5,836 research outputs found

    Privacy-Aware Processing of Biometric Templates by Means of Secure Two-Party Computation

    Get PDF
    The use of biometric data for person identification and access control is gaining more and more popularity. Handling biometric data, however, requires particular care, since biometric data is indissolubly tied to the identity of the owner hence raising important security and privacy issues. This chapter focuses on the latter, presenting an innovative approach that, by relying on tools borrowed from Secure Two Party Computation (STPC) theory, permits to process the biometric data in encrypted form, thus eliminating any risk that private biometric information is leaked during an identification process. The basic concepts behind STPC are reviewed together with the basic cryptographic primitives needed to achieve privacy-aware processing of biometric data in a STPC context. The two main approaches proposed so far, namely homomorphic encryption and garbled circuits, are discussed and the way such techniques can be used to develop a full biometric matching protocol described. Some general guidelines to be used in the design of a privacy-aware biometric system are given, so as to allow the reader to choose the most appropriate tools depending on the application at hand

    An IoT Endpoint System-on-Chip for Secure and Energy-Efficient Near-Sensor Analytics

    Full text link
    Near-sensor data analytics is a promising direction for IoT endpoints, as it minimizes energy spent on communication and reduces network load - but it also poses security concerns, as valuable data is stored or sent over the network at various stages of the analytics pipeline. Using encryption to protect sensitive data at the boundary of the on-chip analytics engine is a way to address data security issues. To cope with the combined workload of analytics and encryption in a tight power envelope, we propose Fulmine, a System-on-Chip based on a tightly-coupled multi-core cluster augmented with specialized blocks for compute-intensive data processing and encryption functions, supporting software programmability for regular computing tasks. The Fulmine SoC, fabricated in 65nm technology, consumes less than 20mW on average at 0.8V achieving an efficiency of up to 70pJ/B in encryption, 50pJ/px in convolution, or up to 25MIPS/mW in software. As a strong argument for real-life flexible application of our platform, we show experimental results for three secure analytics use cases: secure autonomous aerial surveillance with a state-of-the-art deep CNN consuming 3.16pJ per equivalent RISC op; local CNN-based face detection with secured remote recognition in 5.74pJ/op; and seizure detection with encrypted data collection from EEG within 12.7pJ/op.Comment: 15 pages, 12 figures, accepted for publication to the IEEE Transactions on Circuits and Systems - I: Regular Paper

    Reliable Hardware Architectures for Cyrtographic Block Ciphers LED and HIGHT

    Get PDF
    Cryptographic architectures provide different security properties to sensitive usage models. However, unless reliability of architectures is guaranteed, such security properties can be undermined through natural or malicious faults. In this thesis, two underlying block ciphers which can be used in authenticated encryption algorithms are considered, i.e., LED and HIGHT block ciphers. The former is of the Advanced Encryption Standard (AES) type and has been considered areaefficient, while the latter constitutes a Feistel network structure and is suitable for low-complexity and low-power embedded security applications. In this thesis, we propose efficient error detection architectures including variants of recomputing with encoded operands and signature-based schemes to detect both transient and permanent faults. Authenticated encryption is applied in cryptography to provide confidentiality, integrity, and authenticity simultaneously to the message sent in a communication channel. In this thesis, we show that the proposed schemes are applicable to the case study of Simple Lightweight CFB (SILC) for providing authenticated encryption with associated data (AEAD). The error simulations are performed using Xilinx ISE tool and the results are benchmarked for the Xilinx FPGA family Virtex- 7 to assess the reliability capability and efficiency of the proposed architectures

    Envisioning the Future of Cyber Security in Post-Quantum Era: A Survey on PQ Standardization, Applications, Challenges and Opportunities

    Full text link
    The rise of quantum computers exposes vulnerabilities in current public key cryptographic protocols, necessitating the development of secure post-quantum (PQ) schemes. Hence, we conduct a comprehensive study on various PQ approaches, covering the constructional design, structural vulnerabilities, and offer security assessments, implementation evaluations, and a particular focus on side-channel attacks. We analyze global standardization processes, evaluate their metrics in relation to real-world applications, and primarily focus on standardized PQ schemes, selected additional signature competition candidates, and PQ-secure cutting-edge schemes beyond standardization. Finally, we present visions and potential future directions for a seamless transition to the PQ era

    Privacy-Preserving Personal Health Record System Using Attribute-Based Encryption

    Get PDF
    Personal health record (PHR) service is an emerging model for health information exchange. It allows patients to create, manage, control and share their health information with other users as well as healthcare providers. In reality, a PHR service is likely to be hosted by third-party cloud service providers in order to enhance its interoperability. However, there have been serious privacy concerns about outsourcing PHR data to cloud servers, not only because cloud providers are generally not covered entities under HIPAA, but also due to an increasing number of cloud data breach incidents happened in recent years. In this thesis, we propose a privacy-preserving PHR system using attribute-based encryption (ABE). In this system, patients can encrypt their PHRs and store them on semi-trusted cloud servers such that servers do not have access to sensitive PHR contexts. Meanwhile patients maintain full control over access to their PHR files, by assigning fine-grained, attribute-based access privileges to selected data users, while different users can have access to different parts of their PHR. Our system also provides extra features such as populating PHR from professional electronic health record (EHR) using ABE. In order to evaluate our proposal, we create a Linux library that implement primitive of key-policy attribute-based encryption (KP-ABE) algorithms. We also build a PHR application based on Indivo PCHR system that allow doctors to encrypt and submit their prescription and diagnostic note to PHR servers using KP-ABE. We evaluate the performance efficiency of different ABE schemes as well as the data query time of Indivo PCHR system when PHR data are encrypted under ABE scheme

    Space station data system analysis/architecture study. Task 2: Options development, DR-5. Volume 2: Design options

    Get PDF
    The primary objective of Task 2 is the development of an information base that will support the conduct of trade studies and provide sufficient data to make key design/programmatic decisions. This includes: (1) the establishment of option categories that are most likely to influence Space Station Data System (SSDS) definition; (2) the identification of preferred options in each category; and (3) the characterization of these options with respect to performance attributes, constraints, cost and risk. This volume contains the options development for the design category. This category comprises alternative structures, configurations and techniques that can be used to develop designs that are responsive to the SSDS requirements. The specific areas discussed are software, including data base management and distributed operating systems; system architecture, including fault tolerance and system growth/automation/autonomy and system interfaces; time management; and system security/privacy. Also discussed are space communications and local area networking
    corecore