8 research outputs found

    A new approach for the validation of conceptual holonic constructions

    Get PDF
    The concepts of holon and holarchy were first applied in the manufacturing world to develop Holonic Manufacturing Systems. Since then, they have been used in many fields and have proved to be applicable concepts for developing applications in any business area. Resulting applications are based on conceptual holonic constructions. Like any model, a holarchy needs to be validated under real circumstances. Such validation assures the quality of the holarchy before it is implemented. In general, validation research tends to target: 1) the specific types of holons handled in each proposal and/or the selected development paradigms; and 2) algorithm performance rather than architecture quality. This paper proposes and evaluates a methodology that focuses on the quality of the architecture. This methodology is able to validate any holonic architecture built to meet trade requirements. Moreover, this is a general-purpose methodology. Therefore, the methodology would be valid for any domain and would not be invalidated by holon types and/or implementation paradigms emerging, changing or falling into disuse. For this purpose, we consider holonic architectures as conceptual models, using the pure holon and holarchy concepts and passing up not only any specific implementation paradigm but also any set of specific holon types

    Holonic Workforce Allocation To Reduce The Impact Of Absenteeism And Turnover

    Get PDF
    Holonic Manufacturing System (HMS) adopts Arthur Koestler’s generalisation on living organisms and social organisations into a novel paradigm that suits the manufacturing industry. Autonomy and cooperation are the prime attributes of holons. The holonic concepts have been applied to many areas, and yet, rarely attempted on workforce allocation. Hence, this scientific research is intended to develop a duallevel advisory model called Holonic Workforce Allocation Model (HWM) in order to deal with absenteeism and turnover

    Production Scheduling

    Get PDF
    Generally speaking, scheduling is the procedure of mapping a set of tasks or jobs (studied objects) to a set of target resources efficiently. More specifically, as a part of a larger planning and scheduling process, production scheduling is essential for the proper functioning of a manufacturing enterprise. This book presents ten chapters divided into five sections. Section 1 discusses rescheduling strategies, policies, and methods for production scheduling. Section 2 presents two chapters about flow shop scheduling. Section 3 describes heuristic and metaheuristic methods for treating the scheduling problem in an efficient manner. In addition, two test cases are presented in Section 4. The first uses simulation, while the second shows a real implementation of a production scheduling system. Finally, Section 5 presents some modeling strategies for building production scheduling systems. This book will be of interest to those working in the decision-making branches of production, in various operational research areas, as well as computational methods design. People from a diverse background ranging from academia and research to those working in industry, can take advantage of this volume

    Fractal architecture for 'leagile' networked enterprises.

    Get PDF
    The manufacturing environment and markets in recent times are becoming increasingly dynamic, diverse and unpredictable, due mainly to fast evolution of products and technology, erratic customer behaviour and high consumerism and an increasingly shorter lead-time. The burden of the impact falls on organisational structures built on centralized, rigid manufacturing architecture, because they cannot cope or adapt to the highly uncertain or unpredictable nature of the market. Enterprises who wish to survive these challenges need to rethink their business and manufacturing models, and most importantly reinvent their tactical, operational and organizational formulas to leverage their strategic long term visions.Newer manufacturing systems to curb the effects of this upheaval have to promote an entirely decentralised, flexible, distributed, configurable and adaptable architecture to ameliorate this condition. Many philosophies are proposed and studied towards planning, monitoring, and controlling the 21st century manufacturing system. These include - Bionic manufacturing system (BMS), Holonic manufacturing system (HMS), Fractal manufacturing system (FrMS), Responsive manufacturing etc.This research program focuses on the FrMS, which has vast conceptual advantageous features among these new philosophies, but its implementation has proved very difficult. FrMS is based on autonomous, cooperating, self-similar agent called fractal that has the capability of perceiving, adapting and evolving with respect to its partners and environment. The fractal manufacturing configuration uses self regulating, organisational work groups, each with identical goals and within its own area of competence to build up an integrated, holistic network system of companies. This network yields constant improvement as well as continuous checks and balances through self-organising control loops. The study investigates and identifies the nature, characteristic features and feasibility of this system in comparison to traditional approaches with a detailed view to maximising the logistical attribute of lean manufacturing system and building a framework for 'leagile' (an integration of lean and agile solutions) networked capabilities. It explores and establishes the structural characteristic potentials of Fractal Manufacturing Partnership (FMP), a hands-on collaboration between enterprises and their key suppliers, where the latter become assemblers of their components while co-owning the enterprise's facility, to create and achieve high level of responsiveness. It is hoped that this architecture will drive and harness the evolution from a vertically integrated company, to a network of integrated, leaner core competencies needed to tackle and weather the storm of the 21st century manufacturing system

    Reference architecture for configuration, planning and control of 21st century manufacturing systems.

    Get PDF
    Today's dynamic marketplace requires flexible manufacturing systems capable of cost-effective high variety - low volume production in frequently changing product demand and mix. Several new paradigms, e.g. holonic, fractal, biological and responsive manufacturing, have recently been proposed and studied in the academic literature. These 'next generation of manufacturing systems' have been especially designed to meet the requirements of an unstable and unpredictable marketplace. However, very little in-depth research of the configuration, planning and control methodologies of these new concepts has been conducted. This research aims to improve the comprehension and implementation of these 21st century manufacturing systems by developing an integrated reference architecture from the combination of their distinctive features that would enable manufacturing enterprises to handle successfully the configuration/reconfiguration, planning and control activities under the conditions of uncertainty and continuous change.In the course of the research, a detailed investigation into the fractal, biological and responsive manufacturing systems is conducted in order to identify the strengths and weaknesses of each concept. The common and distinctive features of the paradigms are then used to merge them to create an integrated reference architecture. The fractal configuration, biological scheduling and 'resource element' representation of resource capabilities and product processing requirements are selected as the major elements of the new system. A detailed study of fractal layout design resulted in seven distinctive methods for structuring and managing fractal cellular systems. A design methodology that supports three types of dynamic scheduling is developed for biological manufacturing systems. Resource elements are used with fractal layouts and biological scheduling to enhance performance and to enable an integration of the concepts. The proposed reference architecture is modelled and evaluated using object-oriented programming, computer simulation and heuristic algorithms. The research results indicate that the performance of systems that employ biological scheduling and fractal layouts can be improved by using the concept of resource elements to utilise any hidden capabilities of resources and to achieve an optimal distribution of resources on the shop floor

    Building holarchies for concurrent manufacturing planning and control in EtoPlan

    Get PDF
    The increasing versatility in order characteristics calls for planning and control systems that are able to evolve in time. Traditional hierarchical systems are usually based on a function-oriented static control structure in which all orders and products are handled similarly. Due to the dynamically changing characteristics of manufacturing environments these static control structures are not suitable anymore. Hence, a concept description and a prototype implementation for concurrent manufacturing planning and control (EtoPlan) based on multiple and temporary hierarchies (holarchies) are presented. The alternative control structure allows among other things to bridge the gap between process planning and production planning. The EtoPlan order planning method explicitly models the uncertainty in the information due to incompleteness of process planning information and shop floor randomness
    corecore