
 Eindhoven University of Technology

BACHELOR

Error-correction coding in the MagiCtwin Diode

Lamers, Isa

Award date:
2022

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/10544929-bc75-4f82-a583-711277ebca6f

Eindhoven University of Technology
Department of Mathematics and Computer Science

Error-correction coding in the
MagiCtwin Diode

Bachelor final project Applied Mathematics

Isa Lamers

Supervisors:
Benne de Weger - Eindhoven University of Technology

Altan Kiliç - Eindhoven University of Technology
Alex Pellegrini - Eindhoven University of Technology

Berry Busser - Compumatica Secure Networks
Ries van Son - Compumatica Secure Networks

Thursday 29th December, 2022

CONTENTS

Contents

1 Introduction 2

2 Preliminaries 3

3 Information theory 6
3.1 Information source . 7
3.2 Communication channel . 7

4 Coding theory 9
4.1 Error-correcting coding . 9

4.1.1 Encoding . 11
4.1.2 Decoding . 12

4.2 Interleaving . 13

5 Compumatica 15
5.1 Information theory in the MagiCtwin Diode . 16
5.2 Coding theory in the MagiCtwin Diode . 17

5.2.1 Why a CRS code? . 17
5.2.2 Implementation of the CRS code . 18
5.2.3 Properties of the CRS code . 22

6 Improving Compumatica’s code 24
6.1 Improving the CM256 library . 24
6.2 Comparing different settings . 25
6.3 Alternative suitable codes . 26

7 Discussion and future research 27

8 Recommendation 29

References 30

A Generator polynomials for F256 33

B Exp and log tables for F256 34

C Matrix A for CM256 36

D Example usage of CM256 library in C++ 40

E Example of MagiCtwin FTP server interface 43

Eindhoven University of Technology, Department of Mathematics and Computer Science 1

CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

This thesis is the final submission for the bachelor’s program Applied Mathematics at Eindhoven
University of Technology. It is supervised by Benne de Weger from research group Coding theory
& Cryptology at Eindhoven University of Technology. The assessment committee was formed by
Benne de Weger and Altan Kiliç. In addition, Alex Pellegrini has been of help in mathematical
support. This thesis focuses on coding theory and the implementation of coding theory in a Dutch
company called Compumatica. The project was overseen by Berry Busser, the direct supervisor at
Compumatica, and Ries van Son, Chief Technology Officer and Compumatica’s primary supervisor
of this thesis.

In this thesis, we will elaborate on how Compumatica currently implements error-correcting coding
in one of their products: the MagiCtwin Diode. The company had some questions as to how efficient
the implemented error-correcting code in the MagiCtwin Diode is, and whether there were any paths
towards improvement. We will therefore evaluate the efficiency of their implementation of error-
correcting coding, and discuss various ways to make the coding more efficient. We will conclude with
recommendations for improvements, possible substitutes and suggestions for further research.

In order to introduce error-correcting coding in the MagiCtwin Diode and make a meaningful as-
sessment of the code’s efficiency and its possible substitutes later in this thesis, we will kick off by
introducing information theory. Information theory formalizes communication in a scientific manner.
In this thesis we interpret communication as the transmission of information via a certain chan-
nel. After that, we will continue with a mathematical explanation of error-correcting coding, the
detection and restoration of erasures in particular. Also, we will briefly touch the topic of interleav-
ing. Subsequently, more details about Compumatica and the MagiCtwin Diode will be provided.
This is directly followed by a thorough explanation of Compumatica’s implementation of a Cauchy
Reed-Solomon error-correcting code. Thereafter, we will assess the code’s efficiency, suggest improve-
ments and propose possible substitutes for the Cauchy Reed-Solomon code. We will conclude with
a recommendation on how Compumatica can improve the efficiency of error-correcting coding in the
MagiCtwin Diode.

Note: This report assumes the reader has a mathematical background that is comparable to that
of a bachelor’s student Applied Mathematics. This includes a working knowledge of linear algebra,
algorithmic algebra and finite field arithmetic.

Eindhoven University of Technology, Department of Mathematics and Computer Science 2

CHAPTER 2. PRELIMINARIES

Chapter 2

Preliminaries

In this thesis we make use of finite fields of order pm, where p is prime and m ∈ N>0. Finite fields
are also called Galois Fields (Edwards, 1984). The mathematical notation for a finite field of order
pm is Fpm . A computer scientists might denote this same field by GF(pm) (Galois Field of order pm),
but in this thesis we will adopt the mathematical notation Fpm .
In this thesis, we will consider the case where p = 2 and m = 8, meaning we look at F28 = F256.

The finite field F256 is usually denoted by having a zero-element and elements that are powers of a
primitive element α in the following way.

F256 = {0, 1, α, α2, . . . , α254} (2.1)

However, in this thesis we denote the finite field F256 and its elements in another way: using an iso-
morphism between F256 and F8

2. For this, first consider integers 0, 1, . . . , 254, 255 and their respective
binary forms 00000000, 00000001, . . ., 11111110, 11111111. We can put the binary forms in a vector
(a7, a6, a5, a4, a3, a2, a1, a0), this vector is an element in F8

2. We define the following isomorphism to
formally represent mapping an element a ∈ F256 to a binary vector of length 8 in F8

2.

φ : F256
∼−→ F8

2, a 7→ (a7, a6, a5, a4, a3, a2, a1, a0) (2.2)

Additionally, we can express an element a ∈ F256 as a polynomial in the indeterminate x by using
a7, . . . , a0 as coefficients in the following way.

a = a7x
7 + a6x

6 + a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x+ a0 with ai ∈ F2 (2.3)

We have summarized the notations in Table 2.1.

Integer Binary form Binary vector φ(a) Polynomial

0 00000000 (0,0,0,0,0,0,0,0) 0

1 00000001 (0,0,0,0,0,0,0,1) 1

2 00000010 (0,0,0,0,0,0,1,0) x
...

...
...

...

254 11111110 (1,1,1,1,1,1,1,0) x7 +x6 +x5 +x4 +x3 +x2 +x

255 11111111 (1,1,1,1,1,1,1,1) x7 +x6 +x5 +x4 +x3 +x2 +x +1

Table 2.1: Notation of the finite field F256.

The finite field F256 has 16 primitive, irreducible (generator) polynomials (Planteen, 2019) which we
denote by F1, F2, . . . , F16. The primitive, irreducible (generator) polynomial of F256 that is used in

Eindhoven University of Technology, Department of Mathematics and Computer Science 3

CHAPTER 2. PRELIMINARIES

this thesis is F4(x) = x8 + x6 + x3 + x2 + 1, meaning that the binary vectors contain the coefficients
of the polynomials in the ring F256 = F2[x]/(x8+x6+x3+x2+1). The other 15 primitive, irreducible
polynomials are included in Appendix A.

We will now briefly show how finite field arithmetic in F256 is done when using the notation introduced
above. Let a, b ∈ F256 and consider their binary vector forms φ(a), φ(b) ∈ F8

2.
Adding a + b and subtracting a − b are done in the same way: by a bitwise exclusive OR-operation
(XOR-operation) on the binary vector forms φ(a) and φ(b). The results of an XOR-operation are
included in Table 2.2.

ai bi XOR(ai, bi))

0 0 0

0 1 1

1 0 1

1 1 0

Table 2.2: Results of the XOR-operator on elements ai, bi ∈ F2 .

In order to explain multiplication and division, we introduce exp and log tables. For these tables we
need generator polynomial F4(x) = x8 + x6 + x3 + x2 + 1.
We create an exp table by putting i = 0, . . . , 254 in the first column and value exp(i) in the second
column, here exp(i) is a value between 0 and 255. For i = 0, we use the convention that exp(0) = 1.
The other values exp(i) are constructed from exp(i − 1) as follows. We consider the binary vector
representation of exp(i − 1) and shift all digits one position to the left. This corresponds to multi-
plying exp(i − 1) with 2. If exp(i − 1) ≤ 127, the next value exp(i) will still have a binary vector
representation of length 8, and exp(i) is the integer value corresponding to that binary vector repre-
sentation. However, if exp(i−1) ≥ 128, the next value exp(i) will have a binary vector representation
of length 9 or greater. This means the binary vector representation is not an element of F8

2, so the
integer value is not between 0 and 255. In this case we use generator polynomial F4(x) by applying a
XOR-operation on the binary vector representation of exp(i) and on (1, 0, 1, 0, 0, 1, 1, 0, 1); the binary
vector representation of F4(x). We translate the result of this XOR-operation back to an integer
value, which is now between 0 and 255. A short representation of the exp table for F256 based on
generator polynomial F4(x) is included below in Table 2.3a. The full exp table can be found in
Appendix B.
The log table is created from the exp table. We use the values exp(i) from the exp table and put
them in the first column of the log table. We put their corresponding values i in the second column,
and then sort the rows in the table such that the values in the first column are increasing. In other
words, in the log table we have j = exp(i) and log(j) = log(exp(i)) = i. A short representation of
the log table for F256 based on generator polynomial F4(x) is included below in Table 2.3b. The full
log table can be found in Appendix B.

i exp(i)

0 1

1 2

2 4

3 8
...

...

253 83

254 166

255 *

(a) exp table

j log(j)

0 *

1 0

2 1

3 23
...

...

253 133

254 200

255 161

(b) log table

Table 2.3: exp and log tables for F256 with generator polynomial F4(x) = x8 + x6 + x3 + x2 + 1.

Eindhoven University of Technology, Department of Mathematics and Computer Science 4

CHAPTER 2. PRELIMINARIES

Note that in the exp table, there is no value for exp(i) when i = 255, since exp(255) = 1, which is
already the value for i = 0. We denote this by exp(i) = ∗ for i = 255. Similarly, there is no value i
such that exp(i) = 0, which we denote by ∗ in the first row of the log table.

Using the exp and log tables, we will now explain how multiplication and division are done in F256.
Let v and w denote the integer values of two elements a and b in F256 (first column in Table 2.1). For
multiplication v ·w, we first add (according to ‘normal’ arithmetic) values log(v) and log(w) which we
can find in the log table and reduce them modulo 255. We then find the exp value for that reduced
result in the exp table.
For division v

w we first subtract (according to ‘normal’ arithmetic) values log(v) and log(w), which we
can find in the log table, then reduce them modulo 255. We then find the exp value for the reduced
result in the exp table.

A summary of addition and subtraction of finite field elements a and b, and multiplication and division
of their integer forms v and w is shown below.

Addition: a+ b = XOR(φ(a), φ(b))

Subtraction: a− b = XOR(φ(a), φ(b))

Multiplication: v · w = exp(log(v) + log(w) (mod 255))

Division: v
w = exp(log(v)− log(w) (mod 255))

Eindhoven University of Technology, Department of Mathematics and Computer Science 5

CHAPTER 3. INFORMATION THEORY

Chapter 3

Information theory

In the 1940s, Claude Shannon published a seminal paper on the mathematical theory of communica-
tion (Shannon, 1948). He was the first to mathematically formalize communication theory. Nowadays,
we refer to Shannon’s theory of communication as information theory.
Information theory is a multidimensional topic in mathematics which has evolved from more than just
Shannon’s communication theory. For example, set theory, measure theory and probability theory
also play a crucial role in today’s information theory (Alencar, 2014). This combination of mathe-
matical fields makes it an interesting, yet complicated specialty.
Countless applications of information theory exist, among which intelligence uses (Kahn, 1996), cryp-
tography (Lagarias, 1993), cognitive neuroscience (Maurer, 2021) and coding theory (Clark & Cain,
1981). Coding theory is a mathematical field that provides ways to restore messages that have suf-
fered errors during transmission from sender to receiver. In order to focus on coding theory, we will
first treat relevant aspects of communication theory.

Let us start with a visual explanation of what we mean by communication by walking through a
graphical representation of a communication system. In Figure 3.1, we show a schematic diagram of
a general communication system, inspired by the schemes presented in Shannon’s paper (Shannon,
1948) and Yates’s tutorial on coding theory (Yates, 2009).

Figure 3.1: Schematic diagram of a communication system.

The communication process is initiated when the information source produces a message intended

Eindhoven University of Technology, Department of Mathematics and Computer Science 6

CHAPTER 3. INFORMATION THEORY

for the receiver. The message then goes to the transmitter, which generally consists of three
components. First, the source encoder compresses the data. Then the channel encoder improves
the success of transmission of the source-encoded data through the channel by adding redundant
data with an error-correcting code. The message and the redundant data together are called a
codeword. Thirdly, the modulator converts the codeword into an output signal suitable for the
communication channel. Examples of conversions that happen in the modulator are changing sound
waves or text messages into electrical signals or light signals. Subsequently, the signal is sent over
the communication channel. This channel is a medium, for example a pair of wires or a cable.
This communication channel might be subject to noise coming from an external noise source, or noise
generated by imperfections of the channel.
At the end of the (noisy) communication channel, the signal arrives at the receiver. This received
signal might be different from the original signal because errors may have occurred. The receiver
consists of the three similar components as the transmitter, but they are applied in the reverse order.
First, the demodulator converts the received signal back to a codeword, the channel decoder
detects errors and decodes the codeword back to a message using the same error-correcting code. It
is possible that too many errors have occurred (see Proposition 1, in that case the message is not
decoded but some error message is returned instead. The source decoder then decompresses the
message. Finally, the receiver sends the original message to the destination.

Let us now take a more detailed look at the information source and the communication channel from
a mathematical viewpoint.

3.1 Information source

The information source produces a message. This message contains certain content intended for the
receiver. This content can be expressed and classified in different ways. We can distinguish discrete
and continuous messages. The term ‘discrete’ refers to a system in which the message is a sequence
of discrete symbols, for example letters, numbers, dots, dashes or spaces (Shannon, 1948). The set of
discrete symbols of which a message is composed is called the input alphabet X . In contrast, there
exist continuous systems where the message is represented by a continuous function. Examples of
this are classical, non-digital forms of communication such as radio and television (Shannon, 1948).
In this thesis, we will focus on discrete information sources.

From now on we view the input alphabet X as a vector space and denote a message m of k symbols
by a row-vector of length k over vector space X , so m = (m0, . . . ,mk−1), with mi ∈ X .

3.2 Communication channel

According to Shannon, a communication channel can be fully expressed by a collection of probabili-
ties. We give the following definition of a communication channel, based on Ravagnani’s lecture notes
on coding theory (Ravagnani, 2022).

Definition 3.2.1. (Communication channel). The triple K = (X ,Y,P) (uniquely) describes a
communication channel. Here X is a finite non-empty set called the input alphabet, and Y is
a finite non-empty set called the output alphabet. P : Y × X → R is a function satisfying the
following two properties:

1. Let x ∈ X and y ∈ Y. Then 0 ≤ P(y | x) ≤ 1 meaning that the probability that y is received
when x was sent lies between 0 and 1.

2. Let x ∈ X . Then
∑

y∈Y P(y | x) = 1, meaning that if we send input symbol x, the symbol we
receive must be in Y.

The communication channel may have imperfections, be subject to noise from an external source, and
be vulnerable to attacks from the outside. The consequence is that the message that the destination
receives may not be the exact one that the information source sent; errors may have occurred. We
distinguish two different types of errors that can occur to data when transmitted over a communication
channel. The first type of error is when a symbol turns into another symbol: symbol alterations. The

Eindhoven University of Technology, Department of Mathematics and Computer Science 7

CHAPTER 3. INFORMATION THEORY

second type of error is when a symbol is not altered but gets lost completely: called a symbol erasure.
In particular situations, depending on what redundant data is sent along with the message by the
error-correcting code, the receiver can determine the position where a symbol was erased. This is not
guaranteed by all error-correcting codes. This thesis will assume knowing the position of an erased
symbol. We will elaborate on this in Section 4.1.2.
The probabilities in Definition 3.2.1 describe how likely it is for a symbol x from the input alphabet X
to turn into another symbol y from the output alphabet Y when transmitted over the communication
channel K = (X ,Y,P). In other words, this describes symbol alterations. The probabilities in the
second property of Definition 3.2.1 sum to 1, therefore the communication channel that is defined
only allows for symbol alterations, not for symbol erasures. This can be solved by adding an extra
symbol that represents an erased symbol, for example ‘?’, to the output alphabet Y. This is done in
this thesis as well.

A communication channel has several interesting features. One feature of interest is the quality of the
communication channel. Literature often quantifies quality by looking at the signal-to-noise ratio,
which we want to be as large as possible (Price & Goble, 1993). This ratio takes into account the
power of a signal and the power of noise. Noise is defined as anything that interferes with commu-
nication over a channel. For the mathematical purposes of considering a communication channel,
power is not an interesting quantity. What we will consider instead, is the ratio between the amount
of data that is transmitted over the channel and the amount of data that is affected by noise, i.e.
that suffer symbol alterations or erasures.

Definition 3.2.2. (Signal-to-noise ratio.) Let n be the number of symbols in the data that is sent
over the communication channel. Let t be the number of symbols that have suffered errors (erasures
or alterations) after transmission over the channel. Then the signal-to-noise ratio SNR is defined as
follows:

SNR =
n

t

In practice, source and destination often agree on a certain restriction on the set of admissible
messages. In other words, the messages are composed from some admissible alphabet (Ravagnani,
2022). If the received message is not a message from the admissible alphabet, the receiver immediately
knows something has gone wrong in the communication process. However, it may be that the received
message does not exactly match the sent message, but is still a message that could have been admitted,
i.e. is an element of the admissible alphabet. How can the receiver know now that the received message
is incorrect?
One possibility is that the information source and the destination agree on some protocol to check
whether their messages are the same. Such protocols require communication back and forth between
source and destination. However, in some cases it is not possible or undesired for the destination
to contact the information source due to security reasons. An example is when only one way of
communication is enabled. This is the case in the MagiCtwin Diode. In situations like these, coding
theory provides a way to detect and correct errors, without requiring back-and-forth communication
between sender and receiver.

Eindhoven University of Technology, Department of Mathematics and Computer Science 8

CHAPTER 4. CODING THEORY

Chapter 4

Coding theory

When a communication channel is subject to noise from the outside or has imperfections in its design
or hardware, errors can occur. For each codeword, the noise and imperfections cause a chance that
during transmission over a channel, some symbols are altered or lost, resulting in errors in the received
codeword (Clark & Cain, 1981). Depending on the use of the communication channel, and depending
on the type of data sent over the channel, errors can raise a negligible or a far-reaching problem.
Either way, errors are unwanted.
Making the communication channel perfect is an unfeasible task (Alzubi, Alzubi, & Chen, 2014), and
improving it to minimize the impact of imperfections is costly (Mackay, 1995). Therefore we look for
a solution that accepts the noisy, imperfect channel. This solution is error-correction coding. Error-
correcting codes enforce reliable communication over an imperfect, noisy communication channel
(Mackay, 1995).

4.1 Error-correcting coding

Error-correcting codes add redundant data to the message produced by the information source. This
step happens in the channel encoder within the transmitter. This redundancy is used by the channel
decoder to infer what the original message was. From here on we will focus on the channel encoder
and channel decoder components from Figure 3.1. The redundant data both enables detection and
correction of erroneous symbols.

Let us first establish that throughout this thesis, when mentioning (error-correcting) codes, we mean
linear error-correcting codes. Linear codes have the property that any linear combination of code-
words is also a codeword (Yates, 2009). Further details on linear codes are not relevant for the
purpose of this thesis.
Let’s take a look at the following definition of a linear error-correcting code, which is a combined
version of definitions from Ravagnani’s lecture notes (Ravagnani, 2022) and Bocklandt’s lecture notes
(Bocklandt, n.d.).

Definition 4.1.1. (Linear error-correcting code). Suppose we have a communication channel
K = (X ,Y,P). Let q = pm for p prime and m ∈ N. Let n, k ∈ N. A linear error-correcting code
C ⊆ X over the finite field Fq is a k−dimensional subspace of Fn

q . The code C contains qk distinct
elements, which are called codewords. We say such a code C has length n and is an (n, k) linear code.

We will now give two important definitions that we need later in the thesis. They regard the distance
between two codewords (van Lint, 1991) and the minimum distance of a code (van Lint, 1991).

Definition 4.1.2. (Distance). Let X be a finite non-empty set. Let x, y ∈ Xn be two elements of
the vector space Xn. The (Hamming) distance d(x, y) between x and y is defined as follows.

d(x, y) = |{i | 1 ≤ i ≤ n, xi ̸= yi}|

Eindhoven University of Technology, Department of Mathematics and Computer Science 9

CHAPTER 4. CODING THEORY

Definition 4.1.3. (Minimum distance). Let C be a linear (n, k) code. Then the minimum distance
dmin of code C is the following.

dmin = min{d(x, y) | x ∈ C, y ∈ C, x ̸= y}

A linear code can be represented in two manners: by a generator matrix or by a generator polynomial
(Geisel, 2012). In this thesis we will adopt the matrix notation, because it is best suited for hard-
ware and software implementations of error-correcting codes (Geisel, 2012), which is what we focus
on in this thesis. Definition 4.1.4 and 4.1.5 characterize how a code is represented using matrices
(Ravagnani, 2022).

Definition 4.1.4. (Generator matrix). Suppose we have an (n, k) linear error-correcting code C.
A k× n matrix G with entries in Fq is a generator matrix of code C if it has full rank and if its rows
generate C over Fq. In other words, the rows of the generator matrix are a basis of C. We then say
that code C is generated by G.

Definition 4.1.5. (Standard generator matrix). Suppose we have an (n, k) linear error-correcting
code C that is represented by a generator matrix G. The reduced row-echolon form of G, denoted as
GRREF, is called the standard generator matrix of C.

The generator matrix G of a code C is not unique, as C can be represented by different generator
matrices G. This changes when considering the reduced row-echelon form of G: GRREF is unique for
a code C (Bocklandt, n.d.).

We distinguish different types of linear error-correcting codes. The first distinction we consider is
between block codes and convolutional codes. Block codes encode messages that have a fixed length k,
whereas convolutional codes can encode symbol streams of arbitrary lengths. This thesis focuses on
block codes. One particular category of linear block codes are Reed-Solomon error-correcting codes
(or RS codes for short) (Reed & Solomon, 1960). A formal definition can be found in paragraph 6.8
from (van Lint, 1991). We do not include it here because it is too cumbersome for the purposes of this
thesis. One thing that is relevant to mention is that the minimum distance dmin of Reed-Solomon
code C is dmin = n− k + 1.
Instead of giving the full definition, we will give an example of an RS code in Example 4.1.1.

Example 4.1.1. (Reed-Solomon code). Let m ∈ N, take p = 2 and consider the finite field
Fpm = F2m . Let C be an (n, k) Reed-Solomon code over F2m . Then one example of its generator
matrix is a k × n Vandermonde matrix (Moorhouse, 2008), as shown below.

G =



1 1 1 · · · 1

α0 α1 α2 · · · αn−1

α2
0 α2

1 α2
2 · · · α2

n−1

...
...

...
. . .

...

αk−1
0 αk−1

1 αk−1
2 · · · αk−1

n−1

 where αi ∈ F2m

Reducing G to its Row-Reduced Echelon Form (RREF) we obtain the following k × n standard
generator matrix GRREF.

GRREF =



1 0 0 · · · 0 g0,k · · · g0,n−1

0 1 0 · · · 0 g1,k · · · g1,n−1

0 0 1 · · · 0 g2,k · · · g2,n−1

...
...

...
. . .

...
...

. . .
...

0 0 0 · · · 1 gk−1,k · · · gk−1,n−1

 where gi,j ∈ F2m

The error-correcting code that is implemented in the MagiCtwin Diode is a specialized form of a
Reed-Solomon code: a Cauchy Reed-Solomon code. Cauchy Reed-Solomon (CRS) codes have the

Eindhoven University of Technology, Department of Mathematics and Computer Science 10

CHAPTER 4. CODING THEORY

same parameters n and k (Plank, 2005). The differences between a CRS code and an RS code lie in
the format of data it encodes and in how the generator matrix is established, which will be explained
in the Section 4.1.1.

We will not focus on the encoding and decoding steps of CRS codes.

4.1.1 Encoding

Suppose we have an (n, k) Cauchy Reed-Solomon code with standard generator matrix GRREF. Let
m = (m0, . . . ,mk) be a message. When considering regular Reed-Solomon coding, each element mi ∈
would be one input digit. For Cauchy Reed-Solomon coding, we consider messages where each mi is
a block of b words of w binary digits (bits) (Blomer et al., 1999).

When we say we encode a message m with an (n, k) Cauchy Reed-Solomon code C that is represented
by a standard generator matrix GRREF, we mean that we assign to the message m a unique codeword
c. This is done by viewing the message m = (m0, . . . ,mk−1) as a row vector and multiplying it by
the k × n standard generator matrix GRREF of C. The result of this multiplication is a codeword
c = (c0, . . . , cn−1) (Bocklandt, n.d.). The codeword also consists of blocks ci that are composed of b
words of w bits each (Blomer et al., 1999). This encoding step is shown below.

c = m ·GRREF = (m0, . . . ,mk−1) ·



1 0 0 · · · 0 g0,k · · · g0,n−1

0 1 0 · · · 0 g1,k · · · g1,n−1

0 0 1 · · · 0 g2,k · · · g2,n−1

...
...

...
. . .

...
...

. . .
...

0 0 0 · · · 1 gk−1,k · · · gk−1,n−1

 = (c0, . . . , cn−1)

Here gj,i are elements of F2m . Note that because the first part of GRREF is the k× k identity matrix,
the first k blocks of c correspond to the original message blocks m0, . . . ,mk−1.
At this point, we make an important observation. The elements gj,i in the second part of matrix
GRREF are elements of F2m , while the elements in the message m are data blocks of b · w bits.
Multiplication of a message block with a field element is not straightforward. We will not explain
how such a multiplication is done, but refer to section 1B of (Hou & Han, 2016) for a description.

In the encoding step we recognize how the redundancy is added. The message m originally had length
k, and is mapped to a codeword c of length n. The n − k redundant blocks are added due to the
length of the code.
It is important to realize that for this encoding step, the standard matrix GRREF has to have the same
number of rows as the number of blocks in the message m. This is the reason why we consider block
coding. For block coding, an original message of length larger than k is divided up into multiple slices
of length k (and one last slice that has less than k elements in case the message length is not divisible
by k). Each block can be seen as a message m = (m0, . . . ,mk−1). Now the matrix multiplication can
be done for each of the slices, encoding the original message per k message blocks at once. Each of
the codewords is then sent over the communication channel (Yates, 2009).

We will now express some mathematical properties of an (n, k) code C. This lies a foundation for a
meaningful assessment of a code’s quality. Let us start with a measure of efficiency of error-correcting
codes, that compares the size of the original message m and the size of the generated codeword c
(Clark & Cain, 1981).

Definition 4.1.6. (Code rate). Consider an (n, k) linear code C. The code rate R of code C is

R =
k

n

The next definition that we will give is that of the Singleton bound (Xambó-Descamps, 2003).

Eindhoven University of Technology, Department of Mathematics and Computer Science 11

CHAPTER 4. CODING THEORY

Definition 4.1.7. (Singleton bound). For an (n, k) code C with minimum distance dmin, we have

k + dmin ≤ n+ 1

When the equality in the Singleton bound is satisfied, so when k+ dmin = n+ 1, we say that code C
is maximum distance separable.

Reed-Solomon codes have minimum distance dmin = n − k + 1 (Ravagnani, 2022), as do Cauchy
Reed-Solomon codes (Blomer et al., 1999). In other words, CRS codes satisfy the equality of the
Singleton bound. Thus, CRS codes are maximum distance separable. This is particularly interesting
for the implementation of CRS codes for the MagiCtwin Diode. We will give more details on this in
Section 5.2.1.

4.1.2 Decoding

When the received codeword arrives at the receiver, either block alterations or block erasures may
have taken place. The original message now needs to be restored. The error-correcting code is applied
again, this time in the channel decoder within the receiver.

There is not one general technique for decoding. There are different approaches for decoding received
codewords containing alterations and for codewords containing erasures (Rao, 2019). We will focus
on decoding erasures. In Section 5.2.2 it will become clear why we treat erasures only.

Suppose a codeword c = (c0, . . . , cn−1) was originally sent, but a codeword c′ = (c′0, . . . , c
′
n−1), with

c′i ∈ {c0, . . . , cn−1, ?} was received. Decoding can only be done if “enough” blocks are still intact. We
will give an upper bound on the number of blocks that may have been altered or erased (Clark &
Cain, 1981).

Proposition 1. (Error-correction capability). Let C be an (n, k) linear code with minimum
distance dmin. Its error-correction capability t, the number of block alterations the code can correct,
is bounded from above by the following upper bound:

t ≤
⌊
dmin − 1

2

⌋
The number of block erasures that an error-correcting code can correct, the erasure-correcting capa-
bility, is 2t (Riley & Richardson, 2001).

A proof of error-correction capability t from Proposition 1 can be found in (Clark & Cain, 1981).
Note that since the number of block erasures that a code can correct is twice as big as the number
of block alterations it can correct, we get the following.

2t ≤ 2

⌊
dmin − 1

2

⌋
= dmin − 1 = n− k + 1− 1 = n− k (4.1)

So an (n, k) CRS code C with minimum distance dmin can correct up to n− k block erasures.

In other words, decoding can only be done successfully when at most n − k blocks in the received
codeword c′ are erased (i.e. are ‘?’). If more than n− k blocks have been erased, there is more than
one possible original codeword c (Didier, 2009), and the decoding process to determine the original
codeword is not as straightforward. In this thesis, we will only elaborate on how to determine the
original codeword when at most n− k erasures have taken place.

Suppose we have received some codeword c′ of which we know that M block erasures have occurred,
assuming M ≤ n − k. We know on what positions an erasure has occurred because the element on
that position in the codeword equals ‘?’. We know how many erasures have occurred by counting the
number of ‘?’s, which will result in a number for M .

The occurrence of erasures can be represented by a matrix multiplication in the following way. The
received codeword c′ with M block erasures equals the original message multiplied by some k × n
matrix G′ as shown below (Rao, 2019).

Eindhoven University of Technology, Department of Mathematics and Computer Science 12

CHAPTER 4. CODING THEORY

c′ = mG′ = (m0, . . . ,mk−1)


g′0,0 · · · g′0,n−1

...
. . .

...

g′n−1,0 · · · g′n−1,n−1

 = (c′0, . . . , c
′
n−1)

Here, matrix G′ corresponds to at least n − M columns of matrix G, and decoding corresponds to
finding the unique value of m such that mG′ = c′.

4.2 Interleaving

Finally, we will describe an additional technique in error-correcting coding: interleaving. Interleaving
is done to improve the error-correcting capability of a code, as we will see in Proposition 2.
Similar to error-correcting codes, we can distinguish block interleaving and convolutional interleaving.
Since this thesis treats block codes, we will also focus on block interleaving.

A (block) interleaver is a device that rearranges the order of a sequence of input blocks at the trans-
mitter in order to distribute errors at the receiver (Clark & Cain, 1981). This makes interleaving
particularly useful for burst errors.
Interleaving can be done either periodically or randomly. In this thesis, we will only look at peri-
odically interleaved codes. Periodically interleaved codes have an interleave factor s that determines
in what way the sequence of input blocks is rearranged at the transmitter. A schematic overview of
a message m going through an interleaver and deinterleaver with interleave factor s is included in
Figure 4.1.

Interleaver

Input write −→ Output

(m0,m1, . . . ,mk−2,mk−1) →

ready 
m0 m1 . . . ms−1

ms ms−1 . . . m2s−1

...
...

. . .
...

mαs mαs−1 . . . mk−1

 → (m0,ms, . . . ,mk−2,mk−1)

Deinterleaver

Input read −→ Output

(m0,ms, . . . ,mk−2,mk−1) →

writey 
m0 m1 . . . ms−1

ms ms−1 . . . m2s−1

...
...

. . .
...

mαs mαs−1 . . . mk−1

 → (m0,m1, . . . ,mk−2,mk−1)

Figure 4.1: A schematic overview of an interleaver and deinterleaver with interleave factor s. The
interleaver writes symbolsm0,m1, . . . ,mk−1 into a matrix with s columns row by row. The interleaver
rearranges the message symbols by reading them from the matrix column by column.
The deinterleaver performs the inverse operation: It writes message symbols m0,ms, . . . ,mk−1 into
the same matrix format column by column, then rearranges the symbols by reading them out row by
row.

The interleaving procedure can take place both before and after applying an error-correcting code
C to a message m. Figure 4.1 shows the interleaving and deinterleaving procedure happening be-

Eindhoven University of Technology, Department of Mathematics and Computer Science 13

CHAPTER 4. CODING THEORY

fore applying error-correction coding. When interleaving happens before coding, a message m first
goes through an interleaver in the transmitter, the interleaved message then gets encoded into an
interleaved codeword. The interleaved codeword is transmitted over the channel. In the receiver, the
interleaved codeword will first be decoded to an interleaved message by the error-correcting code. It
then continues through a deinterleaver, outputting the original message.
When interleaving happens after encoding, the transmitter first applies the error-correcting code,
converting a message m into a codeword c. The codeword c then goes through an interleaver and the
interleaved codeword is sent over a communication channel. In the receiver, the interleaved codeword
first passes through a deinterleaver, outputting the original codeword. Decoding the codeword into
the original message is the final step.

We will mention the important property of a periodic interleaver with interleave factor s, namely its
effect on the erasure-correcting capability of a code.

Proposition 2. (Error-correcting capability of an interleaved code). Suppose we have an
(n, k) linear code C with error-correcting capability t. When applying a periodic interleaver with
interleave factor s, we create an (s · n, s · k) linear code with error-correcting capability s · t.

A proof of Proposition 2 can be found in (Moon, 2005). A code with error-correcting capability st
has erasure-correcting capability 2 · st. In other words, an (n, k) Cauchy Reed-Solomon code that is
interleaved with factor s is able to restore s · 2t = s · n− s · k erasures.

An interleaved (n, k) Caucy Reed-Solomon code has the same code rate (see Proposition 4.1.6) and
same 3.2.2. The advantage of interleaving lies purely in increasing the error-correcting capability, and
therefore the erasure-correcting capability, of a code when it is applied on a communication channel
where burst errors happen.

Eindhoven University of Technology, Department of Mathematics and Computer Science 14

CHAPTER 5. COMPUMATICA

Chapter 5

Compumatica

Compumatica is a Dutch cybersecurity manufacturer based in Uden. They develop, produce and
implement security solutions for network encryption, e-mail encryption, network security and network
segmentation. The customers of Compumatica are governments and Top 500 companies. Their main
customer industries are the military, government, transport & logistics, factories, and the electric
power industry.

Many organizations separate operational technology (OT) and information technology (IT) (Piggin,
2014), Compumatica’s customers included. Often, communication from OT to IT is wanted, but
communication in the reverse direction is undesired. To enable secure one-way communication for its
clients, Compumatica offers the MagiCtwin Diode: a device that connects two networks, and only
allows one-way communication of data. A few examples of how Compumatica’s clients implement
the MagiCtwin Diode are the following. Suppose user data from operational systems need to be sent
to an IT department. Then a communication in the direction from OT to IT must be facilitated.
However, it is not necessary for an IT department to be able to remotely access OT systems. In fact,
such returning communication creates a vulnerability, as this communication direction may also be
targeted by malicious external parties.
Another way in which the MagiCtwin Diode can be used, is to protect back-ups from threats like
ransomware from happening. With the MagiCtwin Diode implemented, ransomware cannot reach
the back-ups and therefore cannot encrypt them, nor perform any other threatening actions.
A third example is enabling information classification. When different information classification levels
are specified, the MagiCtwin Diode can be used to share information with a network that has a higher
or lower classification level. Because of the one-way communication, information can even be filtered.
The final case we illustrate is the implementation of a MagiCtwin Diode in a system to protect
underlying (either out-of-date or vulnerable) systems against threats from the outside, while still
enabling an information stream from those systems to security operation centres.

It is important to realize that this does not mean that there are no possibilities of communication
from receiver to sender whatsoever. In the first illustrated case for example, OT systems may still
be accessed by a third party physically or through wireless connections like 4G or 5G. In the second
use case, the data back-up will have to be made by someone, and has to be stored somewhere. These
persons and locations may still be reached in other (physical) manners by malicious actors. For the
third and fourth use case we can reason in a similar way that the MagiCtwin Diode can be bypassed
in different ways.

Nevertheless, the use of a MagiCtwin Diode (or another device that enables one-way communication
from sender to receiver for that matter) decreases the possibility that OT systems, back-ups, a
certain information classification level, or underlying vulnerable systems can be targeted by third
(malevolent) parties. The downside of this one-way communication is that the receiver cannot check
with the sender whether errors have occurred during transmission. This is the reason that error-
correcting coding has been deployed in the MagiCtwin Diode.

Eindhoven University of Technology, Department of Mathematics and Computer Science 15

CHAPTER 5. COMPUMATICA

5.1 Information theory in the MagiCtwin Diode

We will now outline the MagiCtwin Diode in more details. We refer back to the introduction of
communication theory in Chapter 3. The front of the MagiCtwin Diode can be seen in Figure 5.1.
It consists of two independent compartments.

Figure 5.1: The front of the MagiCtwin Diode. On the left we have a power button and connection
gates of the TX (transmitter) side. On the right we see the same for the RX (receiver) side.

A user network connects to one of the gates of the TX (transmitter) side, shown on the left of Figure
5.1. Another user network connects to one of the gates of the RX (receiver) side, shown on the right
of Figure 5.1. The MagiCtwin Diode then only enables one-way communication of data, namely
from left to right (so from transmitter to receiver). When the transmitting user network wants to
send a data file, it has to upload the file to an FTP TX Daemon located on the TX side. This
Daemon applies the error-correcting code as well. The coded data is then sent from TX to RX by
means of the communication channel, and arrives at an FTP RX Daemon. This RX Daemon uses
the error-correcting code to decode the received data. A receiving user network then connects to the
RX Daemon using FTP to retrieve the data file.
The MagiCtwin Diode’s hardware restricts the communication to only one way. Sending data from
TX to RX uses an internal connection. The communication channel between them transfers data as
light signals.

Referring back to the communication scheme in Figure 3.1, the info source is a user network that
connects on the TX side of the MagiCtwin Diode, and the destination is a user network that connects
on the RX side of it. All elements in the transmitter environment of Figure 3.1 are located on the
left side, the TX side, of the MagiCtwin Diode, whereas all elements in the receiver environment are
located on the RX side of the device. The communication channel is a light channel.

We will now express the information source and communication channel in the MagiCtwin Diode to
our definitions from Sections 3.1 and 3.2.

Information source

First, we will elaborate on modelling the information source of the original data files that arrive at
the TX Daemon. A data file is sliced into multiple slices, each slice can be seen as a message m.
In the MagiCtwin Diode, one message m consists of k = 128 blocks, so m = (m0, . . . ,m127) with
mi ∈ X . Each mi consists of b = 1456 words of w = 8 bits. In other words, each block mi consists of
b = 1456 bytes. There are 28 = 256 different bytes. The input alphabet X therefore contains 2561456

distinct elements. The output alphabet Y contains one more element and equals Y = X ∪ {?}.

Communication channel

The MagiCtwin’s communication channel can be denoted as Kdiode = (X ,Y,Pdiode) where X and Y
are defined as above. Due to imperfections of the channel, there are several probabilities that errors
occur. Pdiode defines a collection of probabilities that symbol (data block) alterations or erasures
occur. The error-correcting code that is implemented in the MagiCtwin Diode is an erasure code,
meaning block alterations cannot directly be corrected (Luby, Mitzenmacher, Shokrollahi, & Spiel-
man, 2001). However, block alterations can be corrected in an indirect way. In order to handle them,
erroneous data blocks are treated as erasures in the following way. A checksum that is implemented
earlier in the communication process in the MagiCtwin Diode checks for block alterations. If a bit
alteration is detected, the whole data block in which the alteration was detected will not be passed
on to the channel encoder. The decoding part of the error-correcting application then registers this
as a block erasure. In this way, alterations are treated as erasures.

Eindhoven University of Technology, Department of Mathematics and Computer Science 16

CHAPTER 5. COMPUMATICA

To determine (approximate) values for the collection of probabilities Pdiode, experiments within the
MagiCtwin Diode must be conducted. The probability strongly depends on external factors like
bottlenecks on the Central Processing Unit (CPU), which makes it difficult to arrive at a definite
collection of values. This is not possible within the scope of this thesis, so we will leave this for further
research.

5.2 Coding theory in the MagiCtwin Diode

In 2016, one of Compumatica’s employees implemented a Cauchy Reed-Solomon error-correcting code
in the MagiCtwin Diode to detect and correct block erasures that occur during data transmission
over the communication channel. The process of selecting this code and exact implementation was
not well documented. Because of this, Compumatica is not able to substantiate the appropriateness
and/or efficiency of the current RS code implementation. In other words, the current implementation
might be subject to improvement, or there might be alternative error-correcting codes that are better
suited for the MagiCtwin Diode. In this section, we will shed light on the limited information there
is on the selection process, show how the code is implemented, and determine what properties it has.

5.2.1 Why a CRS code?

There is no documentation on why Compumatica decided to implement a CRS code, but we can
reason why they are appropriate for the MagiCtwin Diode. First of all, (C)RS codes can correct
single block erasures, but also burst erasures (Geisel, 2012). Burst erasures are erasures of multiple
consecutive blocks. The reason that RS codes are particularly useful for burst errors is because they
are maximum distance separable (van Lint, 1991). Within the MagiCtwin Diode, burst errors are a
common type of error. They might occur when the Central Processing Unit (CPU) is overloaded,
when the MagiCtwin Diode is overheated, or when some other hardware component fails. According
to Compumatica, such hardware influences are the most probable reasons for errors. Therefore, it
makes sense to choose an error-correcting code that is suitable for burst errors.

Secondly, the code rate (see Definition 4.1.6) of Reed-Solomon codes is relatively high compared to
other error-correcting codes, making a Reed-Solomon code suitable for applications like data storage
and data transmission (Tanwar, 2015). These are very important purposes of the MagiCtwin Diode,
as explained at the beginning of Chapter 5.

Also, it was not documented why Compumatica chose to treat alterations in a block as erasures.
However, erasures are easier to decode then alterations (Rao, 2019). It is plausible that this is the
reason that alterations in a block are treated as full block erasures.

Additionally, there are mathematical advantages of (C)RS codes. Namely, that it operates over a
relatively small finite field; “only” 256 elements (Yan, Sprintson, & Zelenko, 2014). This means that
the mathematical operations are not so expensive in time and storage. Moreover, CRS codes ensure a
large minimum distance dmin (Sklar, n.d.). This directly relates to the error-correcting capability of
a code; the larger the minimum distance, the bigger the error-correcting capability (see Proposition
1).

The final advantage of (Cauchy) Reed-Solomon codes over other error-correcting codes is that CRS
codes are among the codes that allow for interleaving (Clark & Cain, 1981), which increases the
error-correcting capability (see Proposition 2). Periodic interleaving is implemented in the MagiCtwin
Diode to be even more prepared for burst errors. The interleaver structure that is used has interleaving
factor s = 8.
We consider l consecutive messages. Let mj

i denote data block i of message j, with i ∈ {0, . . . , 128}
and j ∈ {0, . . . , l}. Figure 5.2 shows how the data blocks in l consecutive messages are interleaved
and deinterleaved.

Eindhoven University of Technology, Department of Mathematics and Computer Science 17

CHAPTER 5. COMPUMATICA

Interleaver

Input write −→ Output

(m0
0,m

0
1, . . . ,m

l−1
126 ,m

l−1
127) →

ready 
m0

0 m0
1 . . . m0

7

m0
8 m0

9 . . . m0
15

...
...

. . .
...

ml−1
120 ml−1

121 . . . ml−1
127

 → (m0
0,m

0
8, . . . ,m

l−1
119 ,m

l−1
127)

Deinterleaver

Input read −→ Output

(m0
0,m

0
8, . . . ,m

l−1
119 ,m

l−1
127) →

writey 
m0

0 m0
1 . . . m0

7

m0
8 m0

9 . . . m0
15

...
...

. . .
...

ml−1
120 ml−1

121 . . . ml−1
127

 → (m0
0,m

0
1, . . . ,m

l−1
126 ,m

l−1
127)

Figure 5.2: A schematic overview of the interleaver and deinterleaver with interleave factor 8 that
is implemented in the MagiCtwin Diode. The interleaver writes data blocks m0

0,m
0
1, . . . ,m

l−1
126 ,m

l−1
127

into a matrix with 8 columns row by row. The interleaver rearranges the blocks by reading them
from the matrix column by column.
The deinterleaver performs the inverse operation: It writes data blocks m0

0,m
0
8, . . . ,m

l−1
119 ,m

l−1
127 into

the same matrix format, but now column by column. Then it rearranges the blocks by reading them
out row by row.

As explained in Section 4.2, interleaving can happen either before or after encoding. In the MagiCtwin
Diode, messages are interleaved before they are encoded (and deinterleaved after they are decoded).

5.2.2 Implementation of the CRS code

The currently used code is not developed by Compumatica employees, but is an open-source code
called Fast GF(256) Cauchy MDS Block Erasure Codec in C (CM256 for short) that can be found on
https://github.com/catid/cm256. It was slightly altered by Compumatica for GCC (Gnu Compiler
Collection) and Linux support. Also, the interleaving protocol was specified by Compumatica. The
exact error-correcting code as implemented in the MagiCtwin Diode cannot be included in this report.

CM256 library

We will briefly give an outline of the code in the CM256 library, which consists of several files. Five of
them are relevant for the purposes of this thesis: README.md, cm256.h, cm256.cpp, gf256.h and
gf256.cpp.
The README.md file provides some general details on the library, such as its parameters, its perfor-
mance and an example usage. The cm256.h is the header of the cm256.cpp file. The header declares
functions for encoding and decoding. The cm256.cpp contains the encoding and decoding steps.
First, the library is initialized by performing some checks. Then, the functions for encoding a block,
encoding a set of blocks, and decoding received blocks are defined. The structure of the decoder is
defined, and finally a decoder function is defined. All mathematical computations during encoding
and decoding are done in finite fields. The functions that describe how to do the mathematical com-
putations at bit level are declared in the gf256.h header file. Lastly, the gf256.cpp file contains
the function definitions that enable all mathematical computations on the finite field F256, which
are specified for different CPU’s. Almost all mathematical computations use lookup tables, which

Eindhoven University of Technology, Department of Mathematics and Computer Science 18

https://github.com/catid/cm256

CHAPTER 5. COMPUMATICA

are created using finite field arithmetic as explained in Chapter 2. Addition and subtraction do not
require lookup tables, as they are performed by a XOR-operation.

In the MagiCtwin Diode’s settings we find three standard settings, each with three parameters spec-
ified in the following form: s×f/d. Here s is the amount of stripes, which is relevant for the memory
organization within a computer (Main Memory Organization Computer Systems Structure, n.d.) and
is also the interleave factor s. Next, f denotes the number of redundant blocks generated by the
code, it corresponds with the value n− k in an (n, k) linear code. Finally, d is the number of blocks
of original data, which corresponds to k in an (n, k) linear code. The possible settings are 8×16/128,
8×16/64 and 8×8/64. The setting 8x16/128 is used by default.

The C++ code in the CM256 library is specified by three parameters: OriginalCount, RecoveryCount
and BlockBytes. Here, OriginalCount is the number of original data blocks, it corresponds to pa-
rameter k of a linear (n, k) code, and to the parameter d of CM256. Its default value is 128. This
means that all data are sliced into slices with k = 128 data blocks each. Next, RecoveryCount is the
number of recovery blocks that are generated by the error-correcting code. It corresponds to n−k in
an (n, k) code, and to f in the CM256 library. Its standard value is 16, meaning there are n− k = 16
recovery blocks generated per 128 original data blocks. We can conclude that n = 128 + 16 = 144.
Finally, BlockBytes is the number of bytes per block. This is the same for both the original data
blocks and the recovery blocks: 1456 bytes per block. We conclude that an (n, k) = (144, 128) linear
Cauchy Reed-Solomon error-correcting code is used in the MagiCtwin.
Note that this means that the original data that is encoded in every use of the error-correcting code
is at most 128 · 1456 = 186.368 bytes (186 kB). When considering a simple text file, assuming one
character is represented by one byte, this corresponds to roughly 90 A4 pages of text, or almost two
low-resolution photographs (Sheldon, 2021).

Encoding

A data file sent over the MagiCtwin Diode is usually bigger than a 90 page text document or two
low-resolution photographs. Therefore the data file must be sliced into slices of 128 data blocks each.
Each slice can be denoted as a message m = (m0, . . . ,m127) where each mi is a data block from input
alphabet X as defined at the start of Section 5.1.

Let GRREF = (I128 | A) denote the standard generator matrix used in Compumatica’s error-correcting
code. Here I128 denotes the 128× 128 identity matrix. Matrix A is based on Cauchy matrices. In a
Cauchy matrix C, element cij on row i and column j is based on some xi and yj as follows.

cij =
1

xi − yj
(5.1)

In the CM256 library, xi = i, so each xi corresponds to the row number in the matrix and to the index
of the original data block i in message m. This means the values range from 0, . . . , k−1 = 0, . . . , 127.
For yj we have yj = j + 128, so the yj corresponds to the column number in generator matrix
G and to the index of the recovery block in the codeword. This means the values range from
k, . . . n− 1 = 128, . . . , 143.
All matrix elements aij in A are divided by the element in the first column of row i, so divided by
element ai0 = 1

x0−yj
, resulting in the following matrix elements.

aij =
x0 − yj
xi − yj

(5.2)

In the computation of matrix elements aij , the values 0, . . . , 127 and 128, . . . , 143 for xi and yj
respectively are integer values between 0 and 255, so they are elements as in the first column of
Table 2.1. The integers are put in their binary vector form to perform the subtraction by means of
an XOR-operation in both the numerator and the denominator. The results of the numerator and
denominator are put in their integer forms again, and division is done by using the exp and log tables
to determine exp(log(x0 − yj)− log(xi − yj) (mod 255)) as explained in Chapter 2.

Eindhoven University of Technology, Department of Mathematics and Computer Science 19

CHAPTER 5. COMPUMATICA

We will now continue with a step-by-step determination of the 128 × 16 matrix A that is used in
GRREF = (I128 | A) in the CM256 library. First, we show in 5.3 how the matrix elements on row i
and column j of matrix A are based on x0, xi and yj .

x0 − y0
x0 − y0

. . .
x0 − y15
x0 − y15

...
. . .

...
x0 − y0
x127 − y0

. . .
x0 − y15
x127 − y15

 (5.3)

Then, as shown in 5.4, the corresponding values x0 = 0, xi = i and yj = j + 128 in are filled in on
each row i and column j.



0− 128

0− 128
. . .

0− 143

0− 143

...
. . .

...

0− 128

127− 128
. . .

0− 143

127− 143

 (5.4)

The subtractions in the numerator and denominator correspond to XOR-operations on the binary
vector forms of the integers, as shown below.


XOR((0, 0, 0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 0, 0, 0))

XOR((0, 0, 0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 0, 0, 0))
. . .

XOR((0, 0, 0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 1, 1, 1, 1))

XOR((0, 0, 0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 1, 1, 1, 1))
...

. . .
...

XOR((0, 0, 0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 0, 0, 0))

XOR((0, 1, 1, 1, 1, 1, 1, 1), (1, 0, 0, 0, 0, 0, 0, 0))
. . .

XOR((0, 0, 0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 1, 1, 1, 1))

XOR((0, 1, 1, 1, 1, 1, 1, 1), (1, 0, 0, 0, 1, 1, 1, 1))



=


(1, 0, 0, 0, 0, 0, 0, 0)

(1, 0, 0, 0, 0, 0, 0, 0)
. . .

(1, 0, 0, 0, 1, 1, 1, 1)

(1, 0, 0, 0, 1, 1, 1, 1)
...

. . .
...

(1, 0, 0, 0, 0, 0, 0, 0)

(1, 1, 1, 1, 1, 1, 1, 1)
. . .

(1, 0, 0, 0, 1, 1, 1, 1)

(1, 1, 1, 1, 0, 0, 0, 0)

 (5.5)

Which in integer forms equal:



128

128
. . .

143

143

...
. . .

...

128

255
. . .

143

240

 (5.6)

The divisions a
b in 5.6 are done by using the exp and log tables to determine exp(log(a)−log(b) (mod 255)),

which results in the following calculation.


exp(log(128)− log(128) (mod 255)) . . . exp(log(143)− log(143) (mod 255))

...
. . .

...

exp(log(128)− log(255) (mod 255)) . . . exp(log(143)− log(240) (mod 255))



Eindhoven University of Technology, Department of Mathematics and Computer Science 20

CHAPTER 5. COMPUMATICA

=


exp(7− 7 (mod 255)) . . . exp(252− 252 (mod 255))

...
. . .

...

exp(7− 161 (mod 255)) . . . exp(252− 73 (mod 255))



=


exp(0) . . . exp(0)

...
. . .

...

exp(101) . . . exp(179)

 (5.7)

Finally, this results in the 128 × 16 matrix A as shown below. The full matrix A is included in
Appendix C.

A =


1 . . . 1
...

. . .
...

133 . . . 222

 (5.8)

The 128× 144 standard generator matrix GRREF is shown in 5.9.

GRREF = (I128 | A) =


1 . . . 0 1 . . . 1
...

. . .
...

...
. . .

...

0 . . . 1 133 . . . 222

 (5.9)

The data blocks in the codeword are generated by multiplying the blocks m = (m0, . . . ,mk−1) by the
standard generator matrix GRREF. Since G is a 128× 144 matrix, the result of this multiplication is
a row vector of 144 elements: the codeword blocks c = (c0, . . . , c143).

c = m ·G = (m0, . . . ,m127) ·


1 . . . 0 1 . . . 1
...

. . .
...

...
. . .

...

0 . . . 1 133 . . . 222

 = (c0, . . . , c127, c128, . . . , c143)

Where
c0 = m0

...

c127 = m127

c128 = m0 + . . . + 133m127

...

c143 = m0 + . . . + 222m127

We again refer to (Hou & Han, 2016) for details on the procedure of multiplying matrix elements
with data blocks.

Suppose the data file was sliced into l slices. This encoding step is done for each of the slices of the
original data file. The l codewords are sent over the diode with interleave factor s = 8.

Decoding

The channel decoder uses the error-correcting code to reconstruct the original message m from re-
ceived codeword c′. Recall that at most 2t ≤ n − k erasures can be restored, meaning that at most
n− k = 144− 128 = 16 blocks in c′ may be ‘?’.

Eindhoven University of Technology, Department of Mathematics and Computer Science 21

CHAPTER 5. COMPUMATICA

We will now explain how the reconstruction process of M ≤ 16 erasures takes place. As explained in
Section 4.1.2, the received codeword c′ with M block erasures equals the original message multiplied
by some k × n matrix G′ in the following way.

c′ = mG′ = (m0, . . . ,mk−1)


g′0,0 · · · g′0,n−1

...
. . .

...

g′n−1,0 · · · g′n−1,n−1

 = (c′0, . . . , c
′
n−1)

Here, matrix G′ corresponds to at least n−M columns of matrix G. Decoding corresponds to finding
the unique value of m such that mG′ = c′, so it is a matter of solving a system of linear equations.

In the decoding functions of CM256, two cases are distinguished: the case where M = 1 (only one
bit erasure has taken place), and the case where M > 1 (more than one bit erasure has taken place).
For M = 1, finding m is relatively easy. However, if M > 1, solving for m becomes more complicated.
The CM256 library applied LDU-decomposition for finding m. The function for LDU-decomposition
in CM256 uses Algorithm 2.5 (GS-direct-Cauchy) from (Boros, Kailath, & Olshevsky, 2002). We will
not elaborate any further on the contents of this algorithm.

5.2.3 Properties of the CRS code

In Chapter 4, we treated some properties of error-correcting codes. We will now evaluate each of
these properties for the error-correcting code that Compumatica has implemented.

Erasure-correcting capability

In Proposition 1 we stated that an error-correcting code could correct at most 2t = n − k block
erasures. Since the MagiCtwin Diode uses an (n, k) = (144, 128) linear Cauchy Reed-Solomon code,
n− k = 144− 128 = 16 block erasures can be restored solely by the CRS code. In case more than 16
block erasures have taken place, the error-correcting code will not restore the original codeword and
corresponding message, but it will output to the receiver that the transmission was not successful.
If we also take into account the interleaving protocol that was implemented, we consider the Cauchy
Reed-Solomon code as an (s ·n, s ·k) = (8 ·144, 8 ·128) = (1152, 1024) linear code with error-restoring
capability s · 2t = s · (n − k) = 8 · (144 − 128) = 128. Therefore, 128 consecutive block erasures can
be restored, provided that 1024 data blocks around it have been transmitted correctly.

Signal-to-noise ratio

In the MagiCtwin Diode, the signals are sent from the transmitter to the receiver in the form of
light. This is one of the most reliable types of communication channels, but still bit errors occur
(Alzubi et al., 2014). For an assessment of the code, it would be interesting to know how many errors
occur on average in the MagiCtwin Diode in a customer environment. A small experiment in a test
environment at Compumatica was done to investigate how many errors occur on average during data
transmission through the MagiCtwin Diode.

Figure 5.3: A screenshot of the interface for the MagiCtwin data diode, after 11 test files were sent.

Eindhoven University of Technology, Department of Mathematics and Computer Science 22

CHAPTER 5. COMPUMATICA

A user connection was established with the FTP server on the TX side and the FTP server on the
RX side. Then, 8 tests were performed. In Figure 5.3, a screenshot of the diode’s interface is shown.
It shows 11 files sent by the user, of which the first 3 were not relevant for this small experiment.

The first three data files can be ignored for the purposes of evaluation the signal-to-noise ratio. The
next 7 data files were uploaded to the FTP server on the TX side, using Filezilla. In Appendix E,
a screenshot of the Filezilla interface is included in order to illustrate how this is done. All 7 data
files arrived at the RX side completely, this is seen because the column ‘Packet loss’ indicates 0 lost
packets for each of the 7 files. The last file transfer was manipulated by simulating a 0.1% packet
loss, using Network Emulator (Traffic Control Manual For Lab1 , n.d.).

We would like to know how many errors occur on average. The 8 experiments that were done do
not provide a definite and usable number. Experimenting by simulation takes too much time, and
designing a rigorous experiment to find out a definite signal-to-noise ratio is outside the scope of this
thesis. A theoretically acceptable value of the signal-to-noise ratio in wireless communication is 15dB
(Ab-Rahman, Shuhaimi, Al-Hakim Azizan, & Hassan, 2012). We will convert this value back to a
ratio, using the following conversion formula from (Price & Goble, 1993).

SNR = 10 · log10
(
S

N

)
[dB] (5.10)

Using this conversion formula, we calculate that a ratio of 15dB corresponds to the following signal-
to-noise ratio S

N .

10 · log
(
S

N

)
= 15 dB ⇐⇒ S

N
= 100.1·log(S/N) = 101.5 ≈ 31.6

In other words, for a codeword of S = n = 144 blocks that is sent over the data diode, we can expect
⌈N⌉ ≈

⌈
144
31.6

⌉
≈ ⌈4.6⌉ = 5 blocks to be erased.

Code rate

In Definition 4.1.6 we gave a formula for a code’s rate. Let us look at the code rate of the error-
correcting code that Compumatica currently uses. We use the default parameters k = 128 and
n = 144 to compute the code rate: R = k

n = 128
144 ≈ 0.89.

Eindhoven University of Technology, Department of Mathematics and Computer Science 23

CHAPTER 6. IMPROVING COMPUMATICA’S CODE

Chapter 6

Improving Compumatica’s code

We now know how the CM256 library is implemented for error-correcting purposes in the MagiCtwin
Diode. We also know its relevant properties. This lays a foundation for discussing several options to
improve it. There are several paths to improvements at this point. First of all, the CM256 library
could be improved in terms of its efficiency. Secondly, a different default setting might improve the
MagiCtwin’s efficiency while still having a large enough erasure-correcting capability. Finally, another
class of error-correcting codes could be implemented. We will discuss all three options.

6.1 Improving the CM256 library

When looking at the CM256 library, different improvements come to mind. First of all, the matrix-
vector multiplication in the function cm256 encode block (cm256.cpp lines 166-190) can be done
faster than it is being done now. One exemplary way in which it can be optimized is by implementing
a Fast-Fourier-Transform algorithm (Rao, 2019).
The developer of the CM256 library has also compared CM256 with two different Cauchy Reed-
Solomon code libraries, namely Intel(R) Intelligent Storage Acceleration Library (ISA-L for short,
code can be accessed via https://github.com/intel/isa-l) and Longhair (code can be accessed
via https://github.com/catid/longhair.). The ISA-L library is more efficient in this matrix
multiplication, so another option to optimize the matrix-vector multiplication in Compumatica’s
implementation of the error-correcting code is to be inspired by the approach taken in ISA-L.

During decoding, the LDU-decomposition that is used to solve mG′ = c′ for m is a way of performing
Gaussian elimination. Gaussian elimination will always work, but it is slow compared to other solving
techniques. Gaussian elimination has complexity O(n3) (Boros et al., 2002). A faster decoding
technique can be implemented via a Berlekamp-Massey decoding algorithm, which has complexity
O(kn) (Shum, 2016).

Compumatica currently limits the transmission speed of data through the diode at 400 megabits
per second (Mbits/sec), corresponding to 50 megabytes per second (Mbytes/sec), while the total
bandwidth of the diode is 1000 Mbits/sec (125 Mbytes/sec). This is done for several reasons. First
of all, in this way they make sure that the amount of data transmitted per time unit stays limited
in case of hardware failures. Secondly, hardware limitations are taken into account in this manner.
For instance, the CPU at the RX side must be able to decode the worst case scenario faster than the
TX side is able to encode and send new information. The speed of the CPU forms such a hardware
limitation.
It makes sense to wonder whether the transmission speed limit can be relieved now that we know
that we can restore over three times as much errors than we expect to happen, or at least increased.
However, this remaining bandwidth of 600 Mbits/sec (75 Mbytes/sec) is also necessary for sending
other data and protocols. Compumatica does not know at this moment how much bandwidth these
remaining data and protocols take up exactly, therefore we cannot study to what limit the transmission
speed may be increased during this thesis.

Finally, if Compumatica would want to improve the CM256 library in terms of functions it has,

Eindhoven University of Technology, Department of Mathematics and Computer Science 24

https://github.com/intel/isa-l
https://github.com/catid/longhair

CHAPTER 6. IMPROVING COMPUMATICA’S CODE

they might want to look into the possibility of incorporating encryption. This is a relevant function
when developing a MagiCtwin Diode that offers customers to implement the TX and RX side in two
physically different locations. When looking for encryption possibilities, the ISA-L library could be
of interest. It is a Cauchy Reed-Solomon erasure code, meaning it is the same type of code as the one
in the CM256 library, but also allows for cryptological functions. The ISA-L library that contains
crypto functions can be accessed via https://github.com/intel/isa-l crypto).

6.2 Comparing different settings

Currently, Compumatica uses the same default setting 8x16/128 for all file sizes that are to be
transmitted from the TX to RX side. It is plausible that one of the other two standard settings
generates less but still sufficient redundant data, therefore being more efficient.

Assuming the 3.5% of erasures from (Ab-Rahman et al., 2012), we can significantly reduce the
number of generated recovery blocks for messages of 128 blocks. When looking at one sequence of
8 codewords again, we expect ⌈0.035 · 8n⌉ data blocks to be erased and know that we can restore at
most s ·2t = 8 ·(n−k) erased data blocks, meaning we need 8(n−k) recovery blocks. Taking k = 128,
we solve 0.035 · 8n = 8(n − k) and get ⌈8n⌉ = 133, meaning that n − k = 133 − 128 = 5. In other
words, only 5 recovery blocks have to be generated for a total of 8 messages of 128 blocks each. This
corresponds to

⌈
5
8

⌉
= 1 recovery block per message, so a total codeword length of 128 + 1 = 129. It

seems like a totally new setting would be more efficient than either one of the three current settings.
We suggest to up to 8 recovery blocks per 128 data blocks in order to agree with the interleaving
protocol with interleave factor s = 8. Therefore, creating a new setting 8x8/128 seems sufficient.

Let us assess the three standard settings and the newly suggested setting by calculating their code
rates, expected number of block erasures and error-correcting capabilities with and without inter-
leaving. The comparison is shown in Table 6.1.

MagiCtwin Diode setting 8x16/128 8x16/64 8x8/64 8x8/128

Corresponding parameters (n, k) (144, 128) (80, 64) (72, 64) (136, 128)

Code rate R k
n

8
9

4
5

8
9

16
17

Fraction converted to percentage 89% 80% 89% 94%

Expected erasures (blocks) ⌈0.035 · n⌉ 6 3 3 5

Percentage of n 4.2% 3.8% 4.2% 3.7%

Erasure-correcting capability 2t (blocks) n− k 16 16 8 8

Percentage of n 11.1 % 20% 11.1% 5.9%

Erasure-correcting capability 2st with 8(n− k) 128 128 64 64

interleaving factor 8 (blocks)

Percentage of 8·n 11.1 % 20% 11.1% 5.9%

Table 6.1: A comparison of the code rate, expected block erasures and erasure-correcting capability
with and without periodic interleaving for four possible settings of the MagiCtwin Diode.

In Table 6.1, the 8x16/128 setting that Compumatica currently uses is denoted by the gray column.
The 8x8/128 that we suggest in this thesis is shown in the cyan column. We see that 8x8/128 has a
higher code rate than the three settings the MagiCtwin Diode can now adapt. Also, we see that the
erasure-correcting capability percentage of the new setting is much closer compared to the expected
number of block erasures than in the other three settings, meaning it uses available bandwidth more
efficiently. We consider the new setting to be more efficient since it generates less, but still enough,
redundant data.

An interesting question that Compumatica posed is whether the efficiency of transmitting different
file sizes might profit from different standard settings. Since the average file that is sent over the
diode in the MagiCtwin Diode is significantly larger than 186 kB, the setting that is used to apply

Eindhoven University of Technology, Department of Mathematics and Computer Science 25

https://github.com/intel/isa-l_crypto

CHAPTER 6. IMPROVING COMPUMATICA’S CODE

the error-correcting code does not influence the efficiency any differently for different file sizes. For
any file size, new setting 8x8/128 is most efficient.

6.3 Alternative suitable codes

We have explained in Section 5.2.1 why we presume a Cauchy Reed-Solomon error-correcting code
was chosen. We will now present some suitable alternatives. Any of the alternatives require further
investigation in order to implement them successfully in the MagiCtwin Diode, but they provide
Compumatica with a starting point.

A suitable MDS burst erasure correcting code can be a low-density parity-check (LDPC) code, for
example by implementing Construction 5 or Construction 6 proposed in (Johnson, 2009). LDPC
codes also allow for interleaving (Sridharan, Kumarasubramanian, Thangaraj, & Bhashyam, 2008),
and are therefore compatible with the interleaver in the MagiCtwin Diode as well.
Another class of error-correcting codes that could replace the Cauchy Reed-Solomon code are Fire
codes (Fire, 1959). They are very efficient for burst errors (Moon, 2005). A good starting point might
be Construction 1 as proposed in (Zhou, Lin, & Abdel-Ghaffar, 2014).
The final error-correcting code that we propose that is suited for the purposes in the MagiCtwin Diode
is a Turbo code. Turbo codes have good erasure correcting capabilities and have good performance
when code rates are high (Mizuochi, 2006). Construction algorithms for Turbo codes are given in
(Biradar & Sasi, 2018).

Eindhoven University of Technology, Department of Mathematics and Computer Science 26

CHAPTER 7. DISCUSSION AND FUTURE RESEARCH

Chapter 7

Discussion and future research

We started this thesis by giving a structured description of information theory and a mathematical
explanation of coding theory. We have introduced (Cauchy) Reed-Solomon codes and we have shown
how information theory and CRS codes are implemented by MagiCtwin Diode. We have pointed
out why choosing a CRS code is appropriate for the purposes and implementation of error-correcting
coding in the MagiCtwin Diode. We then proposed different improvements regarding efficiency of
the CM256 library, and we suggested a fourth standard setting that has advantages over the current
three standard settings. Finally, we put forward three classes of alternative error-correcting codes
that might be suitable for the MagiCtwin Diode.
There are several notes that we have to make before we give Compumatica a definite recommendation
regarding the efficiency of the error-correcting code that is currently implemented in the MagiCtwin
Diode.

In this thesis we have considered symbol alterations and symbol erasures. In practice, symbol addi-
tions are also possible (Bours, 1994). Whether this can happen in the diode is not investigated in
this thesis. Also, we are not aware whether this is implemented in the CM256 library.

Definition 3.2.1 gives a mathematical definition of a communication channel, which is expressed for
the MagiCtwin Diode in Section 5.1. It assumes a memoryless communication channel, which means
that what happens in one channel use is independent from what happens in the other channel uses
(Ravagnani, 2022). Whether the diode in the MagiCtwin Diode is a memoryless communication
channel is not known. However, since most of the errors that happen are burst errors, so not ran-
dom errors, the resulting behaviour of the communication system of the MagiCtwin Diode does not
resemble a memoryless communication channel (Clark & Cain, 1981).
LDPC codes are well-suited for burst erasure channels, but specifically for memoryless burst erasure
channels (Johnson, 2009). Some research into LDPC codes for burst erasure channels with memory
has been done, but it is has not reached a level of implementation yet (Paolini & Chiani, 2006).

We have explained that due to the average size of customer files, the diode has to be used multiple
times when transmitting a data file over the data diode. This makes it relevant to consider the
communication channel as a non-memoryless channel. This affects the collection of probabilities
Pdiode. Besides, the number of 3.5% expected erasures is based on random errors and a memoryless
channel. Since the communication channel does not behave as a memoryless channel and the errors
do not happen randomly but in burst, this 3.5% is not an accurate estimate.

Another issue with the percentage is that it only gives an estimate for errors that have occurred in
the communication channel. In practice, errors might also happen during conversion from message to
codeword, from codeword to light signal, from received signal back to received codeword, and from
received codeword back to original message. Error-correcting coding does not cover these types of
errors, so they are not included in this thesis. However, in the MagiCtwin Diode these errors might
actually happen, so we feel obligated that this aspect must be brought to light here as well.

The suitability of a (Cauchy) Reed-Solomon error-correcting code for the MagiCtwin Diode is backed
up by literature (Geisel, 2012; van Lint, 1991; Tanwar, 2015; Rao, 2019; Yan et al., 2014; Sklar,

Eindhoven University of Technology, Department of Mathematics and Computer Science 27

CHAPTER 7. DISCUSSION AND FUTURE RESEARCH

n.d.; Clark & Cain, 1981) as explained in Section 5.2.1. Each of the three alternative classes of
error-correcting codes that seem suitable for the MagiCtwin Diode is supported by scientific papers
as well (Sridharan et al., 2008; Zhou et al., 2014; Mizuochi, 2006). However, the alternatives have
been insufficiently researched to be able to say that they will perfectly suit the MagiCtwin Diode.

While we believe that the results of this thesis are useful for Compumatica, future research should be
conducted, starting with an investigation into the collection of probabilities Pdiode that express the
probabilities of data block alterations and erasures. With this collection of probabilities, we would
have an accurate estimate of the expected number of alterations and erasures that we can expect to
happen when a codeword c is transmitted over the diode in the MagiCtwin Diode. Pdiodef would be
significantly more appropriate to use than the 3.5% from (Ab-Rahman et al., 2012), and would give
a useful value for the signal-to-noise ratio of the diode. Further research at the customer side of the
MagiCtwin Diode can be done to learn how much time the MagiCtwin Diode is out of running on
average, so how many consecutive block erasures actually happen. In case this is significantly less
than 3.7 ms every 29.8 ms, changes can be made.
The combination of the collection of probabilities and the duration of failure of the MagiCtwin Diode
should be used as a benchmark for the required erasure-correction capability of an error-correcting
code.

Furthermore, one aspect of efficiency that we did not focus on in this paper is the delay that happens
during the decoding of codewords with burst erasures. Particularly when applying block interleaving
in combination with RS codes, we are faced with a sub-optimal decoding delay (Li, Khisti, & Girod,
2011). Several linear code constructions that achieve the Singleton bound as well as the lowest possible
decoding delay are presented in (Li et al., 2011). These constructions are theoretical and therefore
not yet ready implementation-wise. We suggest further research into these code constructions in
order to see if one is suited for and applicable in the MagiCtwin Diode.

The Fast-Fourier-Transform algorithm is one way to accelerate matrix multiplication during encoding,
but many more fast multiplication techniques exist. We suggest further research into fast (matrix)
multiplication techniques for elements in finite fields. The same goes for the suggested Berlekamp-
Massey algorithm that is a fast decoding technique for Cauchy Reed-Solomon codes.

Some explanations, like how to multiply a data block with a finite field element and the exact definition
of a Reed-Solomon code, are not given in this thesis. It would be beneficial for the mathematical
understanding of the implementation of error-correction coding in the MagiCtwin Diode to understand
those details, but doing so does not make a difference on our recommendations for Compumatica.
Given the limited scope of this thesis, it was therefore not included in this thesis.

Eindhoven University of Technology, Department of Mathematics and Computer Science 28

CHAPTER 8. RECOMMENDATION

Chapter 8

Recommendation

We have proposed different options to improve the efficiency of error-correcting coding in the Mag-
iCtwin Diode in Chapter 6 and critically discussed the findings and limitations of this thesis in
Chapter 7. We now have all tools to formulate a definite recommendation regarding the efficiency of
error-correcting coding in the MagiCtwin Diode.

We will first advise on the approach to improve the currently implemented CM256 library. Regardless
of other improvements, a faster multiplication algorithm for the vector-matrix multiplication during
encoding should be implemented. For this, Compumatica may want to look at either the Fast-Fourier-
Transform algorithm from (Rao, 2019), the ISA-L library from https://github.com/intel/isa-l

or start a new research into fast multiplication. Similarly, a faster algorithm for decoding can be
implemented. Compumatica may choose to look at a Berlekamp-Massey algorithm as in (Boros et
al., 2002) or may choose to explore other decoding methods.

Besides this, one of the following two improvements can be implemented. One advise would be to
create a new (fourth) standard setting that is 8x8/128, so that generates 8 recovery blocks for each
slice of 128 data blocks, keeping interleave factor 8. Possibly, there can be a fifth new setting with
an even higher code rate, depending on further research determining the collection of probabilities
Pdiode.

The last recommendation regarding the currently implemented code regards cryptological functions
of the MagiCtwin Diode. If the possibility of incorporating encryption into the MagiCtwin Diode is
of interest as well, the ISA-L library could be an example of how to do so.

Finally, Compumatica may decide to implement a different class of codes instead of Cauchy Reed-
Solomon, rather than improve its currently implemented code. In this case, we advise Compumatica
to do more (documented) research into the suitability and implementation methods of their preferred
alternative class of codes. We suggest starting by looking at an LDPC code inspired by Construction
5 or 6 from (Johnson, 2009) or a Fire code similar to Construction 1 from (Zhou et al., 2014).
Alternatively, Compumatica can look into construction methods for a Turbo code (Biradar & Sasi,
2018) or Li’s code (Li et al., 2011).

Eindhoven University of Technology, Department of Mathematics and Computer Science 29

https://github.com/intel/isa-l

References

References

Ab-Rahman, M. S., Shuhaimi, N. I., Al-Hakim Azizan, L., & Hassan, M. R. (2012). Analytical Study
of Signal-to-Noise Ratio for Visible Light Communication by Using Single Source. Journal of
Computer Science, 8 (1), 141–144. doi: 10.3844/jcssp.2012.141.144

Alencar, M. (2014). Information theory (1st ed.). Momentum Press.
Alzubi, J. A., Alzubi, O. A., & Chen, T. M. (2014). Forward Error Correction Based on Algebraic-

Geometric Theory. Springer, Cham. Retrieved from https://link.springer.com/chapter/

10.1007/978-3-319-08293-6 1 doi: 10.1007/978-3-319-08293-6{\ }1
Biradar, S., & Sasi, M. S. (2018, 6). Error Detection and Correction using Turbo Codes. International

Research Journal of Engineering and Technology , 5 (6). Retrieved from https://www.irjet

.net/archives/V5/i6/IRJET-V5I6503.pdf

Blomer, J., Kalfane, M., Karp, R., Karpinski, M., Luby, M., & Zuckerman, D. (1999, 10). An XOR-
Based Erasure-Resilient Coding Scheme. Retrieved from https://www.researchgate.net/

publication/2643899 An XOR-Based Erasure-Resilient Coding Scheme/citation/

download

Bocklandt, R. R. J. (n.d.). Error correcting codes 1 Motivation (Tech. Rep.). UvA/FNWI. Retrieved
from https://staff.fnwi.uva.nl/r.r.j.bocklandt/notes/CT.pdf

Boros, T., Kailath, T., & Olshevsky, V. (2002, 3). Pivoting and backward stability of fast algorithms
for solving Cauchy linear equations. Linear Algebra and Its Applications, 343 , 63–99. doi:
10.1016/S0024-3795(01)00519-5

Bours, P. A. H. (1994). Codes for correcting insertion and deletion errors (Unpublished doctoral
dissertation). Technische Universiteit Eindhoven.

Clark, G. C., & Cain, J. B. (1981). Error-Correction Coding for Digital Communications (Lucky
R. W., Ed.). Melbourne, Florida: Springer US. Retrieved from https://link.springer.com/

content/pdf/10.1007/978-1-4899-2174-1.pdf doi: 10.1007/978-1-4899-2174-1
Didier, F. (2009, 1). Efficient erasure decoding of Reed-Solomon codes. Retrieved from https://

arxiv.org/pdf/0901.1886.pdf

Edwards, H. M. (1984). Galois Theory (3rd ed.). New York: New York: Springer-Verlag.
Fire, P. (1959). A class of multiple-error-correcting binary codes for non-independent errors (Unpub-

lished doctoral dissertation). Stanford University.
Geisel, W. A. (2012, 11). Tutorial on Reed-Solomon Error Correction Coding. NASA technical mem-

orandum, 102162 . Retrieved from https://ntrs.nasa.gov/api/citations/19900019023/

downloads/19900019023.pdf

Hou, H., & Han, Y. S. (2016, 12). Cauchy MDS Array Codes With Efficient Decoding Method.
CoRR, abs/1611.09968 . Retrieved from https://arxiv.org/pdf/1611.09968.pdf

Johnson, S. (2009, 3). Burst erasure correcting LDPC codes. IEEE Transactions on Communications,
57 (3), 641–652. doi: 10.1109/TCOMM.2009.03.060468

Kahn, D. (1996). The Codebreakers. Scribner.
Lagarias, J. C. (1993, 2). Pseudorandom Numbers. Statistical Science, 8 (1), 31–39. doi: 10.1214/

ss/1177011081
Li, Z., Khisti, A., & Girod, B. (2011). Correcting erasure bursts with minimum decoding delay. In

2011 conference record of the forty fifth asilomar conference on signals, systems and computers
(asilomar) (pp. 33–39). IEEE. Retrieved from https://www.comm.utoronto.ca/~akhisti/

burst erasure.pdf doi: 10.1109/ACSSC.2011.6189949

Eindhoven University of Technology, Department of Mathematics and Computer Science 30

https://link.springer.com/chapter/10.1007/978-3-319-08293-6_1
https://link.springer.com/chapter/10.1007/978-3-319-08293-6_1
https://www.irjet.net/archives/V5/i6/IRJET-V5I6503.pdf
https://www.irjet.net/archives/V5/i6/IRJET-V5I6503.pdf
https://www.researchgate.net/publication/2643899_An_XOR-Based_Erasure-Resilient_Coding_Scheme/citation/download
https://www.researchgate.net/publication/2643899_An_XOR-Based_Erasure-Resilient_Coding_Scheme/citation/download
https://www.researchgate.net/publication/2643899_An_XOR-Based_Erasure-Resilient_Coding_Scheme/citation/download
https://staff.fnwi.uva.nl/r.r.j.bocklandt/notes/CT.pdf
https://link.springer.com/content/pdf/10.1007/978-1-4899-2174-1.pdf
https://link.springer.com/content/pdf/10.1007/978-1-4899-2174-1.pdf
https://arxiv.org/pdf/0901.1886.pdf
https://arxiv.org/pdf/0901.1886.pdf
https://ntrs.nasa.gov/api/citations/19900019023/downloads/19900019023.pdf
https://ntrs.nasa.gov/api/citations/19900019023/downloads/19900019023.pdf
https://arxiv.org/pdf/1611.09968.pdf
https://www.comm.utoronto.ca/~akhisti/burst_erasure.pdf
https://www.comm.utoronto.ca/~akhisti/burst_erasure.pdf

References

Luby, M., Mitzenmacher, M., Shokrollahi, M., & Spielman, D. (2001, 2). Efficient erasure correcting
codes. IEEE Transactions on Information Theory , 47 (2), 569–584. Retrieved from https://

ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=910575 doi: 10.1109/18.910575
Mackay, D. J. C. (1995). Information Theory, Inference, and Learning Algorithms. Retrieved from

http://www.inference.phy.cam.ac.uk/mackay/itila/

Main Memory Organization Computer Systems Structure. (n.d.). University of Tennessee, Knoxville.
Department of Electrical Engineering and Computer Science. Retrieved from http://web.eecs

.utk.edu/~mbeck/classes/cs160/lectures/13 memory.pdf

Maurer, H. (2021). Cognitive Science (1st ed.). Boca Raton: CRC Press. doi: 10.1201/
9781351043526

Mizuochi, T. (2006, 8). Recent progress in forward error correction and its interplay with transmission
impairments. IEEE Journal of Selected Topics in Quantum Electronics, 12 (4), 544–554. Re-
trieved from https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1668095 doi:
10.1109/JSTQE.2006.876597

Moon, T. K. (2005). Error Correcting Coding Mathematical Methods and Algorithms. Hoboken,
New Jersey: John Wiley & Sonds, Inc. Retrieved from https://doc.lagout.org/science/

0 Computer%20Science/2 Algorithms/Error%20Correction%20Coding %20Mathematical%

20Methods%20and%20Algorithms%20%5BMoon%202005-06-06%5D.pdf

Moorhouse, E. (2008, 10). Reed-Solomon Codes. University of Wyoming. Retrieved from https://

ericmoorhouse.org/handouts/reed solomon.pdf

Paolini, E., & Chiani, M. (2006). Improved low-density parity-check codes for burst erasure channels.
IEEE International Conference on Communications, 3 , 1183–1188. Retrieved from https://

ieeexplore.ieee.org/document/4024300 doi: 10.1109/ICC.2006.254908
Piggin, R. (2014). Industrial systems: cyber-security’s new battlefront [Information Technology

Operational Technology]. Engineering & Technology , 9 (8), 70–74. doi: 10.1049/et.2014.0810
Plank, J. S. (2005, 12). Optimizing Cauchy Reed-Solomon Codes for Fault-Tolerant Storage Appli-

cations. Retrieved from http://www.cs.utk.edu/œplank/plank/papers/CS-05-659.pdf

Planteen, C. (2019, 7). Reed-Solomon Codes. Retrieved from https://codyplanteen.com/notes/

rs

Price, J., & Goble, T. (1993). Telecommunications Engineer’s Reference Book (F. Mazda, Ed.).
Elsevier. doi: 10.1016/C2013-0-06529-2

Rao, A. (2019, 10). Lecture 4: Reed-Solomon Codes. Retrieved from https://homes.cs.washington

.edu/~anuprao/pubs/codingtheory/lecture4.pdf

Ravagnani, A. (2022, 9). Coding Theory. Eindhoven University of Technology. Retrieved from
https://a.ravagnani.win.tue.nl/coding%20th/Coding theory notes.pdf

Reed, I. S., & Solomon, G. (1960, 6). POLYNOMIAL CODES OVER CERTAIN FINITE FIELDS. J
Soc. INDUST. AL. MATH , 8 (2). Retrieved from http://www.siam.org/journals/ojsa.php

Riley, M., & Richardson, I. (2001). An introduction to Reed Solomon codes: principles, architecture &
implementation. Retrieved from https://www.cs.cmu.edu/~guyb/realworld/reedsolomon/

reed solomon codes.html

Shannon, C. E. (1948). A Mathematical Theory of Communication (Vol. 27; Tech. Rep.).
Sheldon, R. (2021, 12). How many bytes for . . . ? Retrieved from https://www.techtarget.com/

searchstorage/definition/How-many-bytes-for

Shum, K. (2016, 11). Berlekamp-Massey decoding of RS code. Retrieved from https://piazza.com/

class profile/get resource/isgy6spmwwm3ba/iwg4az9vjjz3em

Sklar, B. (n.d.). Reed-Solomon Codes. Retrieved from https://ptgmedia.pearsoncmg.com/images/

art sklar7 reed-solomon/elementlinks/art sklar7 reed-solomon.pdf

Sridharan, G., Kumarasubramanian, A., Thangaraj, A., & Bhashyam, S. (2008, 7). Optimizing burst
erasure correction of LDPC codes by interleaving. In 2008 ieee international symposium on
information theory (pp. 1143–1147). IEEE. Retrieved from https://ieeexplore.ieee.org/

stamp/stamp.jsp?tp=&arnumber=4595166 doi: 10.1109/ISIT.2008.4595166
Tanwar, S. (2015, 5). Reed Soloman and convolution codes. Retrieved from https://www.slideshare

.net/shaileshtanwar/reedsoloman-and-convolution-c

Taylor, C. A. (2021). catid/cm256: Fast GF(256) Cauchy MDS Block Erasure Codec in C. Retrieved
from https://github.com/catid/cm256

Traffic Control Manual For Lab1. (n.d.). Retrieved from https://www.cs.unm.edu/~crandall/

netsfall13/TCtutorial.pdf

Eindhoven University of Technology, Department of Mathematics and Computer Science 31

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=910575
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=910575
http://www.inference.phy.cam.ac.uk/mackay/itila/
http://web.eecs.utk.edu/~mbeck/classes/cs160/lectures/13_memory.pdf
http://web.eecs.utk.edu/~mbeck/classes/cs160/lectures/13_memory.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1668095
https://doc.lagout.org/science/0_Computer%20Science/2_Algorithms/Error%20Correction%20Coding_%20Mathematical%20Methods%20and%20Algorithms%20%5BMoon%202005-06-06%5D.pdf
https://doc.lagout.org/science/0_Computer%20Science/2_Algorithms/Error%20Correction%20Coding_%20Mathematical%20Methods%20and%20Algorithms%20%5BMoon%202005-06-06%5D.pdf
https://doc.lagout.org/science/0_Computer%20Science/2_Algorithms/Error%20Correction%20Coding_%20Mathematical%20Methods%20and%20Algorithms%20%5BMoon%202005-06-06%5D.pdf
https://ericmoorhouse.org/handouts/reed_solomon.pdf
https://ericmoorhouse.org/handouts/reed_solomon.pdf
https://ieeexplore.ieee.org/document/4024300
https://ieeexplore.ieee.org/document/4024300
http://www.cs.utk.edu/˜plank/plank/papers/CS-05-659.pdf
https://codyplanteen.com/notes/rs
https://codyplanteen.com/notes/rs
https://homes.cs.washington.edu/~anuprao/pubs/codingtheory/lecture4.pdf
https://homes.cs.washington.edu/~anuprao/pubs/codingtheory/lecture4.pdf
https://a.ravagnani.win.tue.nl/coding%20th/Coding_theory_notes.pdf
http://www.siam.org/journals/ojsa.php
https://www.cs.cmu.edu/~guyb/realworld/reedsolomon/reed_solomon_codes.html
https://www.cs.cmu.edu/~guyb/realworld/reedsolomon/reed_solomon_codes.html
https://www.techtarget.com/searchstorage/definition/How-many-bytes-for
https://www.techtarget.com/searchstorage/definition/How-many-bytes-for
https://piazza.com/class_profile/get_resource/isgy6spmwwm3ba/iwg4az9vjjz3em
https://piazza.com/class_profile/get_resource/isgy6spmwwm3ba/iwg4az9vjjz3em
https://ptgmedia.pearsoncmg.com/images/art_sklar7_reed-solomon/elementlinks/art_sklar7_reed-solomon.pdf
https://ptgmedia.pearsoncmg.com/images/art_sklar7_reed-solomon/elementlinks/art_sklar7_reed-solomon.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4595166
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4595166
https://www.slideshare.net/shaileshtanwar/reedsoloman-and-convolution-c
https://www.slideshare.net/shaileshtanwar/reedsoloman-and-convolution-c
https://github.com/catid/cm256
https://www.cs.unm.edu/~crandall/netsfall13/TCtutorial.pdf
https://www.cs.unm.edu/~crandall/netsfall13/TCtutorial.pdf

References

van Lint, J. H. (1991). Introduction to Coding Theory (2nd ed.). Eindhoven: Springer-Verlag.
Xambó-Descamps, S. (2003). Block Error-Correcting Codes. Berlin, Heidelberg: Springer Berlin

Heidelberg. doi: 10.1007/978-3-642-18997-5
Yan, M., Sprintson, A., & Zelenko, I. (2014). Weakly Secure Data Exchange with Generalized Reed

Solomon Codes (Tech. Rep.). Department of Mathematics, Texas A&M University. Retrieved
from https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6875056

Yates, R. (2009, 8). A Coding Theory Tutorial. Retrieved from https://web.archive.org/web/

20110710143034/http://www.digitalsignallabs.com/tutorial.pdf

Zhou, W., Lin, S., & Abdel-Ghaffar, K. (2014). Burst or random error correction based on fire
and BCH codes. 2014 Information Theory and Applications Workshop, ITA 2014 - Conference
Proceedings. doi: 10.1109/ITA.2014.6804214

Eindhoven University of Technology, Department of Mathematics and Computer Science 32

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6875056
https://web.archive.org/web/20110710143034/http://www.digitalsignallabs.com/tutorial.pdf
https://web.archive.org/web/20110710143034/http://www.digitalsignallabs.com/tutorial.pdf

APPENDIX A. GENERATOR POLYNOMIALS FOR F256

Appendix A

Generator polynomials for F256

Below, we present a table that shows all 16 primitive, irreducible polynomials of F256. The polyno-
mials are often characterized by a hexadecimal, which is included for each polynomial as well. The
highlighted row is the polynomial that is used in the CM256 code.

Hexadecimal Generator polynomial

0x8e F1(x) = x8 + x4 + x3 + x2 + 1

0x95 F2(x) = x8 + x5 + x3 + x+ 1

0x96 F3(x) = x8 + x5 + x3 + x2 + 1

0xa6 F4(x) = x8 + x6 + x3 + x2 + 1

0xaf F5(x) = x8 + x6 + x4 + x3 + x2 + x+ 1

0xb1 F6(x) = x8 + x6 + x5 + x+ 1

0xb2 F7(x) = x8 + x6 + x5 + x2 + 1

0xb4 F8(x) = x8 + x6 + x5 + x3 + 1

0xb8 F9(x) = x8 + x6 + x5 + x4 + 1

0xc3 F10(x) = x8 + x7 + x+ 2 + x+ 1

0xc6 F11(x) = x8 + x7 + x3 + x2 + 1

0xd4 F12(x) = x8 + x7 + x5 + x3 + 1

0xe1 F13(x) = x8 + x7 + x6 + x+ 1

0xe7 F14(x) = x8 + x7 + x6 + x3 + x2 + x+ 1

0xf3 F15(x) = x8 + x7 + x6 + x5 + x2 + x+ 1

0xfa F16(x) = x8 + x7 + x6 + x5 + x4 + x2 + 1

Eindhoven University of Technology, Department of Mathematics and Computer Science 33

APPENDIX B. EXP AND LOG TABLES FOR F256

Appendix B

Exp and log tables for F256

The exp table for finite field F256 based on generator polynomial F4(x) = x8 + x6 + x3 + x2 + 1 is
shown below.

i exp(i) i exp(i) i exp(i) i exp(i) i exp(i) i exp(i) i exp(i) i exp(i)

0 1 32 227 64 235 96 93 128 171 160 217 192 181 224 158

1 2 33 139 65 155 97 186 129 27 161 255 193 39 225 113

2 4 34 91 66 123 98 57 130 54 162 179 194 78 226 226

3 8 35 182 67 246 99 114 131 108 163 43 195 156 227 137

4 16 36 33 68 161 100 228 132 216 164 86 196 117 228 95

5 32 37 66 69 15 101 133 133 253 165 172 197 234 229 190

6 64 38 132 70 30 102 71 134 183 166 21 198 153 230 49

7 128 39 69 71 60 103 142 135 35 167 42 199 127 231 98

8 77 40 138 72 120 104 81 136 70 168 84 200 254 232 196

9 154 41 89 73 240 105 162 137 140 169 168 201 177 233 197

10 121 42 178 74 173 106 9 138 85 170 29 202 47 234 199

11 242 43 41 75 23 107 18 139 170 171 58 203 94 235 195

12 169 44 82 76 46 108 36 140 25 172 116 204 188 236 203

13 31 45 164 77 92 109 72 141 50 173 232 205 53 237 219

14 62 46 5 78 184 110 144 142 100 174 157 206 106 238 251

15 124 47 10 79 61 111 109 143 200 175 119 207 212 239 187

16 248 48 20 80 122 112 218 144 221 176 238 208 229 240 59

17 189 49 40 81 244 113 249 145 247 177 145 209 135 241 118

18 55 50 80 82 165 114 191 146 163 178 111 210 67 242 236

19 110 51 160 83 7 115 51 147 11 179 222 211 134 243 149

20 220 52 13 84 14 116 102 148 22 180 241 212 65 244 103

21 245 53 26 85 28 117 204 149 44 181 175 213 130 245 206

22 167 54 52 86 56 118 213 150 88 182 19 214 73 246 209

23 3 55 104 87 112 119 231 151 176 183 38 215 146 247 239

24 6 56 208 88 224 120 131 152 45 184 76 216 105 248 147

25 12 57 237 89 141 121 75 153 90 185 152 217 210 249 107

26 24 58 151 90 87 122 150 154 180 186 125 218 233 250 214

27 48 59 99 91 174 123 97 155 37 187 250 219 159 251 225

28 96 60 198 92 17 124 194 156 74 188 185 220 115 252 143

29 192 61 193 93 34 125 201 157 148 189 63 221 230 253 83

30 205 62 207 94 68 126 223 158 101 190 126 222 129 254 166

31 215 63 211 95 136 127 243 159 202 191 252 223 79 255 *

Eindhoven University of Technology, Department of Mathematics and Computer Science 34

APPENDIX B. EXP AND LOG TABLES FOR F256

The log table for F256 based on generator polynomial F4(x) = x8 + x6 + x3 + x2 + 1 is shown below.

j log(j) j log(j) j log(j) j log(j) j log(j) j log(j) j log(j) j log(j)

0 * 32 5 64 6 96 28 128 7 160 51 192 29 224 88

1 0 33 93 65 212 97 123 129 222 161 68 193 61 225 251

2 1 34 135 66 37 98 231 130 213 162 105 194 124 226 226

3 23 35 108 67 210 99 59 131 120 163 146 195 235 227 32

4 2 36 155 68 94 100 142 132 38 164 45 196 232 228 100

5 46 37 183 69 39 101 158 133 101 165 82 197 233 229 208

6 24 38 193 70 136 102 116 134 211 166 254 198 60 230 221

7 83 39 49 71 102 103 244 135 209 167 22 199 234 231 119

8 3 40 43 72 109 104 55 136 95 168 169 200 143 232 173

9 106 41 167 73 214 105 216 137 227 169 12 201 125 233 218

10 47 42 163 74 156 106 206 138 40 170 139 202 159 234 197

11 147 43 149 75 121 107 249 139 33 171 128 203 236 235 64

12 25 44 152 76 184 108 131 140 137 172 165 204 117 236 242

13 52 45 76 77 8 109 111 141 89 173 74 205 30 237 57

14 84 46 202 78 194 110 19 142 103 174 91 206 245 238 176

15 69 47 27 79 223 111 178 143 252 175 181 207 62 239 247

16 4 48 230 80 50 112 87 144 110 176 151 208 56 240 73

17 92 49 141 81 104 113 225 145 177 177 201 209 246 241 180

18 107 50 115 82 44 114 99 146 215 178 42 210 217 242 11

19 182 51 54 83 253 115 220 147 248 179 162 211 63 243 127

20 48 52 205 84 168 116 172 148 157 180 154 212 207 244 81

21 166 53 130 85 138 117 196 149 243 181 192 213 118 245 21

22 148 54 18 86 164 118 241 150 122 182 35 214 250 246 67

23 75 55 86 87 90 119 175 151 58 183 134 215 31 247 145

24 26 56 98 88 150 120 72 152 185 184 78 216 132 248 16

25 140 57 171 89 41 121 10 153 198 185 188 217 160 249 113

26 53 58 240 90 153 122 80 154 9 186 97 218 112 250 187

27 129 59 71 91 34 123 66 155 65 187 239 219 237 251 238

28 85 60 79 92 77 124 15 156 195 188 204 220 20 252 191

29 170 61 14 93 96 125 186 157 174 189 17 221 144 253 133

30 70 62 189 94 203 126 190 158 224 190 229 222 179 254 200

31 13 63 6 95 228 127 199 159 219 191 114 223 126 255 161

The second columns of the exp and log tables were calculated using the following Wolfram Mathe-
matica code.

Eindhoven University of Technology, Department of Mathematics and Computer Science 35

APPENDIX C. MATRIX A FOR CM256

Appendix C

Matrix A for CM256

Matrix A in generator matrix G = (I128 | A) that is used in the CM256 library is included below.
The elements are integers between 0 and 255, as in the first column of Table 2.1 from Chapter 2.



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

138 146 34 179 181 211 4 83 97 216 128 147 20 212 9 44

40 71 106 90 165 11 232 36 104 78 254 193 91 17 230 43

100 154 209 249 14 247 144 58 207 250 161 39 25 118 62 51

158 75 4 21 215 183 83 141 130 85 181 33 178 204 211 159

255 76 16 86 60 68 174 225 64 87 41 152 172 107 30 65

160 31 119 110 122 203 188 236 239 49 101 127 186 208 77 12

26 242 218 165 232 200 103 47 57 194 106 176 81 40 108 148

42 214 232 112 74 169 36 65 224 32 165 84 114 149 11 41

182 243 241 122 188 159 73 9 171 115 119 23 33 160 44 89

129 63 213 22 126 81 173 131 140 18 139 123 175 35 155 176

190 19 118 12 89 83 150 120 49 62 240 24 38 253 4 73

201 253 144 97 153 27 58 238 237 223 14 61 54 150 247 216

232 28 105 189 123 64 111 168 107 63 56 92 29 165 251 69

202 113 46 215 83 161 102 219 170 55 4 250 222 158 93 205

121 231 194 251 32 193 187 191 50 248 78 214 189 108 70 206

45 164 83 243 70 249 141 176 172 192 215 79 234 29 183 139

28 218 115 217 80 127 90 112 45 178 49 6 233 44 170 96

10 190 142 153 58 41 52 230 56 179 144 87 84 201 43 184

62 128 33 121 195 199 79 13 205 233 186 142 232 131 76 237

162 199 174 207 38 222 225 105 37 26 60 15 212 163 68 250

110 155 37 83 102 209 233 107 238 227 46 235 78 202 132 149

25 86 208 216 184 36 133 227 223 77 228 191 171 6 232 52

188 228 113 233 164 50 91 114 108 8 75 34 120 122 217 246

92 6 188 104 57 19 236 206 59 80 122 138 195 133 203 78

235 66 22 109 231 255 239 59 232 204 10 240 44 250 164 54

83 148 96 145 15 140 248 182 35 199 152 109 124 215 177 154

234 130 124 126 173 216 66 62 71 169 213 111 61 129 51 136

246 20 103 74 36 101 47 221 39 187 232 49 48 42 200 16


...

Eindhoven University of Technology, Department of Mathematics and Computer Science 36

APPENDIX C. MATRIX A FOR CM256

...

224 48 107 176 136 58 163 254 18 30 219 21 146 199 144 66

132 8 55 177 192 33 24 242 95 168 85 164 145 93 147 23

41 83 69 241 95 17 31 6 66 162 13 108 221 27 175 100

134 180 36 190 147 110 65 250 175 146 74 217 137 124 169 60

78 58 246 124 134 208 63 67 7 151 42 44 211 222 145 255

148 46 179 13 69 61 21 243 134 114 223 245 5 43 39 111

102 204 247 15 248 71 27 86 129 224 96 231 134 83 192 112

210 25 73 57 236 139 9 211 152 90 188 18 79 92 159 194

241 145 252 75 113 80 155 81 245 207 191 234 201 119 49 249

77 254 84 132 185 67 217 50 16 5 54 73 83 105 63 59

59 79 108 23 11 225 200 101 168 70 230 97 154 53 174 7

34 67 173 239 171 48 131 96 82 202 126 100 17 128 81 49

214 26 28 203 159 252 205 213 48 238 44 38 104 82 244 83

97 68 82 36 47 119 5 35 206 244 103 115 85 246 151 29

183 7 177 106 218 121 140 82 188 150 137 219 51 87 245 212

186 22 150 78 194 141 120 244 80 247 89 242 56 245 83 9

185 237 227 192 24 250 7 30 31 19 55 91 15 132 65 11

58 89 20 5 180 95 178 234 93 53 214 106 227 153 13 76

244 108 170 67 172 210 127 138 240 95 130 149 209 187 182 177

109 245 58 130 170 86 238 23 189 69 153 40 185 120 27 85

193 60 160 184 133 47 92 157 179 44 208 252 131 25 103 3

115 198 207 157 8 129 237 189 83 149 210 228 43 49 180 195

228 241 169 158 202 123 110 104 109 54 18 67 3 51 56 20

36 205 111 118 100 37 168 10 163 67 123 157 99 74 64 31

30 161 61 28 17 53 40 42 184 3 175 99 188 242 231 37

137 224 99 38 225 78 198 77 75 249 174 248 138 162 12 235

171 250 245 230 108 99 121 151 203 83 3 14 90 239 29 157

76 91 102 70 141 14 219 136 127 24 83 223 251 45 161 213

173 221 190 3 245 45 186 195 44 46 253 209 254 126 158 210

172 251 35 250 235 236 128 181 26 155 221 112 71 67 188 198

3 201 12 178 222 243 78 32 185 152 68 140 8 52 21 57

151 53 187 64 146 84 191 113 117 182 32 180 118 200 193 87

206 55 114 163 162 3 137 218 101 240 255 83 252 39 117 67

139 36 154 142 117 204 253 245 198 34 50 93 136 19 212 160

22 147 117 58 52 16 3 108 105 181 142 183 49 10 148 133

197 255 141 25 193 97 176 49 212 71 70 13 220 99 249 126

177 39 197 225 198 194 196 44 113 14 99 27 18 137 89 128

85 236 76 99 197 150 199 98 252 209 45 43 11 48 118 129

48 57 45 174 99 89 197 196 191 161 29 247 23 114 240 35

205 103 90 50 154 138 112 190 197 234 80 226 107 159 127 248

192 206 199 198 196 120 98 28 155 144 197 41 169 177 150 34

47 149 203 100 168 75 19 22 162 172 111 8 197 36 146 243

96 179 195 200 151 196 88 241 139 219 121 58 74 152 197 72


...

Eindhoven University of Technology, Department of Mathematics and Computer Science 37

APPENDIX C. MATRIX A FOR CM256

...

231 186 52 170 238 60 230 11 123 21 58 26 217 109 41 55

140 61 196 105 77 187 44 159 91 153 198 86 202 218 194 181

142 118 30 214 20 69 68 222 226 239 242 137 92 144 223 110

24 211 224 196 98 109 175 17 51 142 199 16 101 192 201 220

247 181 79 151 88 98 13 95 213 107 195 52 36 96 199 189

196 162 176 54 84 130 49 80 204 214 193 95 46 198 97 171

189 217 93 87 183 131 161 14 182 147 211 104 31 72 173 252

254 196 38 8 237 234 56 123 102 42 207 208 148 115 178 79

106 98 225 237 56 251 105 111 233 246 38 160 204 254 222 223

248 21 88 101 119 44 241 73 126 136 151 238 147 15 196 240

164 202 148 27 41 30 16 174 251 206 43 171 130 233 7 36

127 32 129 235 128 9 34 4 249 51 35 74 242 172 73 196

104 81 233 141 219 144 107 163 23 7 102 179 32 76 209 124

221 124 19 201 10 164 22 239 106 212 168 72 196 65 75 25

169 252 64 4 46 132 37 233 58 133 220 221 12 18 226 17

98 137 136 84 49 170 115 90 158 20 176 31 37 196 153 131

54 207 133 85 55 65 227 7 69 203 184 113 152 226 36 230

71 87 98 77 44 244 28 205 81 58 196 60 110 140 120 4

88 59 244 146 191 49 252 155 253 86 187 178 100 151 176 183

12 144 26 149 42 145 246 63 227 121 40 196 9 68 59 164

236 184 91 107 255 117 114 137 200 72 164 4 244 57 50 63

213 47 112 117 253 158 190 186 196 220 154 132 163 139 138 182

7 93 39 98 175 231 61 40 228 117 224 29 119 24 10 64

70 41 15 228 208 103 160 92 235 196 145 244 173 243 218 117

157 226 236 224 39 22 206 87 145 154 57 158 88 227 19 32

242 183 175 44 28 2 17 149 216 52 98 174 122 71 109 46

33 126 201 194 120 219 109 2 90 43 150 30 105 186 102 156

49 225 210 227 157 35 8 72 215 205 92 51 247 84 5 121

179 62 239 2 53 162 59 145 36 29 231 89 159 223 255 185

52 150 68 180 178 31 222 251 132 59 20 218 157 58 69 104

89 142 249 42 246 15 97 130 157 195 26 98 156 12 152 91

200 2 32 220 64 54 146 75 142 160 251 5 240 11 25 61

141 16 248 208 160 82 182 210 128 98 15 2 66 70 140 253

82 40 44 111 203 191 159 139 114 170 77 207 76 103 187 215

155 101 138 148 204 72 158 45 194 156 212 66 58 113 8 82

153 12 214 47 5 241 180 129 211 2 82 254 55 97 88 45

220 172 66 171 131 85 62 247 214 110 173 168 40 34 216 115

53 195 230 127 23 38 11 169 100 243 238 246 50 2 60 24

56 49 226 211 93 66 132 209 27 36 156 122 21 237 124 2

124 5 74 253 190 202 147 33 98 64 112 185 162 213 18 86

63 178 47 147 65 122 221 235 61 191 36 80 177 134 101 174

165 44 56 72 189 220 123 100 219 134 237 133 16 90 234 13


...

Eindhoven University of Technology, Department of Mathematics and Computer Science 38

APPENDIX C. MATRIX A FOR CM256

...

225 136 25 156 226 134 54 185 43 103 6 119 181 38 42 231

35 134 139 10 22 91 126 171 218 138 19 189 98 221 113 193

175 177 163 49 115 238 254 165 202 68 136 243 75 98 58 62

118 50 161 26 249 96 14 153 210 33 183 224 6 240 131 155

156 92 216 114 48 190 85 192 88 123 81 37 53 9 112 170

204 37 181 69 21 87 215 70 63 48 179 186 180 148 206 203

209 72 24 140 71 79 242 20 167 10 192 255 208 161 33 18

44 106 49 185 217 172 80 154 29 180 84 167 102 77 130 152

23 187 234 128 34 156 220 46 14 228 129 36 30 127 167 98

6 182 228 81 216 74 184 55 79 105 51 146 239 167 165 58

60 141 31 73 167 149 6 226 62 106 95 200 235 86 17 201

27 215 13 119 241 28 95 167 173 163 88 230 65 248 98 118

207 193 167 236 9 213 156 93 96 165 73 169 223 210 205 120

133 167 122 76 104 168 57 39 53 217 110 212 121 184 111 222


Above matrix A is calculated by the following Mathematica code.

Eindhoven University of Technology, Department of Mathematics and Computer Science 39

APPENDIX D. EXAMPLE USAGE OF CM256 LIBRARY IN C++

Appendix D

Example usage of CM256 library in
C++

The error-correcting code that is used is from https://github.com/catid/cm256. The C++ code
below is the example usage code from Github, containing adjustments that allow us to gain insight
into statuses of objects during running. Full code is not included to avoid unnecessarily lengthy
appendices.

1 #include "cm256.h"
2 #include <iostream>
3 #include <iomanip>
4 #include <bitset>
5 #include <string>
6 #include <typeinfo>
7 #include <cstring>
8 #include <climits>
9

10 using namespace std;
11

12 bool main()
13 {
14 if (cm256_init())
15 {
16 cout << "error while initializing cm256 library" << endl;
17 exit(1);
18 }
19

20 cm256_encoder_params params;
21

22 int blockbytes = 5;
23 params.BlockBytes = 5; // Number of bytes per file block
24 params.OriginalCount = 6; // Number of blocks
25 params.RecoveryCount = 3; // Number of additional recovery blocks generated by encoder
26

27 // Size of the original file
28 static const int OriginalFileBytes = params.OriginalCount * params.BlockBytes;
29

30 // Allocate and fill the original file data
31 uint8_t* originalFileData = new uint8_t[OriginalFileBytes];
32 memset(originalFileData, 'a', OriginalFileBytes-1);
33 memset(originalFileData, 'z', 8);
34 memset(originalFileData, 'b', 4);
35 memset(originalFileData, 'c', 2);
36

37 // print originalFileData
38 cout << "originalFileData = " <<originalFileData<< " (" <<OriginalFileBytes<< " bytes)\n" << endl;
39 cout << "Index Memory loc Bits Ascii" << endl;
40 cout << "----- ---------- -- -----" << endl;
41 for (int i = 0; i < OriginalFileBytes; ++i)
42 {
43 if (i % 5 == 0)
44 {
45 cout << setfill('0') << setw(5) << i;
46 \\ printing memory (pointer) location
47 cout << " 0x" << static_cast<void *>(&originalFileData[i]) << " ";
48 }
49 if (i % 5 == 4)
50 cout << " " << originalFileData[i - 4] << originalFileData[i - 3] << originalFileData[i - 2]
51 << originalFileData[i - 1] << originalFileData[i] << endl;

Eindhoven University of Technology, Department of Mathematics and Computer Science 40

https://github.com/catid/cm256

APPENDIX D. EXAMPLE USAGE OF CM256 LIBRARY IN C++

52 }
53

54 // print encoder params
55 cout << "\nThe encoder's parameters are: \n " << params.BlockBytes << " bytes per block\n " <<
56 params.OriginalCount << " original blocks of data\n " << params.RecoveryCount <<
57 " additionally generated recovery blocks.\n" << endl;
58

59 // create blocks
60 cm256_block blocks[256];
61 cout << "blocks[256] is created: " << endl;
62 for (int i = 0; i < params.OriginalCount; ++i)
63 blocks[i].Block = originalFileData + i * params.BlockBytes;
64

65 // print blocks
66 cout << "i Pointer Value " << endl;
67 cout << "- ---------- ----- " << endl;
68 for (int i = 0; i < params.OriginalCount; ++i)
69 {
70 cout << i << " 0x" << blocks[i].Block << " ";
71 for (int j = 0; j < params.BlockBytes; ++j)
72 cout << reinterpret_cast<char*>(blocks[i].Block)[j];
73 cout << endl;
74 }
75 cout << "\n" << endl;
76

77 // Print recoveryBlocks (only created, no data in there yet)
78 uint8_t* recoveryBlocks = new uint8_t[params.RecoveryCount * params.BlockBytes];
79 cout << "Empty array 'recoveryBlocks' created (initialized) with room for " <<
80 params.RecoveryCount * params.BlockBytes << " elements:" << endl;
81 cout << "Index Memory loc Bits " << endl;
82 cout << "----- ---------- -------- " << endl;
83 for (int i = 0; i < params.RecoveryCount * params.BlockBytes; ++i)
84 {
85 recoveryBlocks[i] = 0
86 cout << setfill('0') << setw(5) << i;
87 cout << " 0x" << static_cast<void*>(&recoveryBlocks[i]);
88 cout << " " << bitset<8>(recoveryBlocks[i]) << endl;
89 }
90

91 // Generate recovery data
92 if (cm256_encode(params, blocks, recoveryBlocks))
93 {
94 cout << "cm256_encode(params,blocks,recoveryBlocks) was not 0, exit code." << endl;
95 exit(1);
96 }
97

98 // print blocks (1/3)
99 cout << "filled recoveryBlocks: " << endl;

100 cout << "Index Memory loc Bits " << endl;
101 cout << "----- ---------- -------- " << endl;
102 for (int i = 0; i < params.RecoveryCount * params.BlockBytes; ++i)
103 {
104 cout << setfill('0') << setw(5) << i;
105 cout << " 0x" << static_cast<void*>(&recoveryBlocks[i]);
106 cout << " " << bitset<8>(recoveryBlocks[i]) << endl;
107 }
108

109 // Initialize the indices
110 cout << "" << endl;
111 cout << "We now initialize the indices." << endl;
112 for (int i = 0; i < params.OriginalCount; ++i)
113 {
114 blocks[i].Index = cm256_get_original_block_index(params, i);
115 cout << " blocks[" << i << "].Index is " << int(blocks[i].Index) << endl;
116 }
117

118 cout << "" << endl;
119 cout << "Will now simulate loss of data." << endl;
120 cout << "Originally, blocks[0].Block points to memory address 0x" << blocks[0].Block <<
121 " and blocks[0].Index was " << int(blocks[0].Index) << endl;
122 //// Simulate loss of data, subsituting a recovery block in its place ////
123 blocks[0].Block = recoveryBlocks; // First recovery block
124 blocks[0].Index = cm256_get_recovery_block_index(params, 0); // First recovery block index
125 //// Simulate loss of data, subsituting a recovery block in its place ////
126 cout << "After simulating loss of data blocks[0].Block memory address 0x" << blocks[0].Block <<
127 " and blocks[0].Index is " << int(blocks[0].Index) << endl;
128

129 // print blocks (2/3)
130 cout << "i Pointer Value Index" << endl;
131 cout << "- ---------- ----- -----" << endl;
132 for (int i = 0; i < params.OriginalCount; ++i)
133 {
134 cout << i << " 0x" << blocks[i].Block << " ";
135 for (int j = 0; j < params.BlockBytes; ++j)
136 cout << reinterpret_cast<char*>(blocks[i].Block)[j];

Eindhoven University of Technology, Department of Mathematics and Computer Science 41

APPENDIX D. EXAMPLE USAGE OF CM256 LIBRARY IN C++

137 cout << " " << (int)blocks[i].Index << endl;
138 }
139 cout << "\n" << endl;
140

141 cout << "Now on to the decoding." << endl;
142 if (cm256_decode(params, blocks))
143 {
144 cout << "cm256_decode(params, blocks) was not 0, exiting." << endl;
145 exit(1);
146 }
147

148 // print blocks (3/3)
149 cout << "i Pointer Value Index" << endl;
150 cout << "- ---------- ----- -----" << endl;
151 for (int i = 0; i < params.OriginalCount; ++i)
152 {
153 cout << i << " 0x" << blocks[i].Block << " ";
154 for (int j = 0; j < params.BlockBytes; ++j)
155 cout << reinterpret_cast<char*>(blocks[i].Block)[j];
156 cout << " " << (int)blocks[i].Index << endl;
157 }
158 cout << "\n" << endl;
159

160 // blocks[0].Index will now be 0.
161

162 delete[] originalFileData;
163 delete[] recoveryBlocks;
164

165 return true;
166 }

I ran the error-correcting code using C++ developer command prompt by executing the following
commands in the directory where the cm256.cpp, cm256.h, gf256.cpp, gf256.h and main.cpp files
are stored (for me those files were stored at c:/cm256code).

Eindhoven University of Technology, Department of Mathematics and Computer Science 42

APPENDIX E. EXAMPLE OF MAGICTWIN FTP SERVER INTERFACE

Appendix E

Example of MagiCtwin FTP server
interface

A screenshot of a user connecting to the FTP Daemon in the MagiCtwin, using FileZilla. Other FTP
applications can be used as well. In this case, a PNG file called compuwall high availability.png,
a text document called compuwall.txt, an application called Handler.exe and two files called
file 10gb and file 1gb are located on the users device. One file called file 10gb is already up-
loaded onto the FTP Daemon, and a file called file 1gb is currently being uploaded from the user’s
device onto the FTP Daemon. Dragging a file from left to right corresponds to uploading a data file
from the user’s device to the MagiCtwin’s FTP Daemon on the TX side.
Connecting to the RX side can be done in a similar way. A different host, and a corresponding port
number, should be entered. It is important that the username (and corresponding password) are the
same for the TX and RX FTP server connections. Via a connection to the RX side’s FTP server, the
transmitted files can be retrieved.

Eindhoven University of Technology, Department of Mathematics and Computer Science 43

	Introduction
	Preliminaries
	Information theory
	Information source
	Communication channel

	Coding theory
	Error-correcting coding
	Encoding
	Decoding

	Interleaving

	Compumatica
	Information theory in the MagiCtwin Diode
	Coding theory in the MagiCtwin Diode
	Why a CRS code?
	Implementation of the CRS code
	Properties of the CRS code

	Improving Compumatica's code
	Improving the CM256 library
	Comparing different settings
	Alternative suitable codes

	Discussion and future research
	Recommendation
	References
	Generator polynomials for F256
	Exp and log tables for F256
	Matrix A for CM256
	Example usage of CM256 library in C++
	Example of MagiCtwin FTP server interface

