4,347 research outputs found

    Low-Overhead Built-In Self-Test for Advanced RF Transceiver Architectures

    Get PDF
    abstract: Due to high level of integration in RF System on Chip (SOC), the test access points are limited to the baseband and RF inputs/outputs of the system. This limited access poses a big challenge particularly for advanced RF architectures where calibration of internal parameters is necessary and ensure proper operation. Therefore low-overhead built-in Self-Test (BIST) solution for advanced RF transceiver is proposed. In this dissertation. Firstly, comprehensive BIST solution for RF polar transceivers using on-chip resources is presented. In the receiver, phase and gain mismatches degrade sensitivity and error vector magnitude (EVM). In the transmitter, delay skew between the envelope and phase signals and the finite envelope bandwidth can create intermodulation distortion (IMD) that leads to violation of spectral mask requirements. Characterization and calibration of these parameters with analytical model would reduce the test time and cost considerably. Hence, a technique to measure and calibrate impairments of the polar transceiver in the loop-back mode is proposed. Secondly, robust amplitude measurement technique for RF BIST application and BIST circuits for loop-back connection are discussed. Test techniques using analytical model are explained and BIST circuits are introduced. Next, a self-compensating built-in self-test solution for RF Phased Array Mismatch is proposed. In the proposed method, a sinusoidal test signal with unknown amplitude is applied to the inputs of two adjacent phased array elements and measure the baseband output signal after down-conversion. Mathematical modeling of the circuit impairments and phased array behavior indicates that by using two distinct input amplitudes, both of which can remain unknown, it is possible to measure the important parameters of the phased array, such as gain and phase mismatch. In addition, proposed BIST system is designed and fabricated using IBM 180nm process and a prototype four-element phased-array PCB is also designed and fabricated for verifying the proposed method. Finally, process independent gain measurement via BIST/DUT co-design is explained. Design methodology how to reduce performance impact significantly is discussed. Simulation and hardware measurements results for the proposed techniques show that the proposed technique can characterize the targeted impairments accurately.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Dual-Band Multi-Channel Airborne Radar for Mapping the Internal and Basal Layers of Polar Ice Sheets

    Get PDF
    Rapid thinning of the Jakobshavn and a few other outlet glaciers in Greenland and the Antarctic has been observed in the past few years. The key to understanding these dramatic changes is basal conditions. None of the spaceborne radars, that have been providing a wealth of information about the ice surface, is capable of measuring ice thickness or mapping bed conditions. At the Center for Remote Sensing of Ice Sheets (CReSIS), we have developed an airborne radar system to map the internal and basal layers to obtain a 3-dimensional representation of the ice sheets in Polar Regions. We have also devised advanced signal processing techniques to overcome the effects of surface clutter. We have developed a radar for measuring ice thickness up to a 5000 m depth from low-altitude (500 m) and high-altitude (7000 m) aircraft. This airborne radar system can operate at two bands: very high frequency band (VHF-band) (140 MHz to 160 MHz) with a peak power of 800 W and P-band (435 MHz to 465 MHz) with a peak power of 1.6 kW for collecting data to develop effective ice sheet models. The pulse signal has a duration of 3 us or 10 us. The radar has 1 transmitter and 6 receivers inside the aircraft and an 8 element dipole antenna array mounted beneath the wings of the aircraft. This system is designed to have 32 coherent integrations and pulse compression due to which a high loop sensitivity of at least 208 dB was obtained. This system was tested and data were collected in the recent September 2007 field experiment over various parts of Greenland. From the initial observations of the collected data it can be deduced that the signal losses at 450 MHz are more than predicted by existing models and clutter masked the weak bed echoes when the data were collected at higher altitudes both at 150 MHz and 450 MHz

    BICEP2 II: Experiment and Three-Year Data Set

    Full text link
    We report on the design and performance of the BICEP2 instrument and on its three-year data set. BICEP2 was designed to measure the polarization of the cosmic microwave background (CMB) on angular scales of 1 to 5 degrees (\ell=40-200), near the expected peak of the B-mode polarization signature of primordial gravitational waves from cosmic inflation. Measuring B-modes requires dramatic improvements in sensitivity combined with exquisite control of systematics. The BICEP2 telescope observed from the South Pole with a 26~cm aperture and cold, on-axis, refractive optics. BICEP2 also adopted a new detector design in which beam-defining slot antenna arrays couple to transition-edge sensor (TES) bolometers, all fabricated on a common substrate. The antenna-coupled TES detectors supported scalable fabrication and multiplexed readout that allowed BICEP2 to achieve a high detector count of 500 bolometers at 150 GHz, giving unprecedented sensitivity to B-modes at degree angular scales. After optimization of detector and readout parameters, BICEP2 achieved an instrument noise-equivalent temperature of 15.8 μ\muK sqrt(s). The full data set reached Stokes Q and U map depths of 87.2 nK in square-degree pixels (5.2 μ\muK arcmin) over an effective area of 384 square degrees within a 1000 square degree field. These are the deepest CMB polarization maps at degree angular scales to date. The power spectrum analysis presented in a companion paper has resulted in a significant detection of B-mode polarization at degree scales.Comment: 30 pages, 24 figure

    Real100G.COM

    Get PDF
    In 2012 a group of researchers proposed a basic research initiative to the German Research Foundation (DFG) as a special priority project (SPP) with the name: Wireless 100 Gbps and beyond. The main goal of this initiative was the investigation of architectures, technologies and methods to go well beyond the state of the art. The target of 100 Gbps was set far away from the (at that time) achievable 1 Gbps such that it was not possible to achieve promising results just by tuning some parameters. We wanted to find breakthrough solutions. When we started the work on the proposal we discussed the challenges to be addressed in order to advancing the wireless communication speed significantly. Having the fundamental Shannon boundary in mind we discussed how to achieve the 100 Gbps speed.Angesichts der rapiden Entwicklung der Funkkommunikation hat die Deutsche Forschungsgemeinschaft im Jahr 2012 ein Schwerpunktprogramm mit dem Titel "Wireless 100 Gbps and beyound" (dt.: Drahtloskommunikation mit 100 Gbps und mehr) gestartet. Diese Initiative zielte auf neue Lösungen, Methoden und neues Wissen zur Lösung des Problems des kontinuierlichen Bedarfs an immer höheren Datenraten im Bereich der Funkkommunikation. Eine international besetze Jury hat etliche Projektvorschläge evaluiert, aus denen 11 Projekte ausgewählt und über zweimal 3 Jahre von Mitte 2013 bis Mitte 2019 gefördert wurden. Das vorliegende Buch versammelt die Ansätze, Architekturen und Erkenntnisse der Projekte. Es überspannt einen breiten Themenbereich, angefangen mit speziellen Fragen der physikalischen Übertragung, des Antennendesigns und der HF-Eingangs-Architekturen für unterschiedliche Frequenzbereiche bis 240 GHz. Darüber hinaus beschreibt das Buch Ansätze für Ultra-Hochgeschwindigkeits-Funksysteme, deren Basisbandverarbeitung, Kodierung sowie mögliche Umsetzungen. Nicht zuletzt wurden auch Fragen des Protokolldesigns behandelt, um eine enge Integration in moderne Computersysteme zu erleichtern

    Energy Efficient RF Transmitter Design using Enhanced Breakdown Voltage SOI-CMOS Compatible MESFETs

    Get PDF
    abstract: The high cut-off frequency of deep sub-micron CMOS technologies has enabled the integration of radio frequency (RF) transceivers with digital circuits. However, the challenging point is the integration of RF power amplifiers, mainly due to the low breakdown voltage of CMOS transistors. Silicon-on-insulator (SOI) metal semiconductor field effect transistors (MESFETs) have been introduced to remedy the limited headroom concern in CMOS technologies. The MESFETs presented in this thesis have been fabricated on different SOI-CMOS processes without making any change to the standard fabrication steps and offer 2-30 times higher breakdown voltage than the MOSFETs on the same process. This thesis explains the design steps of high efficiency and wideband RF transmitters using the proposed SOI-CMOS compatible MESFETs. This task involves DC and RF characterization of MESFET devices, along with providing a compact Spice model for simulation purposes. This thesis presents the design of several SOI-MESFET RF power amplifiers operating at 433, 900 and 1800 MHz with ~40% bandwidth. Measurement results show a peak power added efficiency (PAE) of 55% and a peak output power of 22.5 dBm. The RF-PAs were designed to operate in Class-AB mode to minimize the linearity degradation. Class-AB power amplifiers lead to poor power added efficiency, especially when fed with signals with high peak to average power ratio (PAPR) such as wideband code division multiple access (W-CDMA). Polar transmitters have been introduced to improve the efficiency of RF-PAs at backed-off powers. A MESFET based envelope tracking (ET) polar transmitter was designed and measured. A low drop-out voltage regulator (LDO) was used as the supply modulator of this polar transmitter. MESFETs are depletion mode devices; therefore, they can be configured in a source follower configuration to have better stability and higher bandwidth that MOSFET based LDOs. Measurement results show 350 MHz bandwidth while driving a 10 pF capacitive load. A novel polar transmitter is introduced in this thesis to alleviate some of the limitations associated with polar transmitters. The proposed architecture uses the backgate terminal of a partially depleted transistor on SOI process, which relaxes the bandwidth and efficiency requirements of the envelope amplifier in a polar transmitter. The measurement results of the proposed transmitter demonstrate more than three times PAE improvement at 6-dB backed-off output power, compared to the traditional RF transmitters.Dissertation/ThesisPh.D. Electrical Engineering 201

    Wide-Area Surveillance System using a UAV Helicopter Interceptor and Sensor Placement Planning Techniques

    Get PDF
    This project proposes and describes the implementation of a wide-area surveillance system comprised of a sensor/interceptor placement planning and an interceptor unmanned aerial vehicle (UAV) helicopter. Given the 2-D layout of an area, the planning system optimally places perimeter cameras based on maximum coverage and minimal cost. Part of this planning system includes the MATLAB implementation of Erdem and Sclaroff’s Radial Sweep algorithm for visibility polygon generation. Additionally, 2-D camera modeling is proposed for both fixed and PTZ cases. Finally, the interceptor is also placed to minimize shortest-path flight time to any point on the perimeter during a detection event. Secondly, a basic flight control system for the UAV helicopter is designed and implemented. The flight control system’s primary goal is to hover the helicopter in place when a human operator holds an automatic-flight switch. This system represents the first step in a complete waypoint-navigation flight control system. The flight control system is based on an inertial measurement unit (IMU) and a proportional-integral-derivative (PID) controller. This system is implemented using a general-purpose personal computer (GPPC) running Windows XP and other commercial off-the-shelf (COTS) hardware. This setup differs from other helicopter control systems which typically use custom embedded solutions or micro-controllers. Experiments demonstrate the sensor placement planning achieving \u3e90% coverage at optimized-cost for several typical areas given multiple camera types and parameters. Furthermore, the helicopter flight control system experiments achieve hovering success over short flight periods. However, the final conclusion is that the COTS IMU is insufficient for high-speed, high-frequency applications such as a helicopter control system

    Design of high frequency circuits for a gigabit per second data transmission system with isolation transformers and improved electrostatic protection

    Get PDF
    The focus of this dissertation is the design of a 10 Gbit/s wireline data communication system. The data is sent from the driver chip to the receiver chip on a printed circuit board (PCB). In the GHz frequency range, the parasitic effect of various circuits along the signal path affect the quality of the signal sent. Electrostatic Discharge (ESD) protection, PCB traces and packaging increase the signal loss and distortion;The parasitic effect of ESD protection circuits limits the maximum bandwidth for data transmission. The current high speed driver architectures have the driver circuit directly connected to the chip pads and PCB traces. This causes the chip to be prone to ESD discharge effects. Placing large ESD devices that shunt the output driver to ground, results in their parasitic capacitances acting as low pass filters that severely limit the data transmission rate. The packaging and PCB material are investigated in this project too. An electrical model of the bonding wire is developed through MATLAB RTM and HSPICERTM;In order to increase the data rate, changes in the architecture are performed. The contribution of this project is the introduction of on chip monolithic 4 port RF transformers at the driver and receiver front-end circuits. The transformers act as ESD isolation devices because they filter the low frequency components of the ESD signals before they damage the driver. The driver is physically isolated from the chip exterior. The signal in the driver is conveyed to the traces outside the chip by transformer induction behavior. Spark gap devices are added as ESD discharge paths too. Through investigating several transformer architectures, planar interleaved transformers are fabricated and characterized to have a bandwidth beyond 5GHz needed for suitable data transmission. A design and characterization method of RF transformers by geometric scaling is presented;The transformers are used in the driver and receiver circuit. Through simulation, the improved design proves to increase the bandwidth of the data link significantly

    Laser Atmospheric Wind Sounder (LAWS) phase 1. Volume 2

    Get PDF
    This report summarizes and documents the results of the 12-month phase 1 work effort. The objective of phase 1 was to establish the conceptional definition of the laser atmospheric wind sounder (LAWS) sensor system, including accommodations analyses to ensure compatibility with the Space Station Freedom (SSF) and the Earth Observing System (EOS) Polar Orbiting Platform (POP). Various concepts were investigated with trade studies performed to select the configuration to be carried forward to the phase 2 Preliminary Design Definition. A summary of the LAWS system and subsystem trade studies that were performed leading to the baseline design configuration is presented in the appendix. The overall objective of the LAWS Project is to define, design, and implement an operational space based facility, LAWS, for accurate measurement of Earth wind profiles. Phase 1 addressed three major areas: (1) requirements definition; (2) instrument concepts and configurations; and (3) performance analysis. For the LAWS instrument concepts and configurations, the issues which press the technological state of the art are reliable detector lifetime and laser performance and lifetime. Lag angle compensation, pointing accuracy, satellite navigation, and telescope design are significant technical issues, but they are considered to be currently state of the art. The primary issues for performance analysis concern interaction with the atmosphere in terms of backscatter and attenuation, wind variance, and cloud blockage. The phase 1 tasks were formulated to address these significant technical issues and demonstrate the technical feasibility of the LAWS concept. Primary emphasis was placed on analysis/trade and identification of candidate concepts. Promising configurations were evaluated for performance, sensitivities, risks, and budgetary costs. Lockheed's baseline LAWS configuration is presented
    corecore