3,191 research outputs found

    Data integration through service-based mediation for web-enabled information systems

    Get PDF
    The Web and its underlying platform technologies have often been used to integrate existing software and information systems. Traditional techniques for data representation and transformations between documents are not sufficient to support a flexible and maintainable data integration solution that meets the requirements of modern complex Web-enabled software and information systems. The difficulty arises from the high degree of complexity of data structures, for example in business and technology applications, and from the constant change of data and its representation. In the Web context, where the Web platform is used to integrate different organisations or software systems, additionally the problem of heterogeneity arises. We introduce a specific data integration solution for Web applications such as Web-enabled information systems. Our contribution is an integration technology framework for Web-enabled information systems comprising, firstly, a data integration technique based on the declarative specification of transformation rules and the construction of connectors that handle the integration and, secondly, a mediator architecture based on information services and the constructed connectors to handle the integration process

    Constructing digital library interfaces

    Get PDF
    The software technologies used to create web interfaces for digital libraries are discussed using examples from Greenstone 3

    Mediated data integration and transformation for web service-based software architectures

    Get PDF
    Service-oriented architecture using XML-based web services has been widely accepted by many organisations as the standard infrastructure to integrate heterogeneous and autonomous data sources. As a result, many Web service providers are built up on top of the data sources to share the data by supporting provided and required interfaces and methods of data access in a unified manner. In the context of data integration, problems arise when Web services are assembled to deliver an integrated view of data, adaptable to the specific needs of individual clients and providers. Traditional approaches of data integration and transformation are not suitable to automate the construction of connectors dedicated to connect selected Web services to render integrated and tailored views of data. We propose a declarative approach that addresses the oftenneglected data integration and adaptivity aspects of serviceoriented architecture

    TIGRA - An architectural style for enterprise application integration

    Get PDF

    Using XML and XSLT for flexible elicitation of mental-health risk knowledge

    Get PDF
    Current tools for assessing risks associated with mental-health problems require assessors to make high-level judgements based on clinical experience. This paper describes how new technologies can enhance qualitative research methods to identify lower-level cues underlying these judgements, which can be collected by people without a specialist mental-health background. Methods and evolving results: Content analysis of interviews with 46 multidisciplinary mental-health experts exposed the cues and their interrelationships, which were represented by a mind map using software that stores maps as XML. All 46 mind maps were integrated into a single XML knowledge structure and analysed by a Lisp program to generate quantitative information about the numbers of experts associated with each part of it. The knowledge was refined by the experts, using software developed in Flash to record their collective views within the XML itself. These views specified how the XML should be transformed by XSLT, a technology for rendering XML, which resulted in a validated hierarchical knowledge structure associating patient cues with risks. Conclusions: Changing knowledge elicitation requirements were accommodated by flexible transformations of XML data using XSLT, which also facilitated generation of multiple data-gathering tools suiting different assessment circumstances and levels of mental-health knowledge

    GraXML - Modular Geometric Modeler

    Full text link
    Many entities managed by HEP Software Frameworks represent spatial (3-dimensional) real objects. Effective definition, manipulation and visualization of such objects is an indispensable functionality. GraXML is a modular Geometric Modeling toolkit capable of processing geometric data of various kinds (detector geometry, event geometry) from different sources and delivering them in ways suitable for further use. Geometric data are first modeled in one of the Generic Models. Those Models are then used to populate powerful Geometric Model based on the Java3D technology. While Java3D has been originally created just to provide visualization of 3D objects, its light weight and high functionality allow an effective reuse as a general geometric component. This is possible also thanks to a large overlap between graphical and general geometric functionality and modular design of Java3D itself. Its graphical functionalities also allow a natural visualization of all manipulated elements. All these techniques have been developed primarily (or only) for the Java environment. It is, however, possible to interface them transparently to Frameworks built in other languages, like for example C++. The GraXML toolkit has been tested with data from several sources, as for example ATLAS and ALICE detector description and ATLAS event data. Prototypes for other sources, like Geometry Description Markup Language (GDML) exist too and interface to any other source is easy to add.Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003. PSN THJT00

    Survey over Existing Query and Transformation Languages

    Get PDF
    A widely acknowledged obstacle for realizing the vision of the Semantic Web is the inability of many current Semantic Web approaches to cope with data available in such diverging representation formalisms as XML, RDF, or Topic Maps. A common query language is the first step to allow transparent access to data in any of these formats. To further the understanding of the requirements and approaches proposed for query languages in the conventional as well as the Semantic Web, this report surveys a large number of query languages for accessing XML, RDF, or Topic Maps. This is the first systematic survey to consider query languages from all these areas. From the detailed survey of these query languages, a common classification scheme is derived that is useful for understanding and differentiating languages within and among all three areas
    corecore