7,375 research outputs found

    Towards a new generation of transport services adapted to multimedia application

    Get PDF
    Une connexion d'ordre et de fiabilité partiels (POC, partial order connection) est une connexion de transport autorisée à perdre certains objets mais également à les délivrer dans un ordre éventuellement différent de celui d'émission. L'approche POC établit un lien conceptuel entre les protocoles sans connexion au mieux et les protocoles fiables avec connexion. Le concept de POC est motivé par le fait que dans les réseaux hétérogÚnes sans connexion tels qu'Internet, les paquets transmis sont susceptibles de se perdre et d'arriver en désordre, entraßnant alors une réduction des performances des protocoles usuels. De plus, on montre qu'un protocole associé au transport d'un flux multimédia permet une réduction trÚs sensible de l'utilisation des ressources de communication et de mémorisation ainsi qu'une diminution du temps de transit moyen. Dans cet article, une extension temporelle de POC, nommée TPOC (POC temporisé), est introduite. Elle constitue un cadre conceptuel permettant la prise en compte des exigences de qualité de service des applications multimédias réparties. Une architecture offrant un service TPOC est également introduite et évaluée dans le cadre du transport de vidéo MPEG. Il est ainsi démontré que les connexions POC comblent, non seulement le fossé conceptuel entre les protocoles sans connexion et avec connexion, mais aussi qu'ils surpassent les performances des ces derniers lorsque des données multimédias (telles que la vidéo MPEG) sont transportées

    The Octopus switch

    Get PDF
    This chapter1 discusses the interconnection architecture of the Mobile Digital Companion. The approach to build a low-power handheld multimedia computer presented here is to have autonomous, reconfigurable modules such as network, video and audio devices, interconnected by a switch rather than by a bus, and to offload as much as work as possible from the CPU to programmable modules placed in the data streams. Thus, communication between components is not broadcast over a bus but delivered exactly where it is needed, work is carried out where the data passes through, bypassing the memory. The amount of buffering is minimised, and if it is required at all, it is placed right on the data path, where it is needed. A reconfigurable internal communication network switch called Octopus exploits locality of reference and eliminates wasteful data copies. The switch is implemented as a simplified ATM switch and provides Quality of Service guarantees and enough bandwidth for multimedia applications. We have built a testbed of the architecture, of which we will present performance and energy consumption characteristics

    Architecture, design, and modeling of the OPSnet asynchronous optical packet switching node

    Get PDF
    An all-optical packet-switched network supporting multiple services represents a long-term goal for network operators and service providers alike. The EPSRC-funded OPSnet project partnership addresses this issue from device through to network architecture perspectives with the key objective of the design, development, and demonstration of a fully operational asynchronous optical packet switch (OPS) suitable for 100 Gb/s dense-wavelength-division multiplexing (DWDM) operation. The OPS is built around a novel buffer and control architecture that has been shown to be highly flexible and to offer the promise of fair and consistent packet delivery at high load conditions with full support for quality of service (QoS) based on differentiated services over generalized multiprotocol label switching

    Programming with process groups: Group and multicast semantics

    Get PDF
    Process groups are a natural tool for distributed programming and are increasingly important in distributed computing environments. Discussed here is a new architecture that arose from an effort to simplify Isis process group semantics. The findings include a refined notion of how the clients of a group should be treated, what the properties of a multicast primitive should be when systems contain large numbers of overlapping groups, and a new construct called the causality domain. A system based on this architecture is now being implemented in collaboration with the Chorus and Mach projects

    Transport of video over partial order connections

    Get PDF
    A Partial Order and partial reliable Connection (POC) is an end-to-end transport connection authorized to deliver objects in an order that can differ from the transmitted one. Such a connection is also authorized to lose some objects. The POC concept is motivated by the fact that heterogeneous best-effort networks such as Internet are plagued by unordered delivery of packets and losses, which tax the performances of current applications and protocols. It has been shown, in several research works, that out of order delivery is able to alleviate (with respect to CO service) the use of end systems’ communication resources. In this paper, the efficiency of out-of-sequence delivery on MPEG video streams processing is studied. Firstly, the transport constraints (in terms of order and reliability) that can be relaxed by MPEG video decoders, for improving video transport, are detailed. Then, we analyze the performance gain induced by this approach in terms of blocking times and recovered errors. We demonstrate that POC connections fill not only the conceptual gap between TCP and UDP but also provide real performance improvements for the transport of multimedia streams such MPEG video

    Systematic composition of distributed objects: Processes and sessions

    Get PDF
    We consider a system with the infrastructure for the creation and interconnection of large numbers of distributed persistent objects. This system is exemplified by the Internet: potentially, every appliance and document on the Internet has both persistent state and the ability to interact with large numbers of other appliances and documents on the Internet. This paper elucidates the characteristics of such a system, and proposes the compositional requirements of its corresponding infrastructure. We explore the problems of specifying, composing, reasoning about and implementing applications in such a system. A specific concern of our research is developing the infrastructure to support structuring distributed applications by using sequential, choice and parallel composition, in the anarchic environment where application compositions may be unforeseeable and interactions may be unknown prior to actually occurring. The structuring concepts discussed are relevant to a wide range of distributed applications; our implementation is illustrated with collaborative Java processes interacting over the Internet, but the methodology provided can be applied independent of specific platforms
    • 

    corecore