent, wireless, embedded computing node that carries out signal conditioning and data analytics on raw data collected from wearables or other medical sensors and offers efficient means to serve telehealth interventions. We implemented and tested an fog computing system using the Intel Edison and Raspberry Pi that allows acquisition, computing, storage and communication of the various medical data such as pathological speech data of individuals with speech disorders, Phonocardiogram (PCG) signal for heart rate estimation, and Electrocardiogram (ECG)-based Q, R, S detection.Comment: 29 pages, 30 figures, 5 tables. Keywords: Big Data, Body Area Network, Body Sensor Network, Edge Computing, Fog Computing, Medical Cyberphysical Systems, Medical Internet-of-Things, Telecare, Tele-treatment, Wearable Devices, Chapter in Handbook of Large-Scale Distributed Computing in Smart Healthcare (2017), Springe

    Speech Recognition Technology: Improving Speed and Accuracy of Emergency Medical Services Documentation to Protect Patients

    Get PDF
    Because hospital errors, such as mistakes in documentation, cause one in six deaths each year in the United States, the accuracy of health records in the emergency medical services (EMS) must be improved. One possible solution is to incorporate speech recognition (SR) software into current tools used by EMS first responders. The purpose of this research was to determine if SR software could increase the efficiency and accuracy of EMS documentation to improve the safety of patients of EMS. An initial review of the literature on the performance of current SR software demonstrated that this software was not 99% accurate, and therefore, errors in the medical documentation produced by the software could harm patients. The literature review also identified weaknesses of SR software that could be overcome so that the software would be accurate enough for use in EMS settings. These weaknesses included the inability to differentiate between similar phrases and the inability to filter out background noise. To find a solution, an analysis of natural language processing algorithms showed that the bag-of-words post processing algorithm has the ability to differentiate between similar phrases. This algorithm is best suited for SR applications because it is simple yet effective compared to machine learning algorithms that required a large amount of training data. The findings suggested that if these weaknesses of current SR software are solved, then the software would potentially increase the efficiency and accuracy of EMS documentation. Further studies should integrate the bag-of-words post processing method into SR software and field test its accuracy in EMS settings
    corecore