37 research outputs found

    Five decades of hierarchical modulation and its benefits in relay-aided networking

    No full text
    Hierarchical modulation (HM), which is also known as layered modulation, has been widely adopted across the telecommunication industry. Its strict backward compatibility with single-layer modems and its low complexity facilitate the seamless upgrading of wireless communication services. The specific features of HM may be conveniently exploited for improving the throughput/information-rate of the system without requiring any extra bandwidth, while its complexity may even be lower than that of the equivalent system relying on conventional modulation schemes. As a recent research trend, the potential employment of HM in the context of cooperative communications has also attracted substantial research interests. Motivated by the lower complexity and higher flexibility of HM, we provide a comprehensive survey and conclude with a range of promising future research directions. Our contribution is the conception of a new cooperative communication paradigm relying on turbo trellis-coded modulation-aided twin-layer HM-16QAM and the analytical performance investigation of a four-node cooperative communication network employing a novel opportunistic routing algorithm. The specific performance characteristics evaluated include the distribution of delay, the outage probability, the transmit power of each node, the average packet power consumption, and the system throughput. The simulation results have demonstrated that when transmitting the packets formed by layered modulated symbol streams, our opportunistic routing algorithm is capable of reducing the transmit power required for each node in the network compared with that of the system using the traditional opportunistic routing algorithm. We have also illustrated that the minimum packet power consumption of our system using our opportunistic routing algorithm is also lower than that of the system using the traditional opportunistic routing algorithm

    Previous hop routing: exploiting opportunism in VANETs

    Get PDF
    Routing in highly dynamic wireless networks such as Vehicular Ad-hoc Networks (VANETs) is a challenging task due to frequent topology changes. Sustaining a transmission path between peers in such network environment is difficult. In this thesis, Previous Hop Routing (PHR) is poposed; an opportunistic forwarding protocol exploiting previous hop information and distance to destination to make the forwarding decision on a packet-by-packet basis. It is intended for use in highly dynamic network where the life time of a hop-by-hop path between source and destination nodes is short. Exploiting the broadcast nature of wireless communication avoids the need to copy packets, and enables redundant paths to be formed. To save network resources, especially under high network loads, PHR employs probabilistic forwarding. The forwarding probability is calculated based on the perceived network load as measured by the arrival rate at the network interface. We evaluate PHR in an urban VANET environment using NS2 (for network traffic) and SUMO (for vehicular movement) simulators, with scenarios configured to re ect real-world conditions. The simulation scenarios are configured to use two velocity profiles i.e. Low and high velocity. The results show that the PHR networks able to achieve best performance as measured by Packet Delivery Ratio (PDR) and Drop Burst Length (DBL) compared to conventional routing protocols in high velocity scenarios

    Efficient Broadcast in Mobile Adhoc Networks Utilizing Rateless Coding

    Get PDF
    This paper presents a novel efficient broadcast protocol for mobile ad hoc networks referred to as mobile adaptive probabilistic broadcast (MAPcast). MAPcast integrates application-layer rateless coding with adaptive probabilistic packet forwarding amongst the nodes of a mobile network without the need for information from nodes other than an immediate neighbor (one hop). MAPcast is developed as a method to reduce the number of overall packet transmissions, thus conserving power, while ensuring very high network reachability. MAPcast is compared with existing methods of data broadcast to examine the energy efficiency and reachability provided using the protocol outlined in this paper.School of Electrical & Computer Engineerin

    To Code or Not to Code: When and How to Use Network Coding in Energy Harvesting Wireless Multi-Hop Networks

    Get PDF
    The broadcast nature of communication in transmission media has driven the rise of network coding’s popularity in wireless networks. Numerous benefits arise from employing network coding in multi-hop wireless networks, including enhanced throughput, reduced energy consumption, and decreased end-to-end delay. These advantages are a direct outcome of the minimized transmission count. This paper introduces a comprehensive framework to employ network coding in these networks. It refines decision-making at coding and decoding nodes simultaneously. The coding-nodes employ optimal stopping theory to find optimal moments for packet transmission. Meanwhile, the decoding-nodes dynamically decide, through SMDP (Semi Markov Decision Process) problem formulation, whether to conserve energy by deactivating radio units or to stay active for improved coding by overhearing packets. The proposed framework, named ENCODE, enables nodes to learn how and when to use network coding over time. Simulation results compare its performance with existing approaches. Our simulation results shed new light on when and how to use network coding in wireless multi-hop networks more effectively

    Secure OFDM System Design for Wireless Communications

    Get PDF
    Wireless communications is widely employed in modern society and plays an increasingly important role in people\u27s daily life. The broadcast nature of radio propagation, however, causes wireless communications particularly vulnerable to malicious attacks, and leads to critical challenges in securing the wireless transmission. Motivated by the insufficiency of traditional approaches to secure wireless communications, physical layer security that is emerging as a complement to the traditional upper-layer security mechanisms is investigated in this dissertation. Five novel techniques toward the physical layer security of wireless communications are proposed. The first two techniques focus on the security risk assessment in wireless networks to enable a situation-awareness based transmission protection. The third and fourth techniques utilize wireless medium characteristics to enhance the built-in security of wireless communication systems, so as to prevent passive eavesdropping. The last technique provides an embedded confidential signaling link for secure transmitter-receiver interaction in OFDM systems

    A scheme for efficient peer-to-peer live video streaming over wireless mesh networks

    Get PDF
    Peers in a Peer-to-Peer (P2P) live video streaming system over hybrid wireless mesh networks (WMNs) enjoy high video quality when both random network coding (RNC) and an efficient hybrid routing protocol are employed. Although RNC is the most recently used method of efficient video streaming, it imposes high transmission overhead and decoding computational complexity on the network which reduces the perceived video quality. Besides that, RNC cannot guaranty a non-existence of linear dependency in the generated coefficients matrix. In WMNs, node mobility has not been efficiently addressed by current hybrid routing protocols that increase video distortion which would lead to low video quality. In addition, these protocols cannot efficiently support nodes which operate in infrastructure mode. Therefore, the purpose of this research is to propose a P2P live video streaming scheme which consists of two phases followed by the integration of these two phases known as the third phase to provide high video quality in hybrid WMNs. In the first phase, a novel coefficients matrix generation and inversion method has been proposed to address the mentioned limitations of RNC. In the second phase, the proposed enhanced hybrid routing protocol was used to efficiently route video streams among nodes using the most stable path with low routing overhead. Moreover, this protocol effectively supports mobility and nodes which operate in infrastructure mode by exploiting the advantages of the designed locator service. Results of simulations from the first phase showed that video distortion as the most important performance metric in live video streaming, had improved by 36 percent in comparison with current RNC method which employs the Gauss-Jordan Elimination (RNC-GJE) method in decoding. Other metrics including frame dependency distortion, initial start-up delay and end-to-end delay have also improved using the proposed method. Based on previous studies, although Reactive (DYMO) routing protocol provides better performance than other existing routing protocols in a hybrid WMN, the proposed protocol in the second phase had average improvements in video distortion of l86% for hybrid wireless mesh protocol (HWMP), 49% for Reactive (Dynamic MANET On-Demand-DYMO), 75% for Proactive (Optimized Link State Routing-OLSR), and 60% for Ad-hoc on-demand Distance Vector Spanning-Tree (AODV-ST). Other metrics including end-to-end delay, packet delay variation, routing overhead and number of delivered video frames have also improved using the proposed protocol. Finally, the third phase, an integration of the first two phases has proven to be an efficient scheme for high quality P2P live video streaming over hybrid WMNs. This video streaming scheme had averagely improved video distortion by 41%, frame dependency distortion by 50%, initial start-up delay by 15% and end-to-end delay by 33% in comparison with the average introduced values by three other considered integration cases which are Reactive and RNC-GJE, Reactive and the first phase, the second phase and RNC-GJE

    QoS-aware Radio Resource Management for Spectrum Sharing Radio Networks

    Get PDF

    Optimal sensing policy for energy harvesting cognitive radio systems

    Get PDF
    Energy harvesting (EH) emerges as a novel technology to promote green energy policies. Based on Cognitive Radio (CR) paradigm, nodes are designed to operate with harvested energy from radio frequency signals. CR-EH systems state several strategies based on sensing and access policies to maximize throughput and protect primary users from interference, simultaneously. However, reported solutions do not consider to maximize detection performance to detect spectrum holes which represent a major drawback whenever available energy is not efficiently used. In this concern, this paper addresses optimal sensing policies based on energy harvesting schemes to maximize probability of detection of available spectrum. These novel policies may be incorporated to previous reported solutions to maximize performance. Optimal processing scheduling schemes are proposed for offline and online scenarios based on convex optimization theory, Dynamic Programming (DP) algorithm and heuristic solutions (Constant Power and Greedy policies). Performance of proposed policies are validated by simulations for common detection techniques such as Matched Filter (MF), Quadrature Matched Filter (QMF) and Energy Detector (ED). As a result, it is shown that the best detection scheme theoretically addressed by MF, does not always perform better than the poorest detection scheme, given by the ED, in an energy harvesting scenario.This work has received funding from the European Union (EU) Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie ETN TeamUp5G, grant agreement No. 813391. Also, this work has been supported in part by the Spanish National Project TERESA-ADA, funded by (MINECO/AEI/FEDER, UE) under grant TEC2017-90093-C3-2-R
    corecore