1,832 research outputs found

    Building Programmable Wireless Networks: An Architectural Survey

    Full text link
    In recent times, there have been a lot of efforts for improving the ossified Internet architecture in a bid to sustain unstinted growth and innovation. A major reason for the perceived architectural ossification is the lack of ability to program the network as a system. This situation has resulted partly from historical decisions in the original Internet design which emphasized decentralized network operations through co-located data and control planes on each network device. The situation for wireless networks is no different resulting in a lot of complexity and a plethora of largely incompatible wireless technologies. The emergence of "programmable wireless networks", that allow greater flexibility, ease of management and configurability, is a step in the right direction to overcome the aforementioned shortcomings of the wireless networks. In this paper, we provide a broad overview of the architectures proposed in literature for building programmable wireless networks focusing primarily on three popular techniques, i.e., software defined networks, cognitive radio networks, and virtualized networks. This survey is a self-contained tutorial on these techniques and its applications. We also discuss the opportunities and challenges in building next-generation programmable wireless networks and identify open research issues and future research directions.Comment: 19 page

    Advanced Message Routing for Scalable Distributed Simulations

    Get PDF
    The Joint Forces Command (JFCOM) Experimentation Directorate (J9)'s recent Joint Urban Operations (JUO) experiments have demonstrated the viability of Forces Modeling and Simulation in a distributed environment. The JSAF application suite, combined with the RTI-s communications system, provides the ability to run distributed simulations with sites located across the United States, from Norfolk, Virginia to Maui, Hawaii. Interest-aware routers are essential for communications in the large, distributed environments, and the current RTI-s framework provides such routers connected in a straightforward tree topology. This approach is successful for small to medium sized simulations, but faces a number of significant limitations for very large simulations over high-latency, wide area networks. In particular, traffic is forced through a single site, drastically increasing distances messages must travel to sites not near the top of the tree. Aggregate bandwidth is limited to the bandwidth of the site hosting the top router, and failures in the upper levels of the router tree can result in widespread communications losses throughout the system. To resolve these issues, this work extends the RTI-s software router infrastructure to accommodate more sophisticated, general router topologies, including both the existing tree framework and a new generalization of the fully connected mesh topologies used in the SF Express ModSAF simulations of 100K fully interacting vehicles. The new software router objects incorporate the scalable features of the SF Express design, while optionally using low-level RTI-s objects to perform actual site-to-site communications. The (substantial) limitations of the original mesh router formalism have been eliminated, allowing fully dynamic operations. The mesh topology capabilities allow aggregate bandwidth and site-to-site latencies to match actual network performance. The heavy resource load at the root node can now be distributed across routers at the participating sites

    Click on a Cluster: A Viable Approach to Scale Software-Based Routers

    Full text link
    All in-text references underlined in blue are linked to publications on ResearchGate, letting you access and read them immediately

    A practical approach to network-based processing

    Get PDF
    The usage of general-purpose processors externally attached to routers to play virtually the role of active coprocessors seems a safe and cost-effective approach to add active network capabilities to existing routers. This paper reviews this router-assistant way of making active nodes, addresses the benefits and limitations of this technique, and describes a new platform based on it using an enhanced commercial router. The features new to this type of architecture are transparency, IPv4 and IPv6 support, and full control over layer 3 and above. A practical experience with two applications for path characterization and a transport gateway managing multi-QoS is described.Most of this work has been funded by the IST project GCAP (Global Communication Architecture and Protocols for new QoS services over IPv6 networks) IST-1999-10 504. Further development and application to practical scenarios is being supported by IST project Opium (Open Platform for Integration of UMTS Middleware) IST-2001-36063 and the Spanish MCYT under projects TEL99-0988-C02-01 and AURAS TIC2001-1650-C02-01.Publicad

    Design of an Extensible Network Testbed with Heterogeneous Components

    Get PDF
    Virtualized network infrastructures are currently deployed in both research and commercial contexts. The complexity of the virtualization layer varies greatly in different deployments, ranging from cloud computing environments, to carrier Ethernet applications using stacked VLANs, to networking testbeds. In all of these cases, there are many users sharing the resources of one provider, where each user expects their resources to be isolated from all other users. Our work in this area is focused on network testbeds. In particular, we present the design of the latest version of the Open Network Laboratory (ONL) testbed. This redesign generalizes the underlying infrastructure to support resource extensibility and heterogeneity at a fundamental level. New types of resources (e.g., multicore PCs, FPGAs, network processors, etc) can be added to the testbed without modifying any testbed infrastructure software. Resource types can also be extended to support multiple distinct sets of functionality (e.g., an FPGA might act as a router, a switch, or a traffic generator). Moreover, users can dynamically add new resource extensions without any modification to the existing infrastructure

    Distributed PC Based Routers: Bottleneck Analysis and Architecture Proposal

    Get PDF
    Recent research in the different functional areas of modern routers have made proposals that can greatly increase the efficiency of these machines. Most of these proposals can be implemented quickly and often efficiently in software. We wish to use personal computers as forwarders in a network to utilize the advances made by researchers. We therefore examine the ability of a personal computer to act as a router. We analyze the performance of a single general purpose computer and show that I/O is the primary bottleneck. We then study the performance of distributed router composed of multiple general purpose computers. We study the performance of a star topology and through experimental results we show that although its performance is good, it lacks flexibility in its design. We compare it with a multistage architecture. We conclude with a proposal for an architecture that provides us with a forwarder that is both flexible and scalable.© IEE

    SDN as Active Measurement Infrastructure

    Get PDF
    Active measurements are integral to the operation and management of networks, and invaluable to supporting empirical network research. Unfortunately, it is often cost-prohibitive and logistically difficult to widely deploy measurement nodes, especially in the core. In this work, we consider the feasibility of tightly integrating measurement within the infrastructure by using Software Defined Networks (SDNs). We introduce "SDN as Active Measurement Infrastructure" (SAAMI) to enable measurements to originate from any location where SDN is deployed, removing the need for dedicated measurement nodes and increasing vantage point diversity. We implement ping and traceroute using SAAMI, as well as a proof-of-concept custom measurement protocol to demonstrate the power and ease of SAAMI's open framework. Via a large-scale measurement campaign using SDN switches as vantage points, we show that SAAMI is accurate, scalable, and extensible

    Flexible Network Monitoring with FLAME

    Get PDF
    Increases in scale, complexity, dependency and security for networks have motivated increased automation of activities such as network monitoring. We have employed technology derived from active networking research to develop a series of network monitoring systems, but unlike most previous work, made application needs the priority over infrastructure properties. This choice has produced the following results: (1) the techniques for general infrastructure are both applicable and portable to specific applications such as network monitoring; (2) tradeoffs can benefit our applications while preserving considerable flexibility; and (3) careful engineering allows applications with open architectures to perform competitively with custom-built static implementations. These results are demonstrated via measurements of the lightweight active measurement environment (LAME), its successor, flexible LAME (FLAME), and their application to monitoring for performance and security
    corecore