8 research outputs found

    A protection scheme for multimedia packet streams in bursty packet loss networks based on small block low-density parity-check codes

    Get PDF
    This paper proposes an enhanced forward error correction (FEC) scheme based on small block low-density parity-check (LDPC) codes to protect real-time packetized multimedia streams in bursty channels. The use of LDPC codes is typically addressed for channels where losses are uniformly distributed (memoryless channels) and for large information blocks. This work suggests the use of this type of FEC codes at the application layer, in bursty channels (e.g., Internet protocol (IP)-based networks) and for real-time scenarios that require low transmission latency. To fulfil these constraints, the appropriate configuration parameters of an LDPC scheme have been determined using small blocks of information and adapting the FEC code to be capable of recovering packet losses in bursty environments. This purpose is achieved in two steps. The first step is performed by an algorithm that estimates the recovery capability of a given LDPC code in a burst packet loss network. The second step is the optimization of the code: an algorithm optimizes the parity matrix structure in terms of recovery capability against the specific behavior of the channel with memory. Experimental results have been obtained in a simulated transmission channel to show that the optimized LDPC matrices generate a more robust protection scheme against bursty packet losses for small information blocks

    Windowed Decoding of Protograph-based LDPC Convolutional Codes over Erasure Channels

    Full text link
    We consider a windowed decoding scheme for LDPC convolutional codes that is based on the belief-propagation (BP) algorithm. We discuss the advantages of this decoding scheme and identify certain characteristics of LDPC convolutional code ensembles that exhibit good performance with the windowed decoder. We will consider the performance of these ensembles and codes over erasure channels with and without memory. We show that the structure of LDPC convolutional code ensembles is suitable to obtain performance close to the theoretical limits over the memoryless erasure channel, both for the BP decoder and windowed decoding. However, the same structure imposes limitations on the performance over erasure channels with memory.Comment: 18 pages, 9 figures, accepted for publication in the IEEE Transactions on Information Theor

    Correcci贸n de borrado en r谩faga utilizando c贸digos LDPC construidos sobre matrices generadas por grupos combinados, pol铆gonos anidados y matrices circulantes superpuestas

    Get PDF
    En este art铆culo son propuestos procedimientos para la construcci贸n de matrices base embazado en el 谩lgebra moderna y en la geometr铆a. Estas matrices sirven de plataforma para generar las matrices de verificaci贸n de paridad en la correcci贸n de borrado en r谩faga a trav茅s de c贸digos LDPC, por medio de superposici贸n en las matrices base y movimientos de las matrices circulantes. La construcci贸n de las matrices es realizada por concatenaci贸n, siendo de f谩cil implementaci贸n y de menor aleatoriedad. Para demonstrar el potencial de la t茅cnica, fue elaborado un conjunto de simulaciones que utiliza codificaci贸n de baja complejidad, bien como algoritmo soma y producto. Fueron generados varios c贸digos LDPC (matrices) y los resultados obtenidos comparados con otros abordajes. Son tambi茅n presentados los resultados de la simulaci贸n de la recuperaci贸n de borrados resultantes de la transmisi贸n de una imagen a trav茅s de un canal ruidoso.This article proposes procedures for the construction of base matrices grounded in algebra and geometry. These base matrices serve as a platform to generate the parity check matrices for debugging in bursts erasure through LDPC codes by superposing the base matrices and movements of circulant matrices. The construction of the matrices is performed by concatenation as it is easy to implement and has a lower randomness. To demonstrate the potential of the technique, we developed a number of simulations using low complexity encoding as well as the sum-product algorithm. Several LDPC codes (matrices) were generated and the results were compared with other approaches. We also present the outcomes of erasure recovery simulations that result from the transmission of an image through a noisy channel

    Error-correction coding in the MagiCtwin Diode

    Get PDF

    Optimization of protection techniques based on FEC codes for the transmission of multimedia packetized streams

    Get PDF
    Esta tesis presenta dos modelos novedosos de arquitecturas basadas en esquemas FEC con el fin de proteger flujos de paquetes con contenido multimedial, para comunicaciones en tiempo real y en canales donde las p茅rdidas se producen en r谩fagas. El objetivo de estos dise帽os ha sido maximizar la eficiencia de los c贸digos FEC considerados. Por un lado, el primer modelo busca alcanzar un menor coste computacional para los c贸digos de Reed- Solomon, ya que su conocida capacidad de recuperaci贸n para todo tipo de canales necesita un coste computacional elevado. Por otro lado, en el caso de los c贸digos LDPC, se ha perseguido aumentar la capacidad de recuperaci贸n de estos c贸digos operando en canales con errores en r谩fagas, teniendo en cuenta que los c贸digos LDPC no est谩n directamente dise帽ados para este tipo de entorno. El modelo aplicado a los c贸digos de Reed-Solomon se denomina inter-packet symbol approach. Este esquema consiste en una estructura alternativa que asocia los bits de los s铆mbolos del c贸digo en distintos paquetes. Esta caracter铆stica permite aprovechar de forma mejor la capacidad de recuperaci贸n de los c贸digos de Reed-Solomon frente a p茅rdidas de paquetes en r谩fagas. Las prestaciones de este esquema han sido estudiadas en t茅rminos de tiempo de codificaci贸n/decodificaci贸n versus capacidad de recuperaci贸n y han sido comparados con otros esquemas propuestos en literatura. El an谩lisis te贸rico ha demostrado que el enfoque propuesto permite la utilizaci贸n de Campos de Galois de menor dimensi贸n con respecto a otras soluciones. Esto se traduce en una disminuci贸n del tiempo de codificaci贸n/decodificaci贸n requerido, mientras que mantiene una capacidad de recuperaci贸n comparable. Aunque la utilizaci贸n de los c贸digos LDPC est谩 t铆picamente orientada hac铆a canales con errores uniformemente distribuidos (canales sin memoria) y para bloques de informaci贸n largos, esta tesis surgiere el uso de este tipo de c贸digos FEC a nivel de aplicaci贸n, para canales con p茅rdidas en r谩fagas y para entornos de comunicaci贸n de tiempo real, es decir, con una latencia de transmisi贸n muy baja. Para satisfacer estas limitaciones, la configuraci贸n apropiada de los par谩metros de un c贸digo LDPC ha sido determinada usando bloques de informaci贸n peque帽os y adaptando el c贸digo FEC de modo que sea capaz de recuperar paquetes perdidos en canales con errores en r谩fagas. Para ello, primeramente se ha dise帽ado un algoritmo que realiza una estimaci贸n de las capacidades de recuperaci贸n del c贸digo LDPC para un canal con p茅rdidas en r谩fagas. Una vez caracterizado el c贸digo, se ha dise帽ado un segundo algoritmo que optimiza la estructura del c贸digo en t茅rminos de capacidad de recuperaci贸n para las caracter铆sticas especificas del canal con memoria, generado una versi贸n modificada del c贸digo LDPC, adaptada al canal con perdidas en r谩fagas. Finalmente, los dos esquemas FEC propuestos, han sido evaluado experimentalmente en entornos de simulaci贸n usando canales con errores en r谩fagas y se han comparado con otras soluciones y esquemas ya existentes. ABSTRACT This thesis presents two enhanced FEC-based schemes to protect real-time packetized multimedia streams in bursty channels. The objective of these novel architectures has been the optimization of existing FEC codes, that is, Reed-Solomon codes and LDPC codes. On the one hand, the optimization is focused on the achievement of a lower computational cost for Reed-Solomon codes, since their well known robust recovery capability against any type of losses needs a high complexity. On the other hand, in the case of LDPC codes, the optimization is addressed to increase the recovery capabilities for a bursty channel, since they are not specifically designed for the scenario considered in this thesis. The scheme based on Reed-Solomon codes is called inter-packet symbol approach, and it consists in an alternative bit structure that allocates each symbol of a Reed- Solomon code in several media packets. This characteristic permits to exploit better the recovery capability of Reed-Solomon codes against bursty packet losses. The performance of this scheme has been studied in terms of encoding/decoding time versus recovery capability, and compared with other proposed schemes in the literature. The theoretical analysis has shown that the proposed approach allows the use of a lower size of the Galois Fields compared to other solutions. This lower size results in a decrease of the required encoding/decoding time while keeping a comparable recovery capability. Although the use of LDPC codes is typically addressed for channels where losses are uniformly distributed (memoryless channels) and for large information blocks, this thesis suggests the use of this type of FEC codes at the application layer, in bursty channels and for real-time scenario, where low transmission latency is requested. To fulfill these constraints, the appropriate configuration parameters of an LDPC scheme have been determined using small blocks of information and adapting the FEC code to be capable of recovering packet losses in bursty environments. This purpose is achieved in two steps. The first step is performed by an algorithm that estimates the recovery capability if a given LDPC code in a burst packet loss network. The second step is the optimization of the code: an algorithm optimizes the code structure in terms of recovery capability against the specific behavior of the channel with memory, generating a burst oriented version of the considered LDPC code. Finally, for both proposed FEC schemes, experimental results have been carried out in a simulated transmission channel to assess the performances of the schemes and compared to several other schemes

    Burst erasure correcting LDPC codes

    No full text
    In this paper low-density parity-check (LDPC) codes are designed for burst erasure channels. Firstly, lower bounds for the maximum length erasure burst that can always be corrected with message-passing decoding are derived as a function of the parity-check matrix properties. We then show how parity-check matrices for burst erasure correcting LDPC codes can be constructed using superposition, where the burst erasure correcting performance of the resulting codes is derived as a property of the stopping set size of the base matrices and the choice of permutation matrices for the superposition. This result is then used to design both single burst erasure correcting LDPC codes which are also resilient to the presence of random erasures in the received bits and LDPC codes which can correct multiple erasure bursts in the same codeword

    Signal optimization for Galileo evolution

    Get PDF
    Global Navigation Satellite System (GNSS) are present in our daily lives. Moreover, new users areemerging with further operation needs involving a constant evolution of the current navigationsystems. In the current framework of Galileo (GNSS European system) and especially within theGalileo E1 Open Service (OS), adding a new acquisition aiding signal could contribute to providehigher resilience at the acquisition phase, as well as to reduce the time to first fix (TTFF).Designing a new GNSS signal is always a trade-off between several performance figures of merit.The most relevant are the position accuracy, the sensitivity and the TTFF. However, if oneconsiders that the signal acquisition phase is the goal to design, the sensitivity and the TTFF havea higher relevance. Considering that, in this thesis it is presented the joint design of a GNSS signaland the message structure to propose a new Galileo 2nd generation signal, which provides ahigher sensitivity in the receiver and reduce the TTFF. Several aspects have been addressed inorder to design a new signal component. Firstly, the spreading modulation definition must considerthe radio frequency compatibility in order to cause acceptable level of interference inside the band.Moreover, the spreading modulation should provide good correlation properties and goodresistance against the multipath in order to enhance the receiver sensitivity and to reduce theTTFF. Secondly, the choice of the new PRN code is also crucial in order to ease the acquisitionphase. A simple model criterion based on a weighted cost function is used to evaluate the PRNcodes performance. This weighted cost function takes into account different figures of merit suchas the autocorrelation, the cross-correlation and the power spectral density. Thirdly, the design ofthe channel coding scheme is always connected with the structure of the message. A joint designbetween the message structure and the channel coding scheme can provide both, reducing theTTFF and an enhancement of the resilience of the decoded data. In this this, a new method to codesign the message structure and the channel coding scheme for the new G2G signal isproposed. This method provides the guideline to design a message structure whose the channelcoding scheme is characterized by the full diversity, the Maximum Distance Separable (MDS) andthe rate compatible properties. The channel coding is essential in order to enhance the datademodulation performance, especially in harsh environments. However, this process can be verysensitive to the correct computation of the decoder input. Significant improvements were obtainedby considering soft inputs channel decoders, through the Log Likelihood Ratio LLRs computation.However, the complete knowledge of the channel state information (CSI) was usually considered,which it is infrequently in real scenarios. In this thesis, we provide new methods to compute LLRlinear approximations, under the jamming and the block fading channels, considering somestatistical CSI. Finally, to transmit a new signal in the same carrier frequency and using the sameHigh Power Amplifier (HPA) generates constraints in the multiplexing design, since a constant orquasi constant envelope is needed in order to decrease the non-linear distortions. Moreover, themultiplexing design should provide high power efficiency to not waste the transmitted satellitepower. Considering the precedent, in this thesis, we evaluate different multiplexing methods,which search to integrate a new binary signal in the Galileo E1 band while enhancing thetransmitted power efficiency. Besides that, even if the work is focused on the Galileo E1, many ofthe concepts and methodologies can be easily extended to any GNSS signa
    corecore