
Copyright © IF AC Information Control Problems in 
Manufacturing, Vienna. Austria. 2001 

IFAC 
c: 0 [> 

Publications 
www.elsevier.comllocate/ifac 

DYNAMICALLY EVOLVING COORDINATION SOFTWARE ARCHITECTURES 
FOR PRODUCTION 

Rob L. W. van de Weg and Rolr Engmann 

Computer Science Depanment, University of Twente 
P.O. Box 217, NL-7500 AE, Enschede, The Netherlands 

e-mail: vandeweg@cs.unl!ente.nl 

Abstract: To improve flexibility in the coordination of activities of a computer control
led production system the solution is often sought in developing autonomous software 
components. However, this solution may lack integration in coordination yielding un
desirable consequences such as conflicts between components and unpredictable be
havior in the cooperation of components. This paper aims at the development of coor
dination architectures preserving integration by starting with a proper hierarchical coor
dination architecture. It can be evolved to an architecture allowing more or complete 
autonomy of components by delegating coordination (sub)tasks to subordinated com
ponents. The evolution can be made dynamic by delegating or revoking authorization 
to execute a task where and when needed. Copyright © 200] IFAC 

Keywords: coordination, architectures, flexible automation, adaptive control, integration 

I. INTRODUCTION 

It is generally recognized that computer-integrated 
production has become more and more a factor of sur
vival in the fierce international competition. In partic
ular coordination (inclusive planning and scheduling) 
and control of the activities of the production system 
must become more flexible and integrated than it is 
nowadays (Giebels, 2(00). This is due to the need for 
a higher variety of fashionable or even customer spe
cific products with relatively short life cycles, varying 
product volumes, and shorter delivery times. On the 
other hand production coordination must allow for 
unexpected events or exceptions, such as breakdowns. 

The required flexibility can be achieved by defining 
cooperating, autonomous components of the produc
tion system (e.g. agents). The relations between these 
components define a coordination architecture. In lit
erature several types of coordination architectures for 
production are proposed (Arentsen, 1995). Our re
search investigates the properties (inclusive advantag
es and disadvantages) of these coordination software 
architecture types. The aim of our research is to be 
able to point out which software coordination archi
tecture is the most appropriate in a given situation re
quiring a certain strategy in production. 

An architecture can be made even more flexible by 
the possibility of dynamic adaptation of the architec
ture to changes in the required production strategy. In 
this paper we describe our approach to develop such 

201 

flexible (dynamic) software architectures for produc
tion coordination. At the same time a complete over
view of the production process is required 
(integration), e.g. to meet global goals of the company 
with respect to supply and demand chain manage
ment, and order tracking and tracing. 

2. COORDINATION ARCHITECTURE TYPES 
AND COORDINATION STRATEGIES IN 

PRODUCTION 

Defining cooperating, autonomous, communicating 
software components (e.g. agents) for the coordina
tion of the activities of a production system should 
improve flexibility in coordination of activities in the 
production process. The activities of autonomous 
components itself are coordinated locally, and thus 
the control of the activities of those components is de
coupled from other components. Decoupling leads to 
the possibility to rearrange relations between compo
nents in the system. The advantages of autonomous 
components are: 
• improvement of reactivity due to locally 

adaptive behavior and exploitation of 
concurrent components; 

• fault tolerance, because in case of exceptions 
(e.g. breakdowns) of short duration it is not 
necessary to interrupt the schedules of other 
components. 

On the other hand integration is needed in order to 



achieve: 
• a completely predictable deterministic 

behavior of the production system; 
meeting global enterprise goals by horizontal 
integration: supply chain and demand chain 
management; 
vertical integration of coordination and 
control, e.g. to obtain order tracing and 
tracking facilities. 

The demands for local autonomy and at the same time 
for integration of coordination are contradictory. For 
instance, conflicting goals of different autonomous 
components may lead to conflicts in cooperation. Al
so, due to a possible lack of tuning and of anticipa
tion, in the cooperation of autonomous components 
there may occur emergent behavior. This is in conflict 
with the required deterministic behavior. Moreover, 
the required level of autonomy and integration may be 
time dependent, because the strategy in coordination 
can change over time. 

The operations of hardware components (production 
units) can be decoupled physically by introducing 
stores between hardware components. This offers the 
possibility to decouple the coordination between 
hardware components because stores serve as buffers 
or decoupling points (DPs) between these hardware 
components. A DP diminishes the need for synchro
nization and thus coordination of the operations. A 
DP makes hardware components less vulnerable to 
exceptions (e.g. breakdowns) occurring in a decou
pled hardware component and supports graceful deg
radation of the production process in case of longer 
duration exceptions. Moreover, DPs offer the possi
bility to use different strategies in production 
coordination, such as make to order, make to stock, 
and assemble to order (Zijm, 2(00). 

The arrangement of relations between (organization 
of) components in the system defines a coordination 
architecture. An architecture consists of software 
components coordinating hardware components, and 
the relations between the software coordinator com
ponents are realized by communication channels. Ar
entsen (Arentsen, 1995) gives an overview of 
coordination architectures for production systems: 

The centralized coordination architecture 
consists of just one software coordinator 
component for a number of controlled 
hardware components. The coordinator 
component performs all coordination tasks. 

• A proper hierarchy consists of a master-slave 
relationship between software coordinator 
components and subordinated software 
coordinator components or hardware 
components. 

• A modified hierarchy extends the proper 
hierarchy with communication channels 
between subordinated coordinator components 
at the same level. 

• 

• 

In heterarchical coordination, there is no 
control hierarchy, and all coordinator 
components can communicate directly. 
A holarchical architecture consists of holons. 
A holon is an autonomous, cooperative agent 

202 

that may consist of interacting subholons. 
Holons have goals and may negotiate about 
shared or conflicting goals. The holarchical 
architecture is a dynamic (self-organizing) 
hierarchy. 

These latter three architectures should improve the 
autonomy and the reactivity of the production process 
components. Arentsen suggests that the order of the 
architectures above represents an evolution to distrib
uted control. 

3. DEVELOPING COORDINATION 
ARCHITECTURES FOR PRODUCTION 

The goal of our approach is to develop flexible soft
ware architectures for coordination, such that autono
mous (decoupled) components behave as if they are 
coordinated. In our approach it is very important that 
an autonomous component can anticipate the behav
ior of other components. Flexibility requires that co
ordination can be adapted continuously. Therefore, in 
our approach in a coordination hierarchy the authori
zation to execute a coordination task and related deci
sion taking can be delegated dynamically to lower 
levels in the coordination hierarchy, and when inte
gration is needed this authorization can be revoked. 

To illustrate the basic concepts in our approach we 
will describe a small example. Two robots are moving 
in a narrow straight corridor in a warehouse approach
ing from opposite directions. The corridor is too nar
row for the robots to pass each other. Both robots are 
provided with detectors used to avoid collisions. They 
will stop in front of each other and a deadlock situa
tion occurs. To solve this deadlock situation we intro
duce an arbiter object capable to detect both robots 
and capable to reverse the direction of the movement 
of one of the robots for a while. 

The decision rule used by the arbiter object to decide 
which robot will move backwards can be delegated to 
both robots. To be able to evaluate this rule for each 
robot, data on the direction in which the robot itself is 
moving must be available. The possibilities to execute 
the required operation of a robot are already available 
to the robots. So, delegation of decision rules implies 
that the data to evaluate the decision rule and the abil
ity to execute the operations to apply the decision 
must be available by replication, sharing, or exchange 
(i.e. communication or transfer). This may result in 
redundancy in data and evaluation of rules, though 
controllable. The important advantage in the de
scribed situation is that a robot can always anticipate 
the reaction of other robots. No deliberation is need
ed, because the same decision rules are shared. One 
problem in delegation may be that operations are to 
be operationalised sometimes, because in general 
lower in the coordination hierarchy the time-scale to 
react is shorter and coordination tasks are more basic. 

Our approach to develop a coordination architecture 
starts by developing a proper hierarchical architecture 
in which conflicts are solved and all exceptions that 
may occur are handled (e.g. caused by failures of con
trolled hardware). Such a method, a CASE-tool, and 



raw material 
stores 

preparation material main process semi-finished finishing finished product 
stores process stores product stores process 

Figure 1. Simplified layout of the example production process 

PLC-code generator are described in (Van de Weg, 
1997). Arentsen suggests an evolution starting from 
this proper hierarchical architecture to the other types 
of coordination architectures offering more autonomy 
to components. We will use the delegation concept to 
construct other architecture types. Revocation of dele
gated responsibilities is used to (re-)construct the ap
propriate architecture dynamically. In this wa~ the 
coordination architecture can be adapted dynamIcally 
by delegating authorizations when autonomy is need
ed and revoking authorizations when integrated coor
dination is desired. 

However, first we have to explore what exactly is to 
be delegated. Based on systems theory we distinguish 
four subtasks (monitoring, diagnosis, decision taking, 
scheduling) in coordination and four related data 
stores (process state, goals, rules, schedule). This dis
tinction is quite obvious. Therefore, it is not very sur
prising that in (Arentsen, 1995) and (McPherson, 
1995) and in the literature on BDI-architecture based 
agents, e.g. (Ingrand, 1992; Rao, 1992) very similar 
subtasks and data sets are proposed. For the imple
mentation of these subtasks very specific software 
techniques are developed (e.g. requiring specific ways 
of reasoning). 

4. PROPER HIERARCHICAL COORDINATION 
ARCHITECTURE 

In Figure I the simplified layout of an example pro
duction process is depicted. The production process 
consists of three production steps: preparation pro
cess, main process, and finishing process. The prepa
ration process has as input the raw material stores 
(rm-stores) and as output material stores (m-stores). 
The main process uses m-stores as input and semi-fin
ished product stores (sfp-stores) as output. Finally, the 
finishing process uses the sfp-stores as input and the 
finished product stores (fp-stores) for output. The sets 
of rm-, m-, sfp-, and fp-stores are decoupling points 
in the production process. These input and output 
stores are alternatives or may all be used in an allocat
ed production step. For the preparation and finishing 
process there exist two production units, which may 
be used as alternatives or concurrently for the same 
allocated production step. Data on recipe options, 
schedules and states (including exceptions and re-

203 

suits) for hardware components and stores are to be 
monitored and logged. Of course tracking and tracing 
are mandatory. 

PROPERTIES OF A PROPER HIERARCHICAL COORDlNA · 

TlON ARCHITECTURE. The traditional structure of a 
production coordination software architecture .i~ a 
multi-level control hierarchy. For the decompOSItIOn 
of production coordination into such a hierarchy four 
principles are used (derived and extended from (Al
bus, 1981: lones, 1990): 

For the decomposition into levels: 
• Separation of concerns (i .e. separation of 

responsibility and authorization) with respect 
to different time scales or time horizons; 

• Separation of concerns with respect to 
different levels of abstraction. 

For the decomposition into functions at each level : 
• As imposed by the business organization 

(function separation); 
• As imposed by the production process due to 

the distribution of production steps in time, 
and of hardware components over locations. 

The difference between levels is also caused by a fur
ther more operational separation of concerns: 
• Higher in the hierarchy more aggregated data 

are needed to study longer-term trends. 
• Another consequence of the difference in time 

scales is that at higher levels in the hierarchy 
actions performed at lower levels may be 
considered to be atomic. That means that at a 
higher level in the hierarchy the effects . of 
shorter-term disturbances of the productIOn 
process can be neglected and hidden, unless 
there are longer-term consequences. Also the 
more operational details are to be hidden. 

• Implementation details relevant at a low~r 
level are hidden for a higher level. ThIS 
introduces software and hardware platforms 
offering standard interfaces for higher level 
functions. 

At each level the production coordination architecture 
is to be decomposed into subordinated coordination 
components reflecting a separation of concerns and 
functions . The decomposition is strongly based on the 
existence of DPs. This makes the production process 
less vulnerable to influences of the business environ
ment and makes a hardware component less depend-



---. 
I-client-order 

legend: 

S-client-order .-
supervisor 
coordinator 

C = command 

I = input 

S = state information 

E-main 
S-main 

E = exception information 

preparation 
coordinator 

main 
coordinator 

Figure 2. Organization diagram for production coordination according to the make-to-order strategy 

able on the activities of the other hardware ordinator components or coordinators. Coordinators 
components. Also function separation is an important trigger the execution of base components or other co-
reason for decomposition to avoid entangling and ordinators. Exceptions should be solved at the lowest 
even conflicting concerns. Hardware components not possible level in the hierarchy. 

sharing the same resources (production units and The make-to-order strategy as applied leads to the co-
stores) can be operated concurrently. However, if ordination task to synchronize operations of the prep-
hardware components are not decoupled the opera- aration, main, and finishing processes at the same 
tions must be synchronized. time and to monitor the presence of required (raw) 
A very important design heuristic is that the scope of material and semi-finished products in stores. The co-
effect of a coordination component must be within the ordination tasks related to just one production step 
scope of control of that component. The scope of con- can be delegated to the preparation, main, or finishing 
trol is defined by all components subordinate to the coordinators. 
coordinator component. The scope of effect is defined For a make-to-order strategy two substrategies may 
by the components affected by decisions taken by the be applicable. The first one is the e~clusive conu:ol 
coordinator component. If this heuristic does not hold strategy when a client order has to satlsf~ v~ry specI~-
the coordination architecture is not hierarchical (i .e. a ic quality standards or has the highest pnonty. In thIS 
two or more bosses problem may occur). For this rea- substrategy the allocation is aiming at the .synchro-
son exceptions are always to be dealt with at the low- nized, consecutive execution of the productIOn steps 
est possible level. for the order. When orders do not require exclusivity 
PROPER HIERARCHICAL COORDINATION ARCHITECTURE 

FOR MAKE-TO-ORDER STRATEGY. In Figure 2 the orga
nizational model is shown for the proper hierarchical 
coordination architecture applying the make-to-order 
strategy. The organizational model specifies in detail 
how software components cooperate to coordinate the 
activities of controlled hardware components. The 
nodes of the diagram show software coordination 
components; lines represent the communication chan
nels between the coordinator components. The nodes 
at the lowest level are so-called software base compo
nents (not shown in Figure 2), which directly coordi
nate and control the activities of corresponding 
hardware components. 

In this context the relevant hardware components can 
independently receive and handle command signals 
and usually they transmit their status (as perceived by 
detectors) and exceptions to the coordination system 
via feedback signals. A base component controls just 
one specific hardware component; the base compo
nent initiates operations to be executed by the corre
sponding hardware component by sending 
commands, and monitors via feedback signals re
ceived from sensors whether the desired operation is 
carried out correctly and timely. The actions of base 
objects are coordinated and controlled by a hierarchy 
of supervisory software components, the so-called co-

204 

and thus resources can be shared, batch forming and 
con currency are allowed to serve these orders. 

The preparation, main, and finishing coordin~tors 
each have to control and to log locally the operatIOns, 
the state and operation results of the subordinated 
hardware components for tracking and tracing pur
poses. The supervisor coordinator maintains data re
stricted to the state of the cooperation of the 
processes, and of the state of all stores. ~o meet th.e 
tracking and tracing obligation the supervIsor coordI
nator logs at the required level of aggregation the state 
of the coordinated processes and stores, and the state 
of client orders. 

PROPER HIERARCHICAL COORDINATION ARCHITECTURE 

FOR MAKE-TO-STOCK, ASSEMBLE-TO-ORDER. Now the 
original goal to handle client orders in an efficient 
way is to be split into two sub-goals because of de
coupling. The first sub-goal (according to the make
to-stock strategy) is the efficient and optimal usage of 
resources involved in the cooperation of the prepara
tion and main production steps. The responsibility to 
maintain the make-to-stock strategy is delegated to a 
make-to-stock coordinator coordinating the opera
tions of the preparation and main coordinators (see 
Figure 3). The make-to-stock coordinator ha~ also the 
responsibility for the rm and m-stores. The Input for 



S-production order 

supervisor 
coordinator 

legend: C = command 

I = input 

S-client order '--,--__ ---...-...J S = state information 

~ 

~ 
I-production order make-to-stock 
S-production order coordinator 
~ 

---. 

C-finishing 
S-back oraer 

E = exception information 

I-client order assemble-to-orde 
S-client order coordinator 
~ 

main 
coordinator 

Figure 3. A proper hierarchical coordination architecture combining the make-to-(sfp)-stock with the assemble-to-order production 

strategies 

the make-to-stock coordinator are production orders. 
The assemble-to-order strategy is to be maintained by 
the finishing (i.e. assemble-to-order) coordinator. The 
input for the assemble-to-order coordinator are client 
orders. Because the responsibility for the sfp-stores 
should to be shared with the make-to-stock coordina
tor this responsibility better stays with the supervisor 
coordinator in order to avoid conflicts. 

Batch forming has to be independent for the make-to
stock coordinator and the assemble-to-order coordi
nator. No tuning is possible. However, tuning to the 
make-to-stock coordinator may be needed. For in
stance, in case shortage of semi-finished products 
threatens the execution of the assemble-to-order pro
duction step, such that a number of client orders can 
not be served in time, a production order (back order) 
must be generated to prevent the foreseen shortage. 
Another solution may be the sharing, replication, or 
exchange of information on the actual and future state 
of sfp-stores via the supervisor coordinator. 

If we decide that back orders from the assemble-to
order coordinator can be communicated directly to 
the make-to-stock coordinator we have transformed 
the proper hierarchical coordination architecture to a 
modified one. This will be at the cost of redundancy 
in data because the supervisor still needs data, e.g. for 
tracking and tracing. A drawback of solutions based 
on a proper hierarchical coordination architecture is 
that, because they are static, only one strategy is ap
plicable. Also information on stores serving as decou
pling points is to be shared somehow. An exclusive 
control (lock, and unlock mechanism) of stores may 
be needed. The existence of decoupling points may 
form an obstacle for integration in case that coordina
tion sub-tasks are delegated to sub-coordinators. 

205 

5. EVOLUTION TO MORE AUTONOMY IN 
COORDINATION 

A heterarchical coordination architecture (see Figure 
4) offers more autonomy of coordinators. We will 
start with a proper hierarchical coordination architec
ture as constructed for the make-to-order strategy. All 
coordination tasks of the supervisor coordinator are to 
be delegated to the preparation, main, and finishing 
coordinators, and to be operationalised for each coor
dinator. However, the coordination tasks to tune coop
eration of hardware components require sharing of 
stores, and it may be necessary to have a locking 
mechanism for the use of stores. In particular there 
may arise conflicts when several coordinators want 
control of an intermediate store, for instance when ex
clusive control is needed or when the operations of 
consecutive production steps are not synchronized. 
Scheduling and in particular batch forming may be 
complicated because a lot of deliberation is needed 
between coordinators unless decision rules are rela
tively simple. Also complex exception handling and 
related decision taking may cause a lot of deliberation 
when consecutive production step coordinators are in
volved. An advantage is that it is possible to adapt to 
different production strategies required for different 
orders. Possibly the easiest way is that production or 
client orders are input for the first production step co
ordinator involved in its production. Forward schedul
ing can be an appropriate approach in particular when 
an order has to have input for the first coordinator 
(make-to-order and make-to-stock). If the contents of 
input stores are sufficient for processing at the sched
uled time the operations of the next coordinator in the 
sequence can be scheduled, otherwise a back order is 
to be generated. Another approach can be backward 
scheduling, which can be more appropriate in case the 



I~ -. 
l-order -. 

l-order 

S-order 
preparation 
coordinator 

~-order 

C-ont: 

main 
coordinator 

~-or er finishing 
c-o~ coordinator .- C-back orde .-

Figure 4. Heterarchical coordination architecture 

production strategy is e.g. assemble-to-order. The ad
vantages of a heterarchical coordination architecture 
applying the delegation mechanism are: 

Push and pull of orders is possible: 
Flexibility because it is possible to cope with a 
mix of orders requiring different production 
strategies. 

Disadvantages are: 
Deliberation or negotIatIOn IS needed to 
schedule, to form batches and to tune 
consecutive activities (the operator may 
prescribe time slots for scheduling orders to be 
produced according to some strategy); 

• Complicated control of intermediate stores; 
• Lack of integration with respect to processing 

as well as data: 
• Avoids conflicts in goals when derived from a 

proper hierarchical coordination architecture, 
however in the future maintenance may cause 
conflicts and unpredictable behavior. 

6. DYNAMIC EVOLUTION OF COORDINATION 
ARCHITECTURES 

From the previous chapters it is clear that the proper 
hierarchical coordination architecture usually is the 
most advantageous architecture when the delegation 
mechanism is applied, because it avoids redundancy, 
deliberation and negotiation. However, it is not flexi
ble with respect to different production strategies. 
Therefore, the most flexible solution would be a tem
porary proper coordination hierarchy when required 
for a production strategy. It can be made dynamic be
cause instead of delegating (sub) tasks and related 
data and operations forever, authorizations can be re
voked when needed. That means that (sub-) coordina
tors can be created when needed. Due to the choice 
for a specific optimized operationalisation of a coor
dination task the implementation of the temporary 
delegation of a task to a subordinated coordinator will 
be implemented as the activation of the delegated and 
operationalised task. The related implementation of 
the revocation is to make the task inactive. 

7. CONCLUSIONS 

The delegation mechanism offers an improved insight 
in the relations between software coordination archi
tecture types existing in production automation. The 
make-to-order strategy is a good starting point to con
struct a (centralized) proper hierarchical coordination 
architecture in which all kinds of conflicts are antici-

206 

C~rder 

pated, as a make-to-order strategy requires an inte
grated approach. Applying the delegation mechanism 
to this architecture allows to derive in a simple way 
proper hierarchical coordination architectures for oth
er production strategies. A problem may be that the 
operationalisation of coordination (sub) tasks the del
egation can be irreversible. A heterarchical coordina
tion architecture can also be derived from a proper 
hierarchical coordination architecture by delegation. 
However, additional deliberation and redundancy in 
data can be expected. A holarchical coordination ar
chitecture can be constructed from proper hierarchical 
coordination architectures dedicated to the strategies 
needed. Delegation and revocation of tasks can be im
plemented as activation and deactivation of tasks. 

REFERENCES 

Albus, 1.S .• A.J. Barbera and R.N. Nagel (1981). 'Theory 
and practice of hierarchical control' , in: Proc. of the 
23rd IEEE Computer Society International Confer
ence, Washington, 18-39. 

Arentsen, A.L. (1995). 'A generic Architecture for Factory 
Activity Control', Ph.D. thesis, Faculty of Mechani
cal Engineering, University of Twente, Enschede. 

Giebels, M.M.T. (2000). 'EtoPlan: a Concept for Concur
rent Manufacturing Planning and Control - Building 
holarchies for manufacture-to-order environments', 
Ph.D. thesis, Faculty of Mechanical Engineering, 
University of Twente, Enschede. 

Ingrand, E E, M.P. Georgeff and A.S. Rao (1992). 'An ar
chitecture for real-time reasoning and system con
trol', IEEE Expert, 7, 34-44. 

lones, A. and A. Saleh (1990). 'A multi-Ievellmulti-Iayer 
architecture for intelligent shop floor control', Int. 
Journal of Computer Integrated Manufacturing, 
Vol. 3, No. I. 60-70. 

McPherson, R.E, and K. Preston White Jr. (1995). 'Dynam
ical issues in the planning and control of integrated 
manufacturing hierarchies" Production Planning & 
Control, VoI. 6, No. 6, 554-554. 

Rao, A. S. and M.P. Georgeff, (1992). 'An abstract architec
ture for rational agents', In Rich, C, Swartout. W., 
and Nebel, B., editors, Proceedings of the Third 
Conference on Knowledge Representation and Rea
soning, KR'92, San Mateo, CA. Morgan Kauf
mann.439-449. 

Van de Weg, R., R. Engmann, R. van de Hoef and V. ten 
Thij (1997). 'An Environment for Object-Oriented 
Real-Time Systems Design', in : 1. Ebert and C 
Lewerentz, editors, 8th Conference on Software En
gineering Environments. IEEE Computer Science 
Press, 23-33. 

Zijm, W.H.M. (2000). 'Towards intelligent manufacturing 
planning and control systems', OR Spektrum, 22, 
Springer-Verlag 313-345. 


