INSTITUT FUR INFORMATIK

Run-time Architecture Models for
Dynamic Adaptation and Evolution of
Cloud Applications
Robert Heinrich Reiner Jung Eric Schmieders

Willhelm Hasselbring Andreas Metzger
Klaus Pohl Ralf Reussner

Bericht Nr. 1503
April 2015
ISSN 2192-6247

CHRISTIAN-ALBRECHTS-UNIVERSITAT
/U KIEL



Run-time Architecture Models for
Dynamic Adaptation and Evolution of
Cloud Applications

Robert Heinrich! Reiner Jung? Eric Schmieders?
Willhelm Hasselbring? Andreas Metzger®
Klaus Pohl? Ralf Reussner!

April 20, 2015

ISoftware Design and Quality, Karlsruhe Institut of
Technology
2Software Engineering Group, Kiel University
3Software Systems Engineering, University of
Duisburg-Essen *

*This work was supported by the DFG (German Research Foundation) under the Priority
Program SPP 1593: Design For Future — Managed Software Evolution [GRG ' 14] (grants
HA 2038/4-1, RE 1674/7-1, PO 607/3-1) and the Helmholtz Association of German Re-
search Centers.



Cloud applications are subject to continuous change due to modifications of the
software application itself and, in particular, its environment. To manage changes,
cloud-based systems provide diverse self-adaptation mechanisms based on run-time
models. Observed run-time models are means for leveraging self-adaption, however,
are hard to apply during software evolution as they are usually too detailed for com-
prehension by humans.

In this paper, we propose iObserve, an approach to cloud-based system adaptation
and evolution through run-time observation and continuous quality analysis. With
iObserve, run-time adaptation and evolution are two mutual, interwoven activities
that influence each other. Central to iObserve is (a) the specification of the corre-
spondence between observation results and design models, and (b) their use in both
adaptation and evolution. Run-time observation data is promoted to meaningful val-
ues mapped to design models, thereby continuously updating and calibrating those
design models during run-time while keeping the models comprehendible by humans.
This engineering approach allows for automated adaptation at run-time and simulta-
neously supports software evolution. Model-driven software engineering is employed
for various purposes such as monitoring instrumentation and model transformation.
We report on the experimental evaluation of this approach in lab experiments using
the CoCoME benchmark deployed on an OpenStack cloud.
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1 Introduction

Cloud applications are subject to continuous changes during their operation. Exam-
ples include changes imposed by new or changed requirements, changes of the cloud
infrastructures which may impact on application quality, as well as changes of appli-
cation workload. While changes in cloud application requirements provoke manual
software evolution activities, changes in cloud infrastructures (such as virtual machine
migration and data replication) and application workloads may be addressed by the
application in a self-adaptive way (e.g. see [BCD*T12, CWM™14]). In this paper, we
understand evolution as a longer sequence of modifications to a software system over
its life-time applied manually by software engineers, while we understand adaptation
(aka. self-adaptation) to be modifications of the software system performed in an au-
tomated way (cf. [PPPM10, MD12]). Both evolution and adaptation activities are
required to address the different kinds of changes imposed on cloud applications.

Run-time models have been established as a core concept for enabling adaptation
by reflecting the system and its context at run-time (e.g. [MBJ*09, RGH"06]). Run-
time models are up-to-date abstractions of the running system. Semantic relationships
between run-time models and the executed systems are maintained, thereby allowing
analyzing and planning adaptations on the model-level.

Existing run-time model approaches only cover a very limited range of structural
changes. However, updating run-time models to reflect structural changes is relevant,
as the concrete component structures and deployment affect important application
quality characteristics, such as performance and privacy. Changes of the cloud in-
frastructure, such as migration and replication of virtual machines and components,
impact on the architecture and deployment of cloud applications. Due to the dynamic
nature of such replications and migrations, the actual, concrete changes to the deploy-
ment of cloud services are not known at design-time. Therefore, structural changes in
the cloud need to be monitored and run-time models for cloud applications have to
be updated accordingly. Only if those changes are reflected in run-time models, their
impact on application quality can be analyzed and adaptation actions can be planned
if quality requirements are violated.

While run-time models have shown their effectiveness for self-adaptation, using run-
time models during software evolution has not been explicitly addressed. As commonly
observed, design-time models often drift away from the actual system [MNSO1]. In
contrast, run-time models are kept in-sync with the underlying system. Thus run-time
models may serve as valuable basis for evolution activities. However, typical run-
time models are close to an implementation level of abstraction [VG10]. While being
useful for self-adaptation, such low level of abstraction impedes understandability for
humans. In addition, owing to various modifications during the system’s lifetime, run-
time models may grow in detail or become unnecessarily complex, which severely limits



understandability of such run-time models for humans during software evolution (e.g.
see [VG14]).

To address the aforementioned shortcomings, we present the iObserve approach (In-
tegrated Observation and Modeling to Support Adaptation and Evolution of Software
Systems). The iObserve approach facilitates automated adaptation of cloud applica-
tions at run-time, while simultaneously supporting long-term software evolution. The
initial idea of the approach has been presented in [HSJ*14]. This paper underpins the
initial idea by formal concepts, addresses underlying challenges, adds the description
of detailed meta-models and model-transformations, as well as evaluation results. We
provide the following main contributions:

e Architectural run-time models, which reflect updates of component structures
and deployments due to structural changes in the cloud.

e Instrumentation models, which facilitate model-driven instrumentation and mon-
itoring of cloud applications and infrastructures.

e Correspondence models, which define the transformations between low-level mon-
itoring data and component-based architecture models, thereby maintaining the
semantic relationships between the system and the run-time models, while keep-
ing the models understandable by humans.

e Integrated model-driven engineering life-cycle, which supports software engineers
during software evolution with always up-to-date models and facilitating run-
time analysis with respect to quality attributes such as performance and privacy.

e An evaluation of the iObserve approach using the CoCoME benchmark [RRMPOS]
deployed on an OpenStack cloud.!

The remainder of the paper is structured as follows. In Chapter 2, we present an
overview of the iObserve approach. As major part of this paper, iObserve’s methods
and techniques to run-time analysis are presented in Chapter 3. We report on the
experimental evaluation of these methods and techniques in Chapter 4 and discuss
related work in Chapter 5 before the paper concludes in Chapter 6.

Lhttp://www.openstack.org/
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2 Overview of the iObserve Approach

The cloud application life-cycle, underlying our iObserve approach, considers evolu-
tion and adaptation as two mutual, interwoven processes that influence each other
[HHJ13]. The evolution activities are conducted by software engineers, while the
adaption activities are automatically performed by predefined strategies. Figure 2.1
gives an overview of iObserve. During design-time, iObserve builds upon a model
driven engineering approach (MDE) that, firstly, models the software architecture and
deployment of the application in a component-oriented fashion and, secondly, generates
the artifacts to be executed during run-time. Once deployed, the application is con-
tinuously monitored, which is required to update the run-time model in accordance
to observed elasticity events. Central to this perception is a run-time architecture
model, updated by monitoring data, that is usable for automatized adaptation and is
simultaneously comprehensible for humans during evolution.

2.1 Phases of iObserve

First, we give an overview and explain the three phases of iObserve addressed in the
cloud application life-cycle.

e Initial software development: Prior to run-time analysis and software evo-
lution the initial software has to be developed. As we require an initial version of
the application, we propose to follow an MDE approach that provides iObserve
with models of the application’s usage profile, the application structure, and
the deployment. Once the application is modeled typical source code artifacts
such as class stubs are generated and their correspondence to design artifacts
is recorded. Further, we generate the monitoring probes based on the model,
which facilitates an automatized mapping between the model, the classes, and
the monitoring probes. After completing the class stubs the application is de-
ployed.

¢ Run-time analysis: After the application has been deployed, iObserve con-
tinuously observes changes to the application and its execution environment and
analyses for anomalies and upcoming quality flaws. The activities of the adap-
tation cycle are structured along the well-known MAPE-activities [ALGM*13].
We monitor component migration, (de-)replication, (de-)allocation, resizing of
virtual machines as well as changes in application’s usage intensity and user be-
havior (cf. the MonitoringédObservation phase in Figure 2.1), which maps to the
run-time changes described in Section 2.2. After preprocessing the observed low-
level events, we use the aggregated events to update the run-time architecture
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Figure 2.1: iObserve cloud application life-cycle: Considering adaptation and evolution
as two interwoven processes

model and provide the updated model to the analyses. Immediately after up-
dating the run-time architecture model, the quality analysis starts, which checks
the application’s achievement of performance and privacy goals (cf. the Analysis
phase in Figure 2.1). Both are key factors of modern cloud environments, as
further discussed in Section 2.2. In case of impending privacy or performance
issues, iObserve executes planning routines (not further discussed in the present
paper). However, the planning routines either solve the detected issues or notify
our approach that the encountered issues cannot be solved by any combination
of adaptation actions available. In the latter case, software evolution is triggered.

e Software evolution: Once entering the evolution cycle it has to be analyzed
why the current system configuration fails in achieving the performance and pri-
vacy goals (cf. the Fvaluation phase in Figure 2.1). In our work we focus on the
application and its deployment (and do not reflect the adaptation capabilities).
During this activity, we support the software developer by providing the up-to-
date run-time architecture model of the application that includes information on
the application components as well as on their deployment contexts, i.e. PaaS
or TaaS (the model does not reflect the adaptation capabilities). To this end,
the model has to expose a similar level of abstraction than the initial design-
time model. After changing the configuration, or even, evolving the application
code the run-time model is used to generate the class stubs and probes again,
similar to the inital software development phase. After implementing required
changes, the software is redeployed and enters the run-time analysis phase again.
Furthermore, when entering the evolution cycle due to system changes caused
by emerging requirements the code generation and correspondence mapping is
conducted the same way.



2.2 Dynamic Change at Run-time

Second, we introduce dynamic run-time changes in the cloud context. In our work, we
focus on performance and privacy as two examples of quality aspects, since both are
key factors [Clal0] that impact on cloud computing growth and acceptance [AFG*10].
To be specific, performance is one of the traditional and most demanded quality aspects
of software systems [Smi90]. Performance is typically measured by response time and
resource utilization metrics [BKR09]. A look back at the recent past shows that also
privacy is among the most important quality aspects, especially in the cloud context.
Common privacy standards! of the European Union (EU) state that sensitive data
must not leave the EU. Therefore, we analyze privacy by the geographical location of
software components that keep data (e.g., databases). In consequence, the databases
must be located on data centers that fulfill this geographical constraint. Both, perfor-
mance and privacy, are not limited to the information system context but may affect
the entire organization and their workflows [Heil4]. Thus, both quality aspects are of
strategic importance to economic organizations. Next, we discuss run-time changes to
the cloud systems and their environment that may affect performance and privacy.

Several run-time changes (C) to cloud systems and its environment have been iden-
tified in a literature review [vMvHH11, FH11, vHRHO08, BHK11b]. In the following,
we introduce the changes and sketch how to observe them. Techniques to conduct the
observation of the changes are described in Section 3.4 through Section 3.6.

We identified two changes that may affect the system’s performance by changes in
the application’s usage profile and the input parameters of the application’s services.

e Changing usage profile (C1): The usage intensity (i.e. workload) of the appli-
cation and the user behavior may change. The amount of users concurrently at
the system (closed workload [BKR09]), the users’ arrival rate (open workload
[BKRO09]), and the invoked services are contained in observable user sessions
[VHRHOS].

e Changing parameters (C2): The behavior and performance of a service de-
pends on input parameters, e.g. file size, passed when invoking the system.
Branch probabilities, for example, might strongly depend on values of parame-
ters [BHK11b] that may vary over time. Parameters can be observed by analyzing
the signatures of service requests.

The following run-time changes refer to deployment modifications, e.g. for solving
performance issues, due to better load balancing, but simultaneously may cause privacy
issues due to changes in the components’ geographical locations.

e Migration (C8): Migration removes a deployed component instance from one
execution container, e.g. an JEE application server, and creates a new instance
of the same component on another [vMvHH11]. Observing migration requires
information about the instances itself as well as their deployment contexts. Fur-
thermore, in order to verify the privacy constraint, the geographical location of
each execution container must be observed.

lhttp://eur-lex.europa.eu
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e (De-)replication (C4): Replication is similar to C3, however, the original com-
ponent instance is not removed. Thus, incoming requests to services can be
distributed among the deployed instances. De-replication removes a replica. Ob-
serving (de)-replication is analog to C3 but includes requests to instances.

e (De)-allocation (C5) [vMvHH11]; Execution containers may become available
for deployment (i.e. allocation) while others disappear (i.e. de-allocation). Ob-
serving this addresses the identity of containers, e.g. by IP addresses and URLs.
As the observation of (de)-allocation is very technology-specific this is further
discussed in Section 3.5.

e Resizing (C6): is a provider-intern change of the cloud configuration [FH11]. Ex-
ecution containers are hosted on cloud platforms. Cloud providers may change
their platform configuration at run-time, e.g. in-/decrease CPU speed due to
energy efficiency [B*12]. The cloud provider either informs the application op-
erator about resizing or resizing must be observed by the operator. Observing
this strongly depends on the cloud service model (i.e. IaaS, PaaS, SaaS). Further
reading is given in [FH11].



3 Run-time Analysis in iObserve

Now that we gave an overview of the iObserve approach, we focus on the run-time
analysis phase in the remainder of the paper. For realizing run-time analysis with
iObserve several challenges have to be addressed.

e First, we need a run-time architecture model that contains modeling constructs
to represent the aforementioned run-time changes.

e The run-time analysis requires an up to date model that reflects the current
state of the system at run-time. Therefore, we need to gather diverse monitoring
information required to update the model at run-time and must handle limited
visibility of internal system properties.

e For this, several different instrumentation and monitoring technologies must be
integrated. This requires different types and procedures to realize monitoring.
We need a model-based and technology-independent abstraction of instrumenta-
tion probes and data collection.

e The correspondence between the executed system and its representation in a
run-time model must be maintained.

e We need to manage the relationships of the various models, meta-models and
transformations in between.

In this section, we introduce formal foundations in Section 3.1. The concept of mega
models is introduced in Section 3.2 and applied to various (meta-)models and trans-
formations in iObserve. We discuss architecture meta-models for run-time prediction
in Section 3.3. The model-driven monitoring of heterogeneous technologies and plat-
forms is described in Section 3.4 through Section 3.6. We describe the specification
of the correspondence between run-time observation data on source code level and
component-based architecture models in Section 3.7. Finally, we describe transforma-
tions between the beforementioned models in Section 3.8.

3.1 Terms and Definitions

In iObserve, we use a graph based view on models and meta-models to express trans-
formations. Therefore, we introduce briefly the terminology used for graphs, graph
transformations and its relationship to models and meta-models, followed by the in-
troduction of an extension of the Meta-Object-Facilities (MOF) [ISO05] for infinite
models which we use in context of monitoring data.
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MOPF-based meta-models comprise of data types, classes, reference, operations, and
attributes. Classes comprise of references and attributes which are typed by classes
and data types respectively. To understand model and meta-model structures, and
transformations between models, the representation of models in graphs is useful.

G = (V,E,s,t) with V is a set of nodes/vertices and E is the set of edges. s,t
are the source and target operation relating edges to vertices, with s : E — V and
t: E — V. The source s defines the starting point of an edge and the target ¢ defines
the end of the edge.

This notation allows to distinguish different edges referencing the same vertices
[EEPTO06, p. 21] which is important for models and meta-models where objects and
classes can have multiple references (edges) pointing to the same entity. For example,
a meta-model for a tree structure may have a class branch with two references for
a left and right branch pointing back to the branch class. Therefore, edges must be
distinguishable even if they originate and point to the same vertex.

While the above graph structure allows to name and identify references. Typing
for attributes can also be realized in this system by including vertices to represent
data types. In typed attributed graph [EEPT06, p. 171], the different vertex and
edge types (attribute, reference, inheritance) can be distinguished by providing the
necessary attributes to edges and vertices.

Throughout the paper we use this notion on models and meta-models when refering
to model and meta-model elements.

Our approach relys on different kinds of models where some do not have a limited
number elements. For example, monitoring results in a constant stream of monitor-
ing data which amounts to large number of model elements representing this data.
Furthermore, the number of elements is not known at the design-time when the meta-
model is specified and as the software might run indefinitely the number of elements
might grow indefinitely too [CTB12]. Present model processing frameworks, for ex-
ample EMF [SBPMO09], require to store the complete model in memory which is im-
possible for large models with millions of model elements. In context of run-time
models, monitoring logs can easily grow beyond these figures. Therefore, the mod-
els and transformations used in iObserve must be able to handle infinite model parts
which is realized by only holding a few events in memory.

Current MOF-based notations, however, do not allow to express this infinity in
collection ranges in models. To overcome this limitation, an extension of MOF was
defined covering infinity in the definition of meta-models and providing new semantics
for model navigation [CTB12]. In MOF the upper bound for an collection must be
a UnlimitedNatural which is any positive number and *, where * “denotes an unlimited
(and not infinity)” [OMGI11, §9.11.7]. The underlying Collection type in UML defines
unlimited as bounded [CTB12]. Combemale et al. [CTB12] define therefore a extended
set Natural “ = Nu {#,w} with m < * < w for all m € N to replace the UnlimitedNatural
to allow the specification of infinite collections in meta-model. In this paper, we utilize
the w notation to express infinite collections in our meta-models.

11
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3.2 iObserve Mega Model

Mega models provide an informal or formal notation for the relationships of models,
meta-models and transformations [Fav04]. In iObserve, we use four different types of
explicit relationships, as depicted in Figure 3.1, to describe our modeling approach.
The figure gives an overview of the meta-models and transformations used in iObserve
as a mega model which will be described in detail in the following sections.

First, models comprise of elements which may reference each other (graphical no-
tation source — destination). These references can fall in two main categories: a)
containment references (e—) which express that the destination is part of the source,
and b) aggregation and association (¢—) which may express any number of relation-
ships of the source to the destination [JHST14]. In iObserve, we utilize such references
to express the relationship between base and aspect model in general and base and

aspect model nodes in particular.

Second, in context of MOF, models must conform to (E)rgoimig) a meta-model,

implying that a meta-model defines types (classes, enumerations and data types) and
their relationships and a model instantiates theses types.

Third, models can be created or modified based on other models. In general we
call them source and target models, where the target is created or modified by an
transformation (denoted by the letter T') based on the source model and an arrow

pointing from the source to the target model (—).

Fourth, in certain cases a transformation may require additional information to per-
form its task which is provided by an auxiliary model, for example a trace model.
In figures, these relationship is expressed by another — pointing towards the trans-
formation letter (M — T'). Furthermore, if a transformation also produces auxiliary
outputs, an second arrow is used pointing towards a model T — M.

In Figure 3.1, we provide a mega model of our approach describing the relationship

12



of our models, meta models, and transformations at design-time and run-time. Fur-
thermore, the figure illustrates the different levels of abstraction and how the models
relate to them.

3.3 Run-time Architecture Meta-Models

This section first lists requirements (R) on prospective architecture meta-models that
result from the aforementioned run-time changes. Then, we discuss modeling for-
malisms and languages for predicting software system quality based on the require-
ments. It is important to know at this point that, in the context of our research, we
consider a architecture model already exists at design-time for doing predictions by
probably making assumptions for information not available at design-time. It then
becomes a run-time prediction model by updating certain parts of the model by obser-
vation data. Hence, combining design-time and run-time properties is straightforward
since they rely on the same meta-model. (R1) For identifying C1 and C2, the archi-
tecture meta-model must reflect the application’s usage profiles in terms of workload,
user behavior (e.g., services invoked by the users, paths the users traverse) and input
parameters. (R2) The architecture meta-model must reflect the structure of the ap-
plication and its environment in a component-based fashion to analyze the effect of
reconfigurations (i.e. C3 to C5) and to ensure comprehensibility by humans during
software evolution. (R3) Quality-relevant properties of the software components’ ex-
ecution environment must be represented in the architecture meta-model to identify
C6, e.g. processing rates of CPUs.

Next, we discuss formalisms and modeling languages based on two criteria: (a)
whether they fulfill the requirements, and (b) whether they allow for analyzing perfor-
mance and privacy (i.e. geographical location). Layered Queueing Networks (LQNs)
[RS95] and the Queueing Petri Nets (QPNs) [Bau93| are established prediction for-
malisms for software systems (e.g., [Kou06]). They allow for conducting performance
predictions based on system usage profiles (R1) and performance-relevant proper-
ties of the computation environment (R3). However, since they are general-purpose
formalisms, they do not provide the specific modeling constructs for representing
component-based software architectures. Thus, they do not fulfill R2 and are in-
adequate for analyzing the geographical location of components.

The Palladio approach [BKR09] is tailored to component-based software architec-
ture analysis. It relies on a comprehensive domain-specific meta-model — the Palladio
Component Model (PCM). The PCM consists of several partial meta-models tailored
to represent different aspects of a software system such as usage profile, component
structure, deployment context, and execution environment. In iObserve, we apply the
PCM as a run-time architecture meta-model (see Figure 3.1). The PCM provides all
the modeling constructs to fulfill the aforementioned requirements [BKR09] except for
geographical location. However, it is straightforward to support geographical location
by adding an attribute to execution environment model elements.

There are several meta-models related to the PCM, such as the Descartes Meta-
Model (DMM) [BHK12], and those surveyed by Koziolek [Koz10]. These models have
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in common that they represent a detailed architecture specification in a component-
oriented fashion. They are parameterized to explicitly capture the influences of the
execution context of components, such as usage profile and hardware configuration
[BHK12]. In iObserve, we choose the PCM as a representative of these component-
based meta-models, as it fulfills the requirements, is established in the community, and
offers the most matured tool support.

3.4 Model-driven Monitoring

In iObserve, evolution and adaptation of a software system is based on an analysis of a
run-time model of this system. Therefore, the analysis requires an up to date model of
the system. This model is initially based upon the design-time model of the software
system and an estimated usage profile. During run-time this usage profile and to some
extend the composition of the software system may change. Therefore, deployment
and usage changes must be observed at run-time which is realized through application
monitoring.

In order to gather the diverse monitoring information required to update the run-
time model with respect to deployment and usage, and the limited visibility of internal
system properties, the monitoring approach integrates several different instrumenta-
tion and monitoring technologies. As this requires different types and procedures to
realize monitoring, we provide a model-based abstraction of the introduction of instru-
mentation probes and data collection.

In the life cycle of software systems, monitoring is a run-time activity used to observe
any number of parameters of a software system. However, the determination of what,
how, and where to monitor is a design-time task. In iObserve, the specification of
monitoring is dependent to the task of code generation or code production for the
application. Monitoring is perceived as an cross-cutting concern and realized as an
aspect by means of aspect-oriented modeling (AOM) [EAB02]. As Figure 3.2 shows,
the point cuts used to express the locations of monitoring probes, require information
about the relationship of application model nodes and their implementation elements,
which is expressed in a trace model. This trace model is part of the RAC and can
either be created by the T4, transformation itself or by a separate transformation
Trac as shown in Figure 3.1.

Beside the classification of monitoring into design-time and run-time tasks, it can
also be divided along the level of abstraction into model and implementation artifacts.
The design-time models, transformations, and implementation artifacts are shown in
Figure 3.2. The application model, its implementation, and the transformation be-
tween them are not addressed by our approach. However, the construction of the
point cuts or joint points on implementation level and their associated advices require
information about the technologies used in the implementation of the application and
the correspondence between the application model nodes and their representation in
the implementation.

The definition of the monitoring aspect is realized through three models for the
point cuts, the advices, and the data model for the observed information. The record

14
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Figure 3.2: Overview of model-driven monitoring approach in iObserve with its differ-
ent models, transformations and implementation artifacts at design-time.
The trace model part of the run-time application correspondence model
(RACQ) is initialized during design-time and used in the creation of joint
points at implementation level. The T4,, can also be a human task in-
stead of a transformation. In context of applications directly written in a
programming language, the application model and its implementation are
the same.

types are defined in the Instrumentation Record Language (IRL) [JHS13] providing
an implementation independent record specification which can be used across different
technologies and programming languages. Advices and point cuts form an instrumen-
tation model formulated in the Instrumentation Aspect Language (IAL).

For each of the models, transformations are used to generate the relevant implemen-
tation artifacts, if necessary. As the IAL also supports native advices, which have been
implemented by hand, not all of the advices must be generated supporting the pos-
sibility to use existing advices or include advices utilizing technologies not supported
by the transformations.

3.5 Technology-Independent Record Specification

The IRL used in iObserve allows to compose record types out of a set of attributes
and by inheriting predefined attributes from template types. Template types can also
inherit other template types realizing a multiple inheritance type system similar to the
Eclipse Modeling Framework [SBPM09]. Template types are used to specify common
attributes of records and to mark different records as belonging to a specific subset of
records.

The language provides a flat record model. The limitation to only primitive types
as attribute types in the record types was chosen to hinder developers from collection
accidentally large portions of the application state and keep the logging data minimal
to reduce the performance impact of the monitoring (cf. [HE14]). Many common mon-
itoring frameworks and record specifications [HE14, MPS99] follow the same schema.
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Figure 3.3: Excerpt of the record types model based on the Kieker IRL [JHS13]. In-
terface names are in italics and abstract classes have an asterisk (*)

In iObserve, we broadly use the Kieker monitoring framework [HWH12] to realize
monitoring of software applications, as it supports a wide range of implementation
technologies and languages. Kieker recently adopted the IRL as their primary record
type specification language. Therefore, we can reuse record types defined by Kieker
and supplement them with specific record and template types for the observations
necessary to detect the six run-time changes defined above. These record types form
a meta-model for monitoring data (cf. Record Types in Figure 3.1). To detect the
different run-time changes, observations must be made to be able to determine which
changes have happened. These changes cannot be identified through the observation
of one single event. On the contrary, an change results often in a wide range of
different events which by themselves occur is different changes or even when no change
has happened. The information must first be reconstructed based on larger sets of
monitoring events. Furthermore, in cloud environments some operations might not be
visible to the monitoring frameworks, interfaces and services, requiring multiple steps
to achieve the necessary information required to determine the type of change. Due to
the underlying pipe-and-filter architecture of our analysis, filters and transformations
can be added to accommodate other monitoring interfaces and reconstruct deployment,
allocation, and service calls based on that data.

In this paper, we focus on changes of usage profiles and deployment models. How-
ever, in this section we introduce the necessay record types and measurements, as
illustrated in Figure 3.3, for all six run-time changes. As stated in Section 3.1, mon-
itoring results infinite models, therefore the root element of the Measurement Model
may represent an infinite number of AbstractMonitoringRecords.

Changing usage profiles (C1) and service inputs (C2) require information on which
application interface operations are used and which data is passed. This is encoded in
entry call events. These are reconstructed by Tunirycan (see Figure 3.5) from three
different monitoring events which provide information on traces through the software
system including the session id, host name, entry and exit time of calls. Based on
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session id and host name, a single user can be identified which is required to determine
which entry call events belong to one user which is then used to create usage profiles.

Migration (C3) is a sequence of simpler operation which allocate a new resource,
deploy a new component, transfer necessary state data, undeploy the old component,
and de-allocate the old resource. On the monitoring level, we therefore, defined four
different templates as markers for these four operations (IDeploymentRecord, 1Undeploymen-
tRecord, lAllocationRecord, IDeallocationRecord). This is necessary, as different technologies
have different characteristics requiring different attributes to express these events. In
Figure 3.3 such record type for Java Servlets is illustrated (see ServletDeploymentEvent).

Due to limited visibility in cloud environments not all of these events might be
observable. Key for the detection of the migration are only the deployment and un-
deployment events, as they carry information about the deployed instance and their
location. In our realization, this is ensured by the deploymentld and context information.
For rare cases, where the deployment cannot be observed because the PaaS service
does not call the necessary life cycle routines, our realization also accepts heart beat
events, which are filtered out by Fheartbear and then processed by the Thepioyment
transformation reconstructing deployment and undeployment events according to ser-
vice availability.

For replication and de-replication (C4) the same operations as for migration must
be observed. However, in that case the sequence of operations is different. As before,
due to the limited visibility the allocation events might be not observable, but the
necessary information can be determined based on the context value, as it contains a
description of the servlet path and host information.

Allocation and de-allocation (C5) cannot always be observed directly and the in-
formation must be reconstructed. This can be done to some extend on the basis of
deployment and undeployment information. First, deployment can only happen on an
existing allocated execution container, therefore an deployment event implies an alloca-
tion. As the deployment event carries information about its container, this information
in combination with the existing run time model can be used to reconstruct an alloca-
tion event. De-allocation can be reconstructed, based on undeployment events. When
the last component on one execution container is undeployed the container can be de-
allocated. Based on some grace time such event could be artificial create to emulate
the de-allocation. However, false de-allocations may occur when the grace value is
too small. Also an execution container may stay present in the run time model while
it is already gone in reality when the grace value is too large. Therefore, the model
can deviate from reality for a limited period of time which must be considered when
re-using the run-time model for forecasting or evolution.

External services, like databases or software services, can only be observed by their
interface behavior hiding the internal changes of these services. Changes in their pro-
cessing rate, throughput or response time may indicate an intentional resizing effort
(C6) or just a fluctuation of these properties based on an utilization change on the
underlying system of the provider or the connecting infrastructure. Therefore, an in-
direct determination of a resizing by monitoring dependent properties can lead to a
false detection of a resizing operation. Different techniques, like ping round trips, stan-
dardized execution measurement, and thread execution time, can be used to narrow
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down false resizing detections. However, these approaches are not discussed in this
paper. If a provider informs the customer about the resizing, for example, to be able
to charge for the additional processing power, such information can be used to create
proper resizing events. In that case, we do not rely on misleading measurements.

Beside visibility or accessibility of information on system and application, monitor-
ing can produce a lot of monitoring data, especially monitoring call traces or usage
information. All this information cannot be stored in memory for later due to its
enormous size [CTB12]. On a technical level, this can be solved by utilizing big-data
storage solutions and, for example, graph databases. However, all these solutions per-
sist data on storage devices and keep only a fraction of the graph or model in memory.
Furthermore, certain monitoring data can be discarded after processing. Therefore, we
use the notion of unbounded models and perceive our model as a stream which results
that only a few monitoring records are present in the analysis filters at any given time.
For instance, the previously described EntrylLevelCall events are reconstructed out of the
data stream of application call traces which comprise, depending on the trace length of
one trace identification record and two events per called operation. All this is reduced
to one EntryLevelCall event. They are then aggregated continuously in TentrycaliSequence
(see Figure 3.5) transformation constructing a call sequence in memory.

3.6 Point cut and Advice

The Instrumentation Aspect Language (IAL) is meta-model agnostic supporting any
number of meta-models to be used to specify software systems. It comprises references
to the application model and its meta-model, references to record types, point cut
specifications which utilize information from the meta-model to query the application
model, an advice specification to define how and what must be monitored, and the
combination of point cuts and advices. The two main elements of the IAL are the
specification of point cuts and advices forming together the instrumentation model.

Point cuts are expressed in form of model queries which follow the different explicit
and implicit references in a model. For example TradingSystem.Inventory.Data.Enterprise.
EnterpriseQuerylf * * * (*) references all methods of the EnterpriseQuerylf interface used by
the component type Enterprise which is part of our application example. The asterisks
represent wildcards for modifier, return type, method name, and parameter sequence
covering the whole signature of a method. For meta-models that support exceptions in
method declarations, the point cut can be extended to check for them too. To realize
the point cuts in the implementation level, the transformation also requires a trace
information relating model level elements to implementation level elements and their
technologies. For example, the transformation must know if the point cut must be
created for AspectJ, Spring or J2EE.

The second part of an aspect is the advice, where we specify the values to be observed
at run-time, and their storage conforming to record types.
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Figure 3.4: Run-time Architecture Correspondence Meta-Model (conceptual view)

3.7 Run-time Architecture Correspondence Meta-Model
(RAC)

The record types model, depicted in Figure 3.3, exhibits a flat (i.e. non-hierarchical)
structure where all records are contained in a large, maybe infinite, collection [CTB12]
(cf. Section 3.2) and distinguished only by their type and their attributes. Monitoring
events adhering to this collection reflect code artifacts which correspond to elements
of the run-time architecture model. Knowledge about this correspondence is lodged
with the RAC, as depicted in Figure 3.1. In this section, we first describe the internals
of the RAC, then we reveal how to apply it in the context of iObserve.

For bridging the divergent levels of abstraction between code monitoring outcomes
on source code level and component-based models, the RAC must contain three types
of information:

a. The relation between source code artifacts and elements of the run-time architecture
model. This refers to the trace model part of the RAC introduced in Figure 3.2.

b. The constraints for selecting monitoring events related to the source code artifacts
from the large (infinite) collection.

c. The transformation rules for aggregating the observations to elements of the run-
time architecture model.

This information is summarized in Figure 3.4 which visualizes the internals of the
RAC from a conceptual perspective. A Relation element describes a unidirectional map-
ping between one or more elements of the executed application (i.e. ApplicationElement)
and a certain elements of the run-time architecture model, here PCMElement. Monitor-
ing events created while observing an ApplicationElement at run-time is represented as
MonitoringData elements. The MonitoringData used in the mapping must fulfill a certain
Constraint. The constraint is expressed with respect to the related ApplicationElements and
their attributes, respectively. For example, MonitoringData of the type BeforeOperationEvent
(cf. Figure 3.3) are considered as entry level calls only if their related TraceMetadata has
the value null in its parentTraceld attribute. A Relation also covers Transformation rules to
create elements of the run-time architecture model from the monitoring events.

Now that the RAC has been described, we explain how to apply it for model update
in iObserve. It is important to note, that we assume the model we modify at run-time
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has already been created at design-time. Thus, in contrast to related approaches, we
do not target the extraction of a new complete run-time model from monitoring data
but update specific parts of the existing design model.

During the initial software development phase of iObserve (cf. Section 2.1) code
is generated from component-based models. While generating the code, the corre-
spondences between the generated artifacts and the model elements are automatically
recorded and stored in the trace model part of the RAC. For example, the RAC con-
tains the correspondence between a logical component in the architecture model and
a set of objects of the executed application. Furthermore, the technology used to the
probe realization must be determined by a look up in the RAC to ensure the correct
selection of probe generator or implementation. For example, the transformation re-
quires information if the advice must realize the interface of an J2EE interceptor or
generate an AspectJ artifact.

Once deployed, the application and the entire cloud system face various changes at
run-time (cf. Section 2.2). These changes require the initial model to be updated to
continuously reflect the current system state at run-time. Updating the architecture
model by source code observations must not deviate its component-based fashion and,
thus, its usefulness for humans during long-term evolution. In iObserve, the level of
abstraction of the initial model and the updated model is maintained, due to (a) both,
the initial and updated model, rely on the same meta-model, and (b) the decomposition
of a design model element in one or more source code artifacts is recorded in the RAC
while code generation and (c) restored while transforming monitoring events related to
the source code artifacts to the component-based model. Thereby, identity is ensured
by unique identifiers of the elements recorded in the RAC. The level of abstraction
of the initial model does not affect the mapping in the RAC. Therefore, in analogy
to existing component models, we do not predetermine the abstraction level used in
the design model. Consequently, owing to the correspondence between model and
code specified in the RAC, the abstraction level of the model cannot deviate from one
update to another.

During model update, the RAC serves as a lookup for constraints to select cor-
responding monitoring events and covers transformation rules for aggregating them
to architecture models. Afterwards, the updated PCM instance is applied to predict
upcoming performance bottlenecks and privacy issues using existing solvers [BKR09,
SMP14].

3.8 Transformations in iObserve

For realizing iObserve! we apply the concept of mega models to express the rela-

tionships of different models, meta-models, and transformations. In Figure 3.1, we
introduced all central (meta-)models of iObserve, the transformations, and other rela-
tionships of the involved models and meta-models. After describing the (meta-)models
in detail in the previous sections, hereafter, we explains the transformations in between.

1iObserve is available online https://sdqweb.ipd.kit.edu/wiki/iObserve
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We adopt the idea of using model transformations to change run-time models in cor-
respondence to the reflected application from Song et al.[SHC'11] and Schmerl et al
[SAGT06] (discussed in Chapter 5).

The TAL (cf. Section 3.4) comprises structures and notation to specify point cuts
and advices for the monitoring aspect. It is used to specify where monitoring probes
must be introduced and which data values must be collected. In Figure 3.1 this spec-
ification is called instrumentation model. Thronitoring transforms the point cuts and
advices from the instrumentation model into source code artifacts. It utilizes, therefore,
model trace information on the correspondence between application model elements
and their implementation artifacts. In detail, the point cut relates an advice (source)
of the advice part of the instrumentation model to a set of application model nodes
(destination). First, these destination nodes are determined. Second, the trace model
information from the RAC is used to determine for each application model node its
implementation level counterpart [Junl4]. Finally, this information is used to compile
technology dependent join point configurations (e.g. aop.xml for aspectJ or web.xml for
servlet filters. For the advices, either automatically generated probes or predefined
implementation level artifacts are used. In the latter case, the advice specification
only references the necessary implementation level artifact.

The code generation for the application involves different code generators which we
subsum under the term 7T4,,. These generate executable code from the application
model and may comprise any number of different transformations for entity types,
behavior, employment and any other modeled aspect of the application. Like in our
application example (see Section 4.1), generators for the overall composition, data
types, and behavior [LZ11, Junl3] are combined to generate the different implemen-
tation level artifacts.

During code generation, T 4¢ inserts the correspondence between implementation
level artifacts and the model elements of the application model in the RAC. As men-
tioned before, some of this correspondence information can also be provided by the
Tapp as an auxiliary output [Junld4].

The record types defined in the IRL are separately transformed into implementation
level data structures and recording infrastructure by the Tgecorq transformation. This
transformation must be executed before generating other code artifacts to provide the
necessary record structures for the monitoring. Even more, the model as well as the
code artifacts are largely project independent and can be reuse or shared between
different applications. Tgrecorq is for all present languages realized as an model-to-text
transformation.

At run-time, additional transformations are required to analyze and process the
monitoring data. In Figure 3.1 these transformations are summarized by Tpreprocess
and TRun—timeUpdate- 1 Preprocess, illustrated in Figure 3.5, comprises different trans-
formations which filter out specific sets of monitoring events for further processing,
while Trun—timeupdate 18 responsible for updating the run-time architecture model (cf.
CoCoME Run-time Model, see Section 4.1) based on monitoring data. This transfor-
mation is depicted in further detail in Figure 3.6.

In the process of analyzing monitoring data, specific subsets of the stream of events
must be formed to present only the necessary data to the transformations. In Fig-
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Figure 3.5: Detailed view on the Tpyeprocess transformation step of Figure 3.1

ure 3.5, three filtering transformations are depicted which filter out heartbeat, flow
and deployment events (cf. Freartbeat, FFiow, a0d Fpeployment). The resulting sets
are stored in auxiliary models illustrated as Heartbeat Events, Flow Fvents, and De-
ployment Events models in Figure 3.5.

The transformation Teptrycaen transforms IFlowRecord events, like TraceMetadata, Be-
foreOperationEvent, AfterOperationEvent, and descendants into EntryCallEvents. To do so the
transformation listens or searches on the model stream for three specific event types
before it constructs an EntryCallEvent. First, it searches for an TraceMetadata instance
which is created for every call trace through the application. Second, Tgntrycan looks
for an BeforeOperationEvent which has an orderindex of 0 and which references the previous
trace by id. Such orderlndex implies that this is the first call into the system. Third,
Tentrycau listens further for an AfterOperationEvent instance which belongs to the same
trace and has the same entry call signature. To ensure that this is the right record
and not an recursive call, Tgntrycqu counts up and down for every BeforeOperationEvent
and AfterOperationEvent respectively. When all three records are identified, the resulting
EntryCallEvents with proper entry and exit times for the call, the operation signature,
host and session.

The transformation TgptryCaliSequence Creates a sequence of invocations to the ap-
plication (i.e. the workflow users traverse while using the application) based on a
collection of EntryCallEvents. For each observed user session TEntryCallSequence aITanges
the calls in chronological order to create a EntryCallSequenceModel by indexing them based
on the observed point in time the invocation occurred.

The transformation Tpepioyment is used to reconstruct deployment events from heart-
beat events, as mentioned in Section 3.5. This transformation is time triggered and
evaluates the incoming heartbeats for new deployments and create undeployments for
all components without a proper heartbeat. The analysis is split in two parts. First,
the construction of IDeploymentRecord events and second, the construction of IUndeploy-
mentRecord events. Every time Tpepioyment is triggered, it evaluates if in a given past
interval a heartbeat event from a implementation level component occurred. Then it
checks if that component is already known to the transformation. If so, it remem-
bers this heartbeat. if not, it creates an IDeploymentRecord event. In the second stage,
Tpeployment checks if for any known implementation level component, a heartbeat event
has occurred in a predefined time period. Every component which did not provide such
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Figure 3.6: Detailed view on the Tryn—time Update transformation step of Figure 3.1

heartbeat is considered undeployed and an appropriate event is created.

The transformation Tryn—time Update COMprises at present two major transforma-
tions Tauocation a0d TEntryEventSequence (see Figure 3.6). While all the transforma-
tions subsumed in Tpreprocess Processed implementation level monitoring data, the
TRun—time Update transformations also include the mapping of monitoring data to
model level elements. Therefore, both transformations utilize the RAC as second
source of input.

TEntryEventSequence assembles the application’s usage profile and creates the PCM
Usage Model. First, the transformation aggregates the paths of various observed ses-
sion from the EntryCallSequenceModel to calculate stochastic parameters for path branch
probabilities and loop iterations. Second, taking into account time deltas (cf. inter-
arrival time [BKRO09]) between the different sessions allows for calculating stochastic
parameters of the application’s usage intensity (i.e. workload). Finally, the transfor-
mation creates the corresponding PCM elements.

T at1ocation reassigns software components to hardware resources. This is achieved by
updating the allocation information in the run-time model. To be specific, the applica-
tion of Tpeployment @A Fpeployment creates a DeploymentEvent. The Deployment-
Event carries information about the deployed component (component ID) as well as
information about the allocated resource (IP). Both information is resolved to the
PCM entities under application of the RAC. The RAC provides references to the com-
ponents included in the PCM repository model as well as to the hardware resources
included in the PCM resource environment model. Once the references are known, the
T Aliocation 18 able to update the allocation model (i.e. the deployment model of the
PCM) with the new resource allocation.

23



4 Evaluation

In Section 3.7, we discussed the effectiveness of iObserve in maintaining the model
abstraction level all-over the applied model transformations. Furthermore, run-time
model approaches face specific requirements towards their reaction times. For instance,
the run-time model in our work has to be updated timely as this is required for run-
ning analyses and mitigative actions close to the actual modification of the observed
application. Consequently, run-time models are typically examined with respect to
efficiency (cf. the survey in [SZ13]).

In our evaluation, we focus on assessing the efficiency of iObserve for updating
run-time architecture models while observing an application in a realistic cloud envi-
ronment. To this end, we developed a cloud-based application building upon the estab-
lished CoCoME benchmark for component-based software engineering (Section 4.1).
Research questions are listed in Section 4.2 before the experiment setup is described
in Section 4.3. We report on the experiment results in Section 4.4.

4.1 Application Example

The experiments builds upon the Common Component Modeling Example (CoCoME)
[HKW*08]. CoCoME is a representative of a trading system as it can be found in a
supermarket chain. It implements processes at a single cash desk as well as enterprise-
wide administrative tasks. CoCoME uses a database service hosted on data centers
that may be distributed around the globe, as visualized in Figure 4.1. The figure
illustrates the CoCoME core application and the global reach of prospective cloud
providers (depicted as columns) that offer Database-as-a-Service (DBaaS). The super-
market chain is located within the European Union. Thus, sensitive data must not
leave the EU, according to the privacy constraint introduced in Section 2.2.

Advertisement of the supermarket chain leads to an increased amount of sales and
thus to variations in the application’s usage profile (C1). Increased usage intensity
may cause an upcoming performance bottleneck in the system. IT operators of the su-
permarket identify limited capacities of the data center currently hosting the database
component as a cause of performance issues. To address the performance issue the
database component may be migrated from one data center to another (C3). Migra-
tion may solve the performance issue but may violate the privacy constraint, stipulated
in privacy policies, if the new data center is located outside the EU. The same applies
to the replication (C4) of the database component that may result in better load
balancing however may cause a privacy issue.
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Figure 4.1: Deployment of CoCoME

4.2 Research Questions

Efficiency is a key aspect of run-time models. In a systematic literature review, Szvetits
and Zdun [SZ13] identified that performance (i.e. metrics on time) is by far (55%) the
most often used quality aspect for evaluating approaches dealing with run-time models.
Resource consumption (e.g., memory usage) is used at the second oftenest (10%).
Therefore, we focus on reaction time and memory consumption while analyzing the
scalability of iObserve. Furthermore, we analyze the advantage of applying iObserve
in form of a cost-benefit ratio in comparison to analyzing original Kieker log-files.
RQ1: How does iObserve scale?
In iObserve, two transformation stages Tpreprocess aNd TRun—time Update are used
to continuously preprocess monitoring events and subsequently update the run-time
model on that basis in certain intervals. Therefore, the two stages must be addressed
separately. As simultaneous user interactions of multi-tenant cloud applications may
lead to a massive amount of events, we put strong emphasis on examining the scala-
bility of the usage model update in our evaluation. The run-time changes migration
(C3) and replication (C/) occur relatively seldom, compared to user interactions with
the application, and only require the adaptation of few attributes by the transforma-
tions. Thus, we focus on changes of the usage profile (C1) in the experiments because
usage-related events are created continuously whenever the application faces a user
interaction. Usage profile changes require processing a variety of monitoring events
and, therefore, are well suited to examine scalability of iObserve in worst case.
Technically speaking, Tpreprocess must be able to cope with the number of monitor-
ing events originating from the application. Therefore, it is important to be able to
process more records in a given time unit than the monitoring can produce. Further-
more, the processing rate should not decrease over time to allow effective continuous
processing. As the temporary result of Tpreprocess are stored in memory, the mem-
ory consumption is important to determine the scalability of the preprocessing. The
processing time of Tpreprocess affects primarily the age of the data for the subsequent
TRun—time Update transformation introducing an offset for the reaction time.
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For the model updates performed by Trun—time Update it is important that their
processing time is as short as possible so that the update interval can be more frequent,
resulting in a smaller time where model and application are divergent. Furthermore,
the memory consumption by the transformation and the updated models determine
how many events can be processed limiting the size of the run-time model.

The complete reaction time is determined by the monitoring overhead [HWHI12,
WEFH14], the processing time of Tpreprocess, the interval length and the processing
time of Trun—time Update- Whereas monitoring and preprocessing together define an
overall offset for the age of the data, and the interval and processing time of the run-
time model update define the maximum time until a monitoring event is reflected in
the model.

RQ2: How is the cost-benefit ratio of iObserve?

Benefit refers to the comprehensibility of the outcomes from the humans’ perspective
by comparing a PCM instance to traditional monitoring outcomes. Cost refers to
the effort (i.e. the number of steps) that must be performed by users to update the
run-time model subsequent to a change identified at run-time.

4.3 Experiment Setting

The experiment setting is based on the application example comprising one CoCoME
instance utilizing a data service. The overall setup is tailored to evaluate performance
and resource properties and allows to simulate migration and replication scenarios.
However, in this evaluation, we focus on the scalability of the analysis in iObserve
which is why these properties of the setup are not investigated in this paper. The
ability to also evaluate migration events in the same setup allows us to re-use the
setup for these purposes in future and relate present results to such future evaluations.

In our experiments, we use a model and a conforming implementation of CoCoME
[HKWT08]. The implementation is realized with Java Enterprise Beans (EJB) and
Java Servlets providing the external interface of the store application. The application
is deployed on a PaaS system which we realized with Glassfish 4.0'. We choose an
application server compliant to JEE as JEE is widely used in productive PaaS settings
such as in OpenStack?. As we assume in this scenario that the PaaS service is rented,
we cannot instrument Glassfish or use its internal monitoring system. We therefore,
can only use probes inserted in our EAR bundle containing CoCoME which we can
deploy over a PaaS interface. The monitoring probes comprise of interceptors, filters,
and life cycle listeners for for EJB and servlet calls.

The system utilizes a database node which is realized with a PostgreSQL database
which provides migration features necessary to migrate and replicate the database.
Both nodes use an VirtualBox cloud image based on Ubuntu 14.04 which is executed
on an OpenStack cloud infrastructure.

As technological basis for monitoring, we selected the Kieker framework [HWH12], as
it has been proven to be fast and reliable [HE14]. Recently, it has been augmented by a

Lhttps://glassfish.java.net/
2https://www.openshift.com
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language and technology independent record notation [JHS13] which allows to extend
the data model used for monitoring and supports different languages and technologies.
Furthermore, Kieker is able to collect multiple measurements at once and store them
in one record, reducing the number of lookups for data compared to single value stores,
like the SMM [OMG12].

The evaluation is driven by varying workloads which are generated via the thread
group function of Apache JMeter® to simulate parallel users following a predefined
behavior forming a workload profile. The workload profile resembles the usage intensity
of the CoCoME system during a successful advertising campaign.

Before the advertising campaign, CoCoME faces a certain usage profile that is char-
acterized 10 users accessing the service over 10 iterations, followed by an product price
change to simulate the preparations for an advertising campaign. Advertisements
lead then to an increased amount of sales. Consequently, the system usage intensity
increases, which is reflected by a greater number of users.

In the context of our evaluation, we performed this scenario with different configu-
rations of the workload driver which altered the number of concurrent users during the
advertising campaign from one to 130 users to estimate the maximum utilization of
the Glassfish service. We established that in our configuration a maximal utilization
of the service is reached with 70 concurrent user threads. Higher number of threads
resulted in sporadic timeouts of the Glassfish HTTP connection. Subsequently, we
executed this 70 user workload profile with different user iterations starting at 10 iter-
ations going up to 2000 iterations. This was necessary to be able to produce different
amounts of entry call events for the Tryn—time Update transformation.

During the experiments, Kieker monitored calls to the application interface exposed
through the servlet and EJB API and provides additional information on deployments
and undeployments. These events are transmitted via TCP to an off-site analysis
node* described in the monitoring section Section 3.4 which can be used to trigger
the necessary run-time model update transformations to realize deployment and usage
model adaptations in the run-time model. As Kieker has been tested with respect to
reliability, we conclude that our measurements are not distorted by any data source.
In our experiment we logged all Kieker observations to be able to send monitoring
events as fast as possible to the analysis to test its throughput and to be able to
provide monitoring data for other researchers. While this implies an offline analysis
our analysis can also use a TCP connector between monitoring and analysis which has
been show to be the fastest transfer mechanism [WFH14].

The hardware setup of our experiment consists of different workload drivers con-
nected to the software system via an simulated 100Mbit/s Ethernet link and three
cloud instances running on our OpenStack cloud on separate CPUs with different re-
source setups. The Glassfish is running on a ml.medium instance with two virtual CPUs
based on Intel Xeon E312xx 2 GHz, 4 GB RAM and 40 GB root disk. The databases
hosted on a PostgreSQL server is running on one mil.small instance (2 GB RAM, 20
GB root disk) and one ml.medium instance. All cloud instances are interconnected by

Shttp://jmeter.apache.org/
4https://sdqweb.ipd.kit.edu/wiki/iObserve
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a virtual network realized in memory when stored on the same machine or via an 1
GBit/s Ethernet connection. Furthermore, a load balancer used as fail over switch be-
tween both databases is used to guarantee migration without interruption. The initial
placement strategy of the cloud service is to place each cloud instance on a separate
hardware host.

4.4 Experiment Results

In the experiments, we observed the executed CoCoME application at run-time using
Kieker. While observing the application, we vary its workload and, therefore, the
number of monitoring event created by Kieker. The monitored events are input to
the iObserve analysis which detects changes to component-structure, deployment, and
usage profile.

The analysis creates sequences of entry calls traversed in the observed sessions using
the transformation Tgpntrycan. From the 53214 743 monitoring events of our longest
experiment the Tpreprocess created 328822 entry call events which where then pro-
cessed by the subsequent transformations. Based on the sequences we update the
control flow and workload within the PCM usage model using the transformation
TEntryEventSequence which is Part of the TRunftime Update transformation (Cf Flg'
ure 3.6). The inspection of the generated log files confirmed the effectiveness of the
transformations in updating the usage model based on entry call events.

Scalability: The Kieker monitoring framework imposes a small and constant overhead
to the execution of each monitored operation [HWH12]. Therefore, the overhead grows
linear with the number of operations [WH12]. To reduce the load on the monitored
system, all monitoring events are transferred as a binary data stream via TCP to an
off-site analysis node. As Kieker provides different transport mechanisms, the transfer
could be realized with any number of technologies. However, the TCP stream is the
most performant method so far [WFH14]. The analysis is realized with an pipe and
filter framework. In iObserve, the transformations discussed in Section 3.8 are realized
through such filters. Therefore, we refer to specific transformations within the mega
model when analyzing reaction time and memory consumption.

The Freartveats FDepioyment, and Frio, transformations (see Figure 3.5) are realized
by a RecordSwitch filter which has a constant execution time per event, as it splits the
input stream on the basis of the record type.

The Tpepioyment transformation, reconstruction deployment events out of heartbeat
events, has a execution time which directly depends on the number of deployed com-
ponents which use the heartbeat feature to report that they are deployed, as for each
deployed component one registry entry must be maintained.

The Tentrycau transformation selects out of the event stream three records per call
trace and then reduces them to one EntryCallEvent. Therefore, the memory consumption
and execution time of the transformation depends on the number of parallel call traces
the deployed application can handle. In large installations with millions of parallel re-
quests, the analysis can be parallelized [FSH14]. In CoCoME the maximum monitored
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call trace length is 80 operations resulting in 161 monitoring events which are thereby
reduced to one EntryCallEvent. Larger application may have even longer traces resulting
in even higher reduction rates in this step of the analysis.

The TEntryCaliSequence transformation processes the events emitted by Tenirycali-
In general, this transformation represents each interface operation which has been
record by an EntryCallEvent in one vertex. Multiple EntryCallEvents of the same interface
operation do not result in additional vertices. The sequence of EntryCallEvents result
in edges between vertices. However, an edge is only added if no edge already exists
between two vertices in the same direction. Otherwise only the edge count is increased.
Therefore, the maximum number of objects necessary to represent a call sequence
is v + (v? — v) with v = |V| representing all vertices and two edges between each
pair of vertices. The result model comprising vertices and edges is transferred to the
consecutive transformation TeniryEventSequence (part of Trun—time Update) based on a
configurable trigger based on a time interval and the number of processed entry calls,
resulting in a low frequence of transformation executions. Therefore, the analysis can
handle an extensive number of monitoring events, as the memory consumption and
the potential processing time are bound to the size of model parts stored in memory
which are only a couple of elements. In our experiment, the application server was not
able to produce enough monitoring events to cause a measurable load on the analysis
node while itself measured a load of 2.04.

In addition, we evaluated the two parts of analysis separately which are represented
by Tpreprocess ad TRyn—time Update as depicted in Figure 3.1. As sub-transformations
of Tpreprocess are triggered for every incoming record and Trun—time Update ODly in
certain intervals, we measured processing rate or time, and memory consumption sep-
arately.

In the first evaluation, we examined the preprocessing part of iObserve, represented
by Tpreprocess, through increasing amounts of records to be processed. Figure 4.2a
depicts the processing rate for various number of records. The figure shows that for low
number of records the processing rate is low but it increases rapidly until a more stable
processing rate is reached around 10000 000 records converging to a processing rate of
900 records/ms even up to 53214 743 input records. This effects is caused by buffers in
the underlying pipe and filter framework, the operating system and the Java run-time
optimizations. Especially, the latter requires several iterations until optimizations are
applied. However, this implies that the processing rate is not negatively influenced by
large amounts of processed records.

Figure 4.2b depicts the memory consumption for increasing amount of created En-
tryCallEvents (up to 328 822 in the long running workload). After a warm-up phase, the
memory consumption curve exhibits a small linear gradient, as it is expected by col-
lecting entry call events for further processing. In conclusion, the preprocessing part
of iObserve scales well in terms of processing rate and memory consumption.

The second evaluation we focused on the Tryn—time Update transformation, for in-
creasing amounts of records to be processed. Figure 4.3a depicts the processing time of
a usage model transformation for increasing amount of observed records. It is shown
that after a linear growth with a high gradient until 3 000 processed records, the slope
of the curve flattens but remains linear. The higher starting increase is due to Java
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Figure 4.2: Scalability of record preprocessing represented by Tpreprocess

run-time optimizations and internal buffers of the underlying pipe and filter framework.

s oo
°
oc—swm"
% S |
g ®
° m o~
v o a
E g 2
£ 3 R =
=) 2 -
c o o [} ©
@ Q7 ® £
%] ° [ 8
3} e a
S o S = w
e o+ ¢
F
!’ < - .
o - o

0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000
Processed records (k records) Processed records (k records)
(a) Processing time (b) Memory consumption

Figure 4.3: Scalability of the usage model transformation of Tryn—time Update

The memory consumption of the model update transformation was measured for
all different workload configurations and resulted in values between 3.8 MB up to
8.5 MB. However, the memory consumption did not increase with higher number
of processed records or entry call events. While the measurements where taken from
Java run-time functions after suggesting garbage collection to the Java run-time, other
effects on memory consumption where still higher than the effect by the transformation
itself. Based on user profile defined in the workload driver, the resulting model update
should only differ in edge weights and not in the overall size of the model. Therefore,
memory consumption after the transformation should not increase with higher amounts
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of events. While Figure 4.3b does neither support nor falsify that assumption, it
shows that memory consumption by the transformation and its results is very small.
Therefore, not presenting a threat to the scalability.

Cost-Benefit: For answering RQ2 (cost-benefit) we apply the following line of argu-
mentation by comparing the iObserve results to observation results without using our
approach. The first argument refers to the comprehensibility of the outcomes from
the humans’ perspective by comparing a PCM instance to traditional monitoring log
files. Current monitoring frameworks, such as Kieker, provide an unstructured and
technology-specific collection of monitoring logs or, at best, a graphical aggregation of
them in form of rudimentary models, e.g. component model or petri net. The PCM
consists of several partial models, each tailored to specific roles such as component de-
veloper, system architect, or domain expert [BKR09]. Owing to modeling constructs
specific to roles in a software development process, we consider the PCM instance as
more comprehensibility for humans during evolution than a collection of monitoring
logs or a rudimentary model. This perception is supported by results of empirical
studies on the applicability of component-based models by Martens et al. [MKPR11].
Furthermore, the generated PCM instance can be applied for run-time analysis using
existing solvers (cf. [BKR09, SMP14]) without any additional intervention. In conse-
quence, we consider the iObserve outcomes (i.e. the PCM instance) more beneficial
for long-term evolution than traditional monitoring outcome.

The second argument refers to the number of steps that must be performed by users
to update the run-time model subsequent to a change identified at run-time. Owing
to the automation that comes along with iObserve, the users do not have to perform
any step manually. The model is updated automatically. In contrast, without iOb-
serve users have to search in log-files for required information. They have to interpret
the log files, e.g. for identifying system calls, software components, and deployment
information. Even in case of models provided by monitoring frameworks [HWH12],
the models have to be compared or merged manually and extended by quality-relevant
parameters to allow for quality analysis. To the best of our knowledge there is no
monitoring tool that provides an output comparable to the PCM. In consequence, the
application of iObserve exhibits less effort for updating run-time architecture models
than applying traditional monitoring approaches.

Since, compared to traditional monitoring approaches, the outcome of iObserve is
more beneficial and simultaneously the application of iObserve is less costly for users,
iObserve exhibits a better cost-benefit ratio.
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5 Related Work

In this section, we, firstly, discuss work that reuse design-time models during run-time.
Secondly, we discuss work on model extraction that creates models based on monitoring
data. We point out how existing run-time model approach fall short in reflecting the
changes C1-4 introduced in Section 2.2.

Work on reusing design-time models during run-time such as [MBJ*09, ICH11,
SM11, CDPEVO08] employs design-time models as foundation for reflecting software
systems during run-time. The work in [MBJ*09] reuses sequence diagrams created
during run-time in order to verify running applications against their specifications. Ev-
ery deviation between the observed and the specified event sequences are interpreted as
implementation faults. The proposed sequence diagrams exhibit a good understand-
ability from a developer perspective. However, the approach does not include any
updating mechanisms that changes the model whenever the reflected systems is being
alternated. Consequently, none of the introduced usage or platform changes (C1-CY)
are supported. Other than this, the run-time models in [ICH11, SM11, CDPEV08] are
modified during run-time. These approaches employ workflow specifications created
during design-time in order to carry out performance and reliability analyses during
run-time. The approaches update the workflow models with respect to quality in-
formation of the services bound to the workflow. For instance, the work in [SM11]
updates services response times, whenever an executed service responds. However,
these approaches reflect control flows by means of workflow specifications and do not
cover architectural designs, which is useful when evolving the application. Further,
this work updates the model with respect to single parameters and does not change
the models structure, which is required to reflect the replication and migration of
components (C8 and CJ).

Work on model extraction update model structures during run-time. Approaches
such as [SHC*11, SAG'06, vdASS11, vH14, BHK11a, vMvHH11] establish the causal
relation between executed applications and run-time models based on monitoring
events (for a comprehensive list of approaches see [SZ13]). Starting with "blank”
models, these approaches create models during run-time from scratch by, e.g., ob-
serving and interpreting operation traces. Consequentially, they disregard information
that cannot be gathered from monitoring data, such as design perspectives on com-
ponent structures and component boundaries. For instance, the work in [vdASS11]
exploits process mining techniques for extracting state machine models from event
logs. Without knowledge about the component structure developed during design-
time, the extracted states cannot be mapped to the initial application architecture.
In consequence, the model hierarchy is flat and unstructured, which hinders software
developers and maintainers in understanding the current situation of the application
at hand. Furthermore, the work reflects processes but neither components nor their
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relations (C8 and C/). Other than this, the approach in [SAG*06] extracts compo-
nents and their relations from events for the sake of comparing actual and intended
architectures. To this end, the work modifies the run-time model by model transfor-
mation rules in response to single events. With this approach we share the application
of transformation rules to update a model based on monitoring events. The resulting
model in [SAGT06] is coarse-grained, which is sufficient for deciding whether an actual
composition maps to the intended composition. However, when conducting perfor-
mance and privacy analyses the observation and reflection of resource consumptions is
crucial. Reflecting the consumption by the means of usage profiles requires to process
event sets rather than single events, which outruns the event processing capacity of
this approach (C1 and C2). Furthermore, the observation and analysis of usage and
component changes causes complex relationships between probing applications, probe
types, and mapping these types to run-time models, which is not discussed in this
contribution.

To summarize, design-time models that are reused during run-time provide a good
readability, but are not updated with respect to structural changes yet. However,
structural updates are required to reflect cloud migration (C3) and replication (C4).
Work on model extraction automatically creates run-time models from scratch, which
is useful for performance analysis. However, as design-time decisions on application
architectures cannot be derived from monitoring events the resulting models lack un-
derstandability.

33



6 Conclusion

We addressed, in this paper, run-time architecture model updates and run-time anal-
ysis for changes in cloud-based systems by considering run-time adaptation and evolu-
tion as two mutual, interwoven activities that influence each other. The proposed iOb-
serve approach allows automated adaptation at run-time and simultaneously supports
software evolution through run-time observation and continuous quality analysis. iOb-
serve provides several contributions. It enables the specification of the correspondence
between low-level monitoring data on one side and component-based architecture mod-
els and the usage of these models on the other side both for automated adaptation and
for evolution. iObserve comes along with mechanisms for promoting run-time observa-
tion data to design models, thereby continuously updating and calibrating those design
models during run-time while keeping the models semantically rich and comprehensible
by humans. We integrate our iObserve approach into a model-driven engineering pro-
cess and systematically describe the required activities by means of a life cycle. Part
of this process is the model-driven instrumentation, which supplies our run-time mon-
itoring approach with observation data. We argued for the effectiveness of iObserve
in maintaining the model abstraction level during continuous model update based on
observed run-time changes. We evaluated iObserve with lab experiments deploying
the CoCoME benchmark on an OpenStack cloud. The experiments showed that (a)
the analysis part of iObserve scales linearly in terms of processing rate and memory
consumption, and (b) the memory consumption of the transformation scales linearly
for large amount of records. Furthermore, we argued for the cost/benefit ration of
iObserve compared to analysis on traditional monitoring outcomes.

Future work includes automated code generation from the updated architecture
models to cover the entire MAPE loop. Initial work has been performed on a data
model language supporting entity models based on the Java persistence API, and a
language to formulate business functions representing the implementation of interface
methods of component types in the PCM. Both languages are available in the CoCoME
SVN repository'. Furthermore, we will provide documentation, code, and experiment
data to allow others to use and examine our setup. We intend to examine the ap-
plicability and usefulness of iObserve from the practitioners’ perspective in industry
by conducting case studies in collaboration with industry partners. For the evolution
phase of iObserve we plan to provide guidelines to engineers for long-term evolution
of software systems.

Ihttps://svnserver.informatik.kit.edu/i43/svn/code/CoCoME-SPP/trunk/src/tool
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