23,920 research outputs found

    Design and realization of precise indoor localization mechanism for Wi-Fi devices

    Get PDF
    Despite the abundant literature in the field, there is still the need to find a time-efficient, highly accurate, easy to deploy and robust localization algorithm for real use. The algorithm only involves minimal human intervention. We propose an enhanced Received Signal Strength Indicator (RSSI) based positioning algorithm for Wi-Fi capable devices, called the Dynamic Weighted Evolution for Location Tracking (DWELT). Due to the multiple phenomena affecting the propagation of radio signals, RSSI measurements show fluctuations that hinder the utilization of straightforward positioning mechanisms from widely known propagation loss models. Instead, DWELT uses data processing of raw RSSI values and applies a weighted posterior-probabilistic evolution for quick convergence of localization and tracking. In this paper, we present the first implementation of DWELT, intended for 1D location (applicable to tunnels or corridors), and the first step towards a more generic implementation. Simulations and experiments show an accuracy of 1m in more than 81% of the cases, and less than 2m in the 95%.Peer ReviewedPostprint (published version

    Evaluating indoor positioning systems in a shopping mall : the lessons learned from the IPIN 2018 competition

    Get PDF
    The Indoor Positioning and Indoor Navigation (IPIN) conference holds an annual competition in which indoor localization systems from different research groups worldwide are evaluated empirically. The objective of this competition is to establish a systematic evaluation methodology with rigorous metrics both for real-time (on-site) and post-processing (off-site) situations, in a realistic environment unfamiliar to the prototype developers. For the IPIN 2018 conference, this competition was held on September 22nd, 2018, in Atlantis, a large shopping mall in Nantes (France). Four competition tracks (two on-site and two off-site) were designed. They consisted of several 1 km routes traversing several floors of the mall. Along these paths, 180 points were topographically surveyed with a 10 cm accuracy, to serve as ground truth landmarks, combining theodolite measurements, differential global navigation satellite system (GNSS) and 3D scanner systems. 34 teams effectively competed. The accuracy score corresponds to the third quartile (75th percentile) of an error metric that combines the horizontal positioning error and the floor detection. The best results for the on-site tracks showed an accuracy score of 11.70 m (Track 1) and 5.50 m (Track 2), while the best results for the off-site tracks showed an accuracy score of 0.90 m (Track 3) and 1.30 m (Track 4). These results showed that it is possible to obtain high accuracy indoor positioning solutions in large, realistic environments using wearable light-weight sensors without deploying any beacon. This paper describes the organization work of the tracks, analyzes the methodology used to quantify the results, reviews the lessons learned from the competition and discusses its future

    Low-effort place recognition with WiFi fingerprints using deep learning

    Full text link
    Using WiFi signals for indoor localization is the main localization modality of the existing personal indoor localization systems operating on mobile devices. WiFi fingerprinting is also used for mobile robots, as WiFi signals are usually available indoors and can provide rough initial position estimate or can be used together with other positioning systems. Currently, the best solutions rely on filtering, manual data analysis, and time-consuming parameter tuning to achieve reliable and accurate localization. In this work, we propose to use deep neural networks to significantly lower the work-force burden of the localization system design, while still achieving satisfactory results. Assuming the state-of-the-art hierarchical approach, we employ the DNN system for building/floor classification. We show that stacked autoencoders allow to efficiently reduce the feature space in order to achieve robust and precise classification. The proposed architecture is verified on the publicly available UJIIndoorLoc dataset and the results are compared with other solutions

    An Indoor Navigation System Using a Sensor Fusion Scheme on Android Platform

    Get PDF
    With the development of wireless communication networks, smart phones have become a necessity for people’s daily lives, and they meet not only the needs of basic functions for users such as sending a message or making a phone call, but also the users’ demands for entertainment, surfing the Internet and socializing. Navigation functions have been commonly utilized, however the navigation function is often based on GPS (Global Positioning System) in outdoor environments, whereas a number of applications need to navigate indoors. This paper presents a system to achieve high accurate indoor navigation based on Android platform. To do this, we design a sensor fusion scheme for our system. We divide the system into three main modules: distance measurement module, orientation detection module and position update module. We use an efficient way to estimate the stride length and use step sensor to count steps in distance measurement module. For orientation detection module, in order to get the optimal result of orientation, we then introduce Kalman filter to de-noise the data collected from different sensors. In the last module, we combine the data from the previous modules and calculate the current location. Results of experiments show that our system works well and has high accuracy in indoor situations

    Smart Geographic object: Toward a new understanding of GIS Technology in Ubiquitous Computing

    Get PDF
    One of the fundamental aspects of ubiquitous computing is the instrumentation of the real world by smart devices. This instrumentation constitutes an opportunity to rethink the interactions between human beings and their environment on the one hand, and between the components of this environment on the other. In this paper we discuss what this understanding of ubiquitous computing can bring to geographic science and particularly to GIS technology. Our main idea is the instrumentation of the geographic environment through the instrumentation of geographic objects composing it. And then investigate how this instrumentation can meet the current limitations of GIS technology, and offers a new stage of rapprochement between the earth and its abstraction. As result, the current research work proposes a new concept we named Smart Geographic Object SGO. The latter is a convergence point between the smart objects and geographic objects, two concepts appertaining respectively to

    Hybrid Building/Floor Classification and Location Coordinates Regression Using A Single-Input and Multi-Output Deep Neural Network for Large-Scale Indoor Localization Based on Wi-Fi Fingerprinting

    Full text link
    In this paper, we propose hybrid building/floor classification and floor-level two-dimensional location coordinates regression using a single-input and multi-output (SIMO) deep neural network (DNN) for large-scale indoor localization based on Wi-Fi fingerprinting. The proposed scheme exploits the different nature of the estimation of building/floor and floor-level location coordinates and uses a different estimation framework for each task with a dedicated output and hidden layers enabled by SIMO DNN architecture. We carry out preliminary evaluation of the performance of the hybrid floor classification and floor-level two-dimensional location coordinates regression using new Wi-Fi crowdsourced fingerprinting datasets provided by Tampere University of Technology (TUT), Finland, covering a single building with five floors. Experimental results demonstrate that the proposed SIMO-DNN-based hybrid classification/regression scheme outperforms existing schemes in terms of both floor detection rate and mean positioning errors.Comment: 6 pages, 4 figures, 3rd International Workshop on GPU Computing and AI (GCA'18

    Toward a unified PNT, Part 1: Complexity and context: Key challenges of multisensor positioning

    Get PDF
    The next generation of navigation and positioning systems must provide greater accuracy and reliability in a range of challenging environments to meet the needs of a variety of mission-critical applications. No single navigation technology is robust enough to meet these requirements on its own, so a multisensor solution is required. Known environmental features, such as signs, buildings, terrain height variation, and magnetic anomalies, may or may not be available for positioning. The system could be stationary, carried by a pedestrian, or on any type of land, sea, or air vehicle. Furthermore, for many applications, the environment and host behavior are subject to change. A multi-sensor solution is thus required. The expert knowledge problem is compounded by the fact that different modules in an integrated navigation system are often supplied by different organizations, who may be reluctant to share necessary design information if this is considered to be intellectual property that must be protected
    • …
    corecore