
Constructing Digital Library Interfaces
David M. Nichols and David Bainbridge

Department of Computer Science
University of Waikato

Hamilton, New Zealand
+64 7 8585130

{dmn, davidb}@cs.waikato.ac.nz

Michael B. Twidale
Graduate School of Library and Information Science

University of Illinois at Urbana-Champaign
IL 61820, USA.

+1 217 333-3280

twidale@uiuc.edu

ABSTRACT
The software technologies used to create web interfaces for digital
libraries are discussed using examples from Greenstone 3.

Categories and Subject Descriptors
H.3.7 [Information storage and retrieval]: Digital Libraries –
user issues. K.3.2 [Computers and Education]: Computer and
Information Science Education – information systems education.

General Terms
Human Factors.

Keywords
XSLT, interfaces, computational sense, digital library education

1. INTRODUCTION
The use of software to allow library science students to practically
create online repositories is an important element of a digital
library (DL) curriculum. When current DL software is used in an
educational context it can highlight both good (e.g. workflow
support, platform independence) and bad (e.g. module
complexity, lack of 'rollback') features [3]. In this paper we
highlight issues associated with interface creation for DLs and
present the new approaches adopted in Greenstone 3.

2. BACKGROUND
The limited evidence available in the literature suggests that many
collection creators encounter problems in learning to effectively
use digital library software [3,6,7]. An aspect of Greenstone use
that is known to be problematic is the customisation of the DL
interface [3,8].

In an analysis of activity on a sample of the Greenstone-users
mailing list McCurdy [2] found that topics related to interface
design issues were common. Messages about 'customisation'
(23%) and 'configuration' (17%) were two of the top three
primary subject areas (the other was 'functionality' at 23%).

The two main methods used for interface construction in
Greenstone 2 are 'format statements' (for document surrogates)
and 'macros' (for page structuring). To understand more about

Greenstone users' experiences with these methods a simple online
survey was publicised via mailing lists and contacts in institutions
known to use Greenstone in DL education.

26 responses have been received so far and two main themes
emerged. The Greenstone Librarian Interface (GLI) [8] is reported
to be a useful tool for managing workflow and a generally
supportive environment … apart from the features for interface
customisation (e.g. 'the librarian interface is easy to use in every
respect but formatting features'). Frustration is expressed with
both 'format statements' and 'macros': 'I spent far more time trying
to customize our interface than I did adding content to our
library', 'it's far too difficult for the average user to create a
custom interface, an important and desirable feature for any
digital library', 'interface design is currently geared very much
toward programmers' and 'format statements are overly complex
for most librarians'. Several responses favorably mentioned the
'drag and drop' interface construction used in Microsoft's Visual
Studio.

Interestingly a smaller group of responses were largely content
with current functionality ('macrofiles and format statements are
powerful and easy to use once you get to know them') and in fact
some wanted 'enhanced conditional statements'. Interviews of
project members at Waikato who had conducted Greenstone
workshops reinforced these two main themes. Simply, users wish
to easily produce DL interfaces made of clean accessible HTML.

Simple heuristic analysis of the formatting elements of the GLI
highlights the: unique syntax of conditional statements, small text
area for format statements, lack of editing support for error
prevention (e.g. HTML syntax tag highlighting), limited power
(no looping constructs) and that some HTML output is derived
from a C++ program that can't be edited without re-compilation.
Macros are separate from the GLI, expressed in a further unique
syntax and are found in various places in the server's file system.

The combination of evidence from the literature [6], student
feedback [3], interviews of those who have run workshops,
heuristic interface evaluation, responses to the online survey, the
mailing list analysis and anecdotal feedback to project members,
all suggest that interface customisation is an important topic that
is not currently well-supported in Greenstone 2. Although these
issues affect all users we believe they have a disproportionate
effect on those learning about DL software.

3. GREENSTONE 3 IMPLEMENTATION
The Manakin/DSpace project [4] and Greenstone 3 have both
chosen XSLT as a key internal technology. In Greenstone this
decision was based on internal software engineering
considerations and a desire for standardization, based on
experiences with the ad-hoc development of 'macros'. However,

daven
Text Box
© ACM, 2007. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in JCDL'07.
http://doi.acm.org/10.1145/1255175.1255240

http://doi.acm.org/10.1145/1255175.1255240

the actual user interactions needed to create and customise end-
user interfaces have, so far, been left under-specified.

It is possible to use XSLT as the sole customizing technology
though the only evidence of its learnability suggests that it may be
a high barrier to entry: "one archivist noted that “learning XSLT
… has been a major block to implementing EAD at our
institution"" [5] and "XSLT is an exciting and powerful language,
but not an easy one to get to grips with" [1 (pg 2)].

To address the complexity of raw XLST, Greenstone 3 contains a
second layer of abstraction (a 'gsf' namespace) that more closely
maps onto library science concepts and the methods used in
Greenstone 2. For example, a <gsf:metadata
name=’dc.Title’/> element is used to represent a more
complex XLST value-of element for metadata retrieval and a
<gsf:link> element is used to hide the mechanics of URL
path construction. Greenstone 3 maps gsf elements onto more
complex XSLT expressions which generate the final HTML.

This approach lowers the barrier to entry for XSLT authoring in
Greenstone 3 whilst still leaving the power of full XSLT available
to those with greater technical skills. Interestingly, although
developed independently this tiered approach mirrors that of
Manakin [4]. Furthermore, for applications where learnability is
crucial, such as in DL education, we are developing a further
abstraction layer to aid in interface customisation.

3.1 Tools for Constructing DL Interfaces
The technological options presented to users (to customise their
DLs) should allow for different levels of technical expertise. For
programmers an API is often sufficient, whereas for experienced
digital librarians an XSLT approach might be appropriate.
However, for many users, especially those taking a first class in
DLs, a more supportive environment, that better aligns with their
skill-set, will be more effective [6].

The approach described here trades power for (initial) simplicity,
reducing the amount of technical information that has to be
learned before anything productive can be achieved. This
approach parallels earlier work on the development of specific
applications that aim to make certain functionalities available to
less technically-skilled users. An example would be how
spreadsheets were developed to allow end-users to utilise
computers to make complex arithmetic computations without
needing to learn a programming language [7].

Our assessment of the complexity of XSLT authoring has led us
to develop a prototype Greenstone 3 AJAX environment for the
formatting of document surrogates (Figure 1). The system

provides explicit listings of available metadata elements (left hand
side), a drag and drop interface for surrogate formatting (top),
instant previewing of editing changes (bottom) and supportive
templates for programming language constructs (right hand side,
showing a conditional statement). We have adopted the instant
preview feature of spreadsheets to encourage learning through
experimentation. The web application outputs a Greenstone 3
surrogate format at the gsf namespace level before further
server-side XLST processing into HTML.

4. CONCLUSION
Although still in prototype stage Figure 1 illustrates the style of
interface interaction we believe is necessary to align with the
level of 'computational sense' [7] of many of those learning about
DLs. This topic is currently under-represented in the DL literature
[6]; in particular, although usability studies have been performed
on searching in DLs, they need to be undertaken for DL creation.

5. REFERENCES
[1] Kay, M. XSLT Programmer's Reference, 2nd Edition. Wrox

Press Ltd., Birmingham, UK. 2001.
[2] McCurdy, R.M. Technical Support for Open Source Library

Systems: a content analysis of Koha and Greenstone email
discussion lists, MLIS Thesis, School of Information
Management, Victoria University of Wellington. June 2006.

[3] Nichols, D. M., Bainbridge, D., Downie, J. S., & Twidale,
M. B. Learning by building digital libraries. Proceedings of
JCDL '06. 185-186. ACM Press. 2006.

[4] Phillips, S., C. Green, J. Leggett, A. Maslov, A. Mikeal, &
Surratt, B. Manakin Developer’s Guide: The Second Version
of the DSpace XML UI Project. Texas A&M University
Library. 2005. Retrieved February 2, 2007 from
http://di.tamu.edu/projects/xmlui/manakin/resources/Develop
ersGuide.pdf.

[5] Prom, C.J. The EAD Cookbook: A survey and usability
study. American Archivist 65, 2 (2002) 257-275.

[6] Suleman, H., Marsden, G. & Feng, F. Customising Interfaces
to Service-Oriented Digital Library Systems, Proceedings of
ICADL 2006. 503-506. Springer. 2006.

[7] Twidale, M.B. & Nichols, D.M. Computational Sense: the
role of technology in the education of digital librarians.
Working Paper 10/2006, Department of Computer Science,
University of Waikato. 2006.

[8] Witten, I.H. & Bainbridge, D. How to build a digital library.
Morgan Kaufmann, San Francisco, CA, 2003.

Figure 1. Prototype direct manipulation interface for interface customisation in Greenstone 3

