2,766 research outputs found

    Building user-defined runtime adaptation routines for stream processing applications

    Get PDF
    Stream processing applications are deployed as continuous queries that run from the time of their submission until their cancellation. This deployment mode limits developers who need their applications to perform runtime adaptation, such as algorithmic adjustments, incremental job deployment, and application-specific failure recovery. Currently, developers do runtime adaptation by using external scripts and/or by inserting operators into the stream processing graph that are unrelated to the data processing logic. In this paper, we describe a component called orchestrator that allows users to write routines for automatically adapting the application to runtime conditions. Developers build an orchestrator by registering and handling events as well as specifying actuations. Events can be generated due to changes in the system state (e.g., application component failures), built-in system metrics (e.g., throughput of a connection), or custom application metrics (e.g., quality score). Once the orchestrator receives an event, users can take adaptation actions by using the orchestrator actuation APIs. We demonstrate the use of the orchestrator in IBM's System S in the context of three different applications, illustrating application adaptation to changes on the incoming data distribution, to application failures, and on-demand dynamic composition. © 2012 VLDB Endowment

    Report from GI-Dagstuhl Seminar 16394: Software Performance Engineering in the DevOps World

    Get PDF
    This report documents the program and the outcomes of GI-Dagstuhl Seminar 16394 "Software Performance Engineering in the DevOps World". The seminar addressed the problem of performance-aware DevOps. Both, DevOps and performance engineering have been growing trends over the past one to two years, in no small part due to the rise in importance of identifying performance anomalies in the operations (Ops) of cloud and big data systems and feeding these back to the development (Dev). However, so far, the research community has treated software engineering, performance engineering, and cloud computing mostly as individual research areas. We aimed to identify cross-community collaboration, and to set the path for long-lasting collaborations towards performance-aware DevOps. The main goal of the seminar was to bring together young researchers (PhD students in a later stage of their PhD, as well as PostDocs or Junior Professors) in the areas of (i) software engineering, (ii) performance engineering, and (iii) cloud computing and big data to present their current research projects, to exchange experience and expertise, to discuss research challenges, and to develop ideas for future collaborations

    Towards a flexible data stream analytics platform based on the GCM autonomous software component technology

    Get PDF
    International audienceBig data stream analytics platforms not only need to support performance-dictated elasticity benefiting for instance from Cloud environments. They should also support analytics that can evolve dynamically from the application viewpoint, given data nature can change so the necessary treatments on them. The benefit is that this can avoid to undeploy the current analytics, modify it off-line, redeploy the new version, and resume the analysis, missing data that arrived in the meantime. We also believe that such evolution should better be driven by autonomic behaviors whenever possible. We argue that a software component based technology, as the one we have developed so far, GCM/ProActive, can be a good fit to these needs. Using it, we present our solution, still under development, named GCM-streaming, which to our knowledge seems to be quite original

    Forum Session at the First International Conference on Service Oriented Computing (ICSOC03)

    Get PDF
    The First International Conference on Service Oriented Computing (ICSOC) was held in Trento, December 15-18, 2003. The focus of the conference ---Service Oriented Computing (SOC)--- is the new emerging paradigm for distributed computing and e-business processing that has evolved from object-oriented and component computing to enable building agile networks of collaborating business applications distributed within and across organizational boundaries. Of the 181 papers submitted to the ICSOC conference, 10 were selected for the forum session which took place on December the 16th, 2003. The papers were chosen based on their technical quality, originality, relevance to SOC and for their nature of being best suited for a poster presentation or a demonstration. This technical report contains the 10 papers presented during the forum session at the ICSOC conference. In particular, the last two papers in the report ere submitted as industrial papers

    DeSyRe: on-Demand System Reliability

    No full text
    The DeSyRe project builds on-demand adaptive and reliable Systems-on-Chips (SoCs). As fabrication technology scales down, chips are becoming less reliable, thereby incurring increased power and performance costs for fault tolerance. To make matters worse, power density is becoming a significant limiting factor in SoC design, in general. In the face of such changes in the technological landscape, current solutions for fault tolerance are expected to introduce excessive overheads in future systems. Moreover, attempting to design and manufacture a totally defect and fault-free system, would impact heavily, even prohibitively, the design, manufacturing, and testing costs, as well as the system performance and power consumption. In this context, DeSyRe delivers a new generation of systems that are reliable by design at well-balanced power, performance, and design costs. In our attempt to reduce the overheads of fault-tolerance, only a small fraction of the chip is built to be fault-free. This fault-free part is then employed to manage the remaining fault-prone resources of the SoC. The DeSyRe framework is applied to two medical systems with high safety requirements (measured using the IEC 61508 functional safety standard) and tight power and performance constraints

    Run-time Architecture Models for Dynamic Adaptation and Evolution of Cloud Applications

    Get PDF
    Cloud applications are subject to continuous change due to modifications of the software application itself and, in particular, its environment. To manage changes, cloud-based systems provide diverse self-adaptation mechanisms based on run-time models. Observed run-time models are means for leveraging self- adaption, however, are hard to apply during software evolution as they are usually too detailed for comprehension by humans.In this paper, we propose iObserve, an approach to cloud-based system adaptation and evolution through run-time observation and continuous quality analysis. With iObserve, run-time adaptation and evolution are two mutual, interwoven activities that influence each other. Central to iObserve is (a) the specification of the correspondence between observation results and design models, and (b) their use in both adaptation and evolution. Run-time observation data is promoted to meaningful values mapped to design models, thereby continuously updating and calibrating those design models during run-time while keeping the models comprehendible by humans. This engineering approach allows for automated adaptation at run-time and simultaneously supports software evolution. Model-driven software engineering is employed for various purposes such as monitoring instrumentation and model transformation. We report on the experimental evaluation of this approach in lab experiments using the CoCoME benchmark deployed on an OpenStack cloud
    • …
    corecore