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CHAPTER I 
 
 

INTRODUCTION 

 

There is growing interest in the use of large-scale sensor networks for data 

collection/dissemination in a number of environments. Advances in technology have 

made the manufacture and deployment of these networks much more cost effective and 

thus more research is being conducted on more efficient communication methods for 

these networks. Many of these protocols rely on some means of one-to-all broadcast in 

order to disseminate information amongst the entire network, for instance as a means of 

establishing routes for point to point messages within the network or code update. Due to 

the omnipresence and reliance on broadcast protocols, much work has been done to 

develop efficient methods that maximize reachability (defined in chapter III) while 

minimizing energy requirements. In this thesis we propose and evaluate a broadcast 

protocol called mobile adaptive probabilistic broadcast (MAPcast), which is intended for 

efficient broadcasting in mobile adhoc networks (MANETs). In chapter II we will 

examine existing work in the field of wireless broadcast, as well as some of the methods 

against which MAPcast was compared to evaluate its merits. This chapter will also 

explain how rateless coding, a central element of the protocol, works. Chapter III 

describes in detail the development and final implementation of the MAPcast protocol. 

Chapter IV provides information of the performance of MAPcast as well as an evaluation 
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of the protocol in comparison to existing methods of network wide broadcast. Finally, 

chapter V will present the concluding statements of this work and future work. 
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CHAPTER II 
 
 

BACKGROUND 

Chapter II introduces background material relevant to the discussion and evaluation of 

the MAPcast protocol. Sections II.A and II.B present information on existing forms of 

broadcast. Section II.C discusses rateless coding, a concept that is central to the 

performance of MAPcast. Section II.D discusses a few ideas that led to the development 

of MAPcast.  

A. Flooding 
 
Flooding [1] is widely used as a means of broadcast with high reachability (defined as the 

fraction of nodes in the network that are able to receive/decode the entirety of the original 

data). In this method each node rebroadcasts each packet it receives for the first time. 

This ensures that every node within the communication range of a transmitter receives a 

packet if the communication links are lossless. This method has been demonstrated to 

have the highest reachability in static networks; however, there is a high energy cost 

associated with it as every node retransmits each packet. Thus for a connected network of 

size (number of nodes) M, each packet will be transmitted M times. This level of 

retransmission creates large amounts of overlap in transmissions, which is inefficient. 

Energy inefficiency is not the only drawback to Flooding. The large number of 

transmissions can lead to the broadcast storm problem [2,3] as well, meaning that further 

retransmissions will be required as well as methods to deal with channel contention 
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issues. Further the high reachability of the protocol in static networks does not 

necessarily carry over to mobile networks. This is due to the changing connections in the 

network over time. Fig. 1 shows an example situation. At time A the nodes establish a 

communication chain. In a static network with this layout the Node 1 could forward a 

packet to Node 2 which could then forward the packet to Node 3. However in a mobile 

network this chain is broken by at time B. In this scenario, Node 1 transmits to Node 2 at 

time A, but by the time Node 2 is ready to forward the packet, time B, Node 3 is no 

longer in range of Node 2. In fact it would be more beneficial for Node 1 to transmit 

twice, once at time A and again at time B. 

 
Figure 1. Node connections in mobile network - Dashed lines indicate communication links, arrows 

indicate a node's heading and relative velocity. 
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B. Probabilistic Broadcasts 
 

MAPcast was developed using a probabilistic forwarding protocol. In 

probabilistic forwarding each node forwards received packets with a certain probability. 

In most models this probability is fixed and is common to all nodes. The value for this 

probability that optimizes the system (maximizes the reliability of the broadcast while 

minimizing the total number of transmissions) is highly dependent on the parameters of 

the network, such as node density relative to transmission range. This method is shown to 

provide good results [2]; however, it is not adaptable at run-time to changes in the 

network size. Another negative point to this method is that it makes an assumption of 

uniform node distribution. If a section of the network has a higher node density than the 

remainder of the network its optimal probability value is correspondingly lower than the 

rest of the nodes in the network. To alleviate this problem and to attempt to increase the 

efficiency of the broadcast dynamic assignment of forwarding probability has been 

proposed. Many methods of assignment of this probability have been proposed based on 

a number of parameters such as distance between receiver and transmitter, number of 

one-hop neighbors, and counter-based methods [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17]. 

Dynamic forwarding probabilities based on distance attempt to assign a node’s 

forwarding probability based on the distance between a receiving node and the node 

which transmitted the packet. This distance can be calculated using a locator device such 

as a GPS receiver or can be estimated using the received signal strength (RSS) value of 

the packet. The aim of this method is to give higher forwarding probabilities to nodes 
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whose transmission will have a larger additional coverage area. As discussed earlier, the 

notion of additional coverage area is not as meaningful for mobile networks as it is for 

static networks, as the connectivity and location of nodes changes over time. Counter-

based probability assignment has a large range of specific implementations, with the 

main goal of the majority being to assign a forwarding probability that is inversely related 

to the number of duplicate receptions of the packet to be forwarded. The idea being that if 

a node receives a high number of transmissions of a packet then the area in which the 

node residues has a high probability of being saturated with the packet. In other words 

there is a low number of additional nodes that will receive the packet which have not 

received it from the previous transmissions. To do this counter-based protocols wait a 

certain amount of time between reception of a packet and the forwarding of that packet. 

During this waiting period the node keeps track of how many duplicates of that packet 

are received beyond the first. This information is then used to assign the forwarding 

probability for the node.  

 

C. Rateless Codes 
 

Rateless codes (a.k.a. fountain codes) are a recent development in packet-level 

coding [18,19,20,21]. These codes allow a nearly unlimited number of unique encoded 

packets to be created for transmission. Rateless coding works by dividing the data into K 

packets each of length M. A random number D of these packets, where D has a 
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distribution given by Ω(D) = {Ω1, Ω2, … , Ωk} where Ωi  is the probability that D = i, are 

combined to form an encoded packet. This D is known as the degree of the encoded 

packet. The packets chosen for this combining process are selected randomly from the 

original K packets. The random packets are bitwise XORed to produce the encoded 

packet. In this way a near unlimited number of unique encoded packets can be created 

provided that K is sufficiently large. This property is where rateless codes receive their 

name, because unlike traditional codes like the well known Hamming codes and LDPC 

codes, there is no set number of encoded symbols created from the data symbols to be 

transmitted. Rateless codes are sometimes known as fountain codes because they can 

send out an unlimited stream of symbols. In many implantations of these codes, the 

transmitter will continue to transmit encoded symbols until the receiving node notifies the 

transmitter to cease transmissions. To guarantee the successful decoding of a message 

encoded with a rateless code, a receiving node must receive an equal number or slightly 

more than K packets. In fact the receiver needs γ•K packets, where γ ≥ 1. This γ is known 

as the overhead for the code. The relations between data packets and the encoded packets 

can be visualized as a bipartite graph with the nodes representing uncoded and encoded 

packets, and the edges between these nodes representing the combinations amongst them. 

Fig. 2 shows a small example of a rateless code, where K = 10 and γ = 1. Rectangular 

nodes correspond to original data symbols (packets or bits), and the circular nodes 

correspond to the encoded symbols. The edges linking the nodes indicate which of the 

data symbols each encoded symbol is composed of. 
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Figure 2. Bipartite graph representing the packet relationships in a rateless coding scheme. 

 
Fig. 3,4,5 show decoding of a message with rateless coding. In the first stage of 

decoding, as shown in Fig. 3 each degree 1 encoded node is used to retrieve the 

information from its linked data node. In this example light blue data squares indicate 

unknown data values, dark blue squares indicate data values recovered on the current 

phase of decoding, and black square indicate data values recovered on a previous phase. 

 
Figure 3. First decoding iteration. 
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Since these nodes are composed of only one data packet their value will be exactly the 

value of the associated data packet. For the second stage of decoding, shown in Fig. 4, the 

edges leading from known data packets are removed, while the connected encoded 

nodes’ values are updated (XORed) with the data node. Then each degree 1 coded node is 

used to retrieve their data nodes.  

 
Figure 4. Second decoding iteration. 

This process is repeated in Fig. 5 for a third round of decoding. In this example the 

decoding only required three iterations, however this will not necessarily be the case for 

much longer transmissions. The same process is used for decoding longer transmissions 

albeit with more decoding rounds. These codes work best with large K, which increases 

the uniqueness of each coded packet thus reducing γ. The gain in these codes comes from 

the fact that a node need not receive particular packets so long as it receives at least the 

γ⋅K encoded packets required for decoding. This works especially well with probabilistic 

forwarding methods, since this coding method can compensate for the lack of a particular 
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packet’s forwarding, a case which can be quite common in probabilistic forwarding 

methods. 

 
Figure 5. Final decoding iteration. 

 

D. Evolution 
 

The idea for MAPcast protocol was not created from scratch but rather was the end result 

of a progression of ideas. The beginning point of MAPcast was the desire to create a 

protocol that could take advantage of the mobility of a network to reduce the amount of 

energy required to deliver a broadcast message to the entire network. The application 

environment for this problem was envisioned as a large region with a few mobile nodes 

which wandered about the region collecting data. These nodes could be small robots that 

moved around a forest collecting data, or perhaps the nodes were small computers worn 

by soldiers or emergency personnel in a disaster zone. The primary assumption of the 

situation though is that the communication nodes do not have control over their 
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movement. This assumption constrained the problem, by eliminating any methods that 

would seek to control the graph’s connectivity by moving nodes into ideal locations for 

network saturation. These nodes are also assumed to be very low power, so transmission 

ranges would be small. This further reduces the connectivity of the graph because the 

nodes would have to be physically closer to each other in order to be connected. Finally 

the system was intended to be largely scalable. This led us to develop a protocol that 

would be decentralized, meaning that there could be no controller nodes that had 

information about the entire (or at least large portions of) the network. Also since the 

network is mobile the nodes’ neighbors are constantly changing so methods that took into 

account information regarding multihop neighbors were deemed inefficient, since this 

data would quickly become outdated. It was concluded that the primary source of power 

inefficiency in a network such as this would be redundant transmission. Redundant 

transmissions in this sense means, transmissions which are received by nodes that have 

already received the same transmission from another node. This is because of the 

broadcast nature of wireless medium, where a packet sent by a node will potentially be 

received by all neighboring nodes. To alleviate this problem the idea of coverage area 

was investigated. In a static wireless network, a node which relays a message from 

another node, by necessity must transmit the message into an area that has already 

received it (assuming identical omni directional antennae). This is due to the overlap of 

their antenna patterns. In fact, the maximum additional area is given as:  
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! 

A2MAX = (
3
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+
"

3
)•R

2
# 0.61• A1,  (1) 

where R is the transmission range of the nodes. This situation can be seen in Fig 6.  

 
Figure 6. Maximum additional area (shaded region). A2 is maximized when d is equal to R. A2 is at 

most 61% of A1. 

 

The maximum additional area from a rebroadcast occurs when a node receives the 

message to be relayed at the extreme edge of the transmission radius. In this situation the 

relaying node only delivers the message to 61% of its transmission area that did not 

receive the message from the originating node. If the receiving node is not at the extreme 

edge the transmitters effective range then this region is even smaller, as seen in Fig 7. 
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Figure 7. Additional coverage area. If d is less than R, then A2 is less than its maximum value. 

 

Adding to this the high probability that there are multiple relaying nodes in the 

originating nodes transmission range and the additional coverage area per relay 

transmission quickly decreases. This is one of the main causes for the development of 

probabilistic forwarding. This is the case for a static network, however for a mobile 

network this is not the case. In a mobile network this additional area is a non-

deterministic function of time. If the relaying node is moving away from the point of 

origin of the message its additional coverage increases as time elapses, conversely if it is 

moving in the direction of the transmission it’s additional coverage decreases as time 

elapses. However this additional area does not directly correlate to additional nodes 

which can be reached, as nodes can move into and out of areas which have already had a 

transmission. In order to maximize this additional coverage, we considered the idea of 

delaying transmission until a time in which the node has moved to a position wherein the 

entirety of its transmission area is outside of the transmission area of the originator of the 
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message. To meet this objective we originally proposed two methods, both of which 

required some form of location awareness, such as a GPS receiver. The first method 

would have the relaying node transmit the message when it had traveled to a location that 

was 2*R away from the originating node (see Fig. 8).  

 
Figure 8. Transmit at 2R method. This method ensures that there is no overlap between the 

transmission areas of the two nodes. 

 

This would require that as part of the packet structure, nodes include their location at the 

time of transmission. The second method still required that a node be aware of it’s 

location but did not require the location of the originator. In this method the node would 

seek to transmit the message as far away as possible to ensure that another region of the 

network receives the packet. To this end the node would monitor its movement and 

transmit the message when it had moved as far along as its current path as it could. When 

the node detected a shift in direction of movement, the node would relay the message (see 

Fig. 9).  
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Figure 9. Transmit on direction change. This method forwards the packet when the node has 

traveled the entirety of its current heading. 

 

These methods were explored but quickly discarded as they began to disregard one of the 

primary purposes of the protocol which was that all the nodes be low-cost and low-

power, a requirement that was not inline with the inclusion of a GPS receiver. Also with 

the connectivity and location shifts of the graph over time there was not as much 

correlation between additional coverage area and additional nodes reached. In a static 

network these two are synonymous but this is not true for a mobile network. Thus the 

concept of additional nodes reached was directly explored.  

 Directly accessing the presence of neighbors as well as the packets they have 

collected requires some form of handshaking, usually in the form of beacon packets or 

packet queries. These interchanges between packets allow them to transmit which packets 

they have received as well as which packets they have not, or which they are requesting. 

The handshaking also helps to establish the presence of nearby nodes for purposes of 
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determining the local node density. These handshaking packets are usually very small in 

comparison to the data packets that are being exchanged. This means that there is only a 

small amount of energy used in their transmission relative to the transmission of a data 

packet. Their small size also leads to the notion that the nodes are able to complete the 

handshake and still have time for data transmission in a mobile network. The nodes own 

mobility can create small windows in time in which the nodes are within each other’s 

communication ranges. If these handshaking packets are too long relative to the velocities 

of the nodes, the nodes can leave the effective communication range and be unable to 

profit from the information exchanged by the handshake. Having knowledge about the 

packets retained by a node’s neighbors allows it to tailor the transmission parameters (in 

our case whether or not to transmit) to be specific to the present case. This can create a 

great deal of adaptability since the transmission is not dictated by an overall or general 

case, but instead is set for the node’s specific “niche”. 

 The ideas presented in this section all contributed to the development of the 

MAPcast protocol. Their individual strengths and weaknesses were combined and 

modified to produce a broadcast method which sought to gain the best of each while 

making up for their shortcomings to produce a protocol with high reliability yet use less 

energy than other methods.  
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CHAPTER III 
 
 

MAPCAST: AN EFFICIENT BROADCAST PROTOCOL FOR MOBILE ADHOC 

NETWORKS BASED ON RATELESS CODING 

Chapter III presents the MAPcast protocol and explains the reason for certain design 

decisions.  

A few notes on the vocabulary of this study: 

Reachability/Reliability – These terms are used interchangeably in this thesis. It refers 

to the percentage of nodes in the network that receive all of the original data packets, 

either through receiving the actual packets (in methods not utilizing rateless coding), or 

through receiving at least γ⋅K encoded packets needed to decode (in methods with rateless 

coding). 

Latency – In this work, latency is defined as the amount of time required to achieve 

99.9% reachability. For methods that do not achieve full distribution of the broadcast, the 

latency is considered to be the time taken to reach its final reachability value. 

Power consumption - In our model, we consider only the energy spent for RF 

transmissions as in [22]. Therefore, the energy consumption is proportional to the number 

of packet transmissions in the network. 

MAPcast was developed as a power efficient method of broadcasting large data packets 

through a mobile ad-hoc network (MANET). Inspiration was taken from work done in 

the field of disruption tolerant networks (DTN), sometimes known as delay tolerant 
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networks [23,24]. These types of networks are usually very sparsely populated with 

nodes that are not in constant contact with other nodes. MAPcast was designed to 

alleviate the problems associated with network scaling by being fully decentralized, 

meaning that there are no controlling nodes or storage of network information. Each node 

can only have (and only requires) up-to-date information about its one-hop neighbors. 

MAPcast uses a rateless coding scheme along with probabilistic retransmission to ensure 

high reachability/reliability along with better energy efficiency than other schemes. The 

combination works well due to the fact that rateless codes do not require specific packets, 

thus if a particular packet is not retransmitted into a sector of the network, due to the 

probabilistic nature of forwarding, it does not prevent nodes in that sector from 

successfully decoding the entire transmission. Nodes that receive the requisite number of 

packets for successful decoding can then decode the transmission and then re-encode to 

form new unique encoded packets for rebroadcast. In this manner the network can have 

multiple “sources” of unique packets. This increases the likelihood of packet transmission 

(as we will see), as it is unlikely that neighboring nodes will contain these newly 

generated encoded packets.  

A. Scheduling 
 

MAPcast is a schedule driven protocol, in which nodes only attempt transmission of 

packets at discrete times. This frees the node from constantly advertising the packets in 

its transmission buffer, thus reducing the amount of traffic in the network. The source 
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begins transmitting its encoded packets in consecutive time intervals. It should be noted 

that while it is possible for the source to generate a near unlimited number of unique 

packets, it only transmits a set number 2K, where K is the number of original data 

packets. This is due to the decentralized nature of MAPcast in which there is no reliable 

way for every node to inform the source when it has received enough packets to be 

complete. When a node receives a packet for the first time, it places an entry in its 

transmission schedule for a random time tnext_attempt time units in the future. This time is 

chosen as a Gaussian random variable with mean WAIT_MEAN and variance WAIT_VAR. 

These parameters can be adjusted based on the mobility of the nodes. This schedule entry 

also includes the number of times that the node will attempt to forward the packet. This 

value is initially set as MAX_ATTEMPTS, which also can be adjusted based on the 

mobility pattern. When the time for a transmission occurs, the node will send an ADV 

(advertisement) message to its neighbors. This ADV informs the neighboring nodes of 

what encoded packet is ready to be transmitted. The neighboring nodes will then reply 

with an ACK/NACK (acknowledge/negative acknowledge) message based on the 

following criteria. 

1. If the neighboring node has not received the packet being advertised and the 

node has not received the number of packets required to successfully decode the 

transmission, the node will respond with an ACK message. 

2. If the neighboring node has already received the packet being advertised or the 

node has received the number of packets needed to decode the transmission, the 
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node will respond with a NACK message. 

 The node wishing to transmit will then set the forwarding probability p based on the 

ratio of these received messages given by: 

! 

p =
# ACK

# ACK+#NACK
 (2) 

The node will then retransmit the packet with probability p. If the packet is transmitted 

then it is removed from the transmitting node’s schedule. In this case all the nodes which 

replied with an ACK place the packet in their schedule. If the packet is not transmitted 

(this happens with probability 1-p), the node which attempted the transmission will then 

decrement the number of remaining transmission attempts by 1. If this number reaches 0 

the schedule entry is then purged and the packet is said to have “died-out” for that node. 

B. Recoding 

If at any point in the simulation a node receives γ⋅K packets (the number required to 

decode) the node will immediately purge its schedule and begin attempting to decode the 

message and generating new encoded packets by recoding, an operation which requires 

approximately Td time units. After this time the node will begin transmitting new encoded 

packets in consecutive time intervals. These secondary source nodes will only create K 

new packets, rather than the 2*K packets that the primary source created. These packets 

will also have MAX_ATTEMPTS attempts remaining; however due to their nature as 

freshly encoded packets they have a probability near 1 of being transmitted on their first 

attempt, so long as there is a node in the vicinity to receive the packet. This addendum to 
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the protocol increases the amount of unique and diverse packets in the network thus 

increasing the probability of successful transmission and reliability of the network while 

decreasing the latency of the broadcasting. 

C. Setting Parameters 
 
The parameters for MAPcast were decided based on experimental results. The following 

figures show the effects of varying the MAX_ATTEMPTS and WAIT_MEAN. These data 

sets were averaged for five data sets for each variation of the parameters. Fig. 10a and 

10b show the reliability and power usage, respectively, for MAPcast for different 

numbers of MAX_ATTEMPTS. Similarly Fig. 10c shows the latency of MAPcast for 

varying numbers of MAX_ATTEMPTS.  
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Figure 10a. Reachability - MAPcast: WAIT_MEAN set at 200. MAX_ATTEMPTS allowed to vary. 

 
It can be seen in these figures that while all variations allow for full reachability, the 

version using 20 for MAX_ATTEMPTS consumes slightly less power. Additionally Fig. 

10c indicates that there is not a strong correlation between number of attempts and 

latency.  
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Figure 10b. Power Consumption - MAPcast: WAIT_MEAN set at 200 ds. MAX_ATTEMPTS 

allowed to vary. 

Fig. 11a, 11b, and 11c show the performance of MAPcast while varying the 

WAIT_MEAN parameter. These data sets were taken with a fixed WAIT_VAR, the 

variance of the waiting period, of 30 deciseconds and a fixed MAX_ATTEMPTS of 20. 

Fig. 11a indicates that all variations allow for complete reachability. However as seen in 

Fig 11b, the variations that have longer wait times (i.e. 200 and 300) have lower power 

consumption. 
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Figure 10c. Latency - MAPcast: WAIT_MEAN set at 200 ds. MAX_ATTEMPTS allowed to vary. 
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Figure 11a. Reachability - MAPcast with MAX_ATTEMPTS set at 20. WAIT_MEAN allowed to vary. 
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Figure 11b. Power Consumption - MAPcast with MAX_ATTEMPTS set at 20. WAIT_MEAN 

allowed to vary. 

Additionally, there is little correlation between the mean wait time and the latency for 

these ranges of the parameters as seen in Fig. 11c. 

The final parameters were decided upon as the best trade off between ensuring 

reachability and minimizing power consumption. Latency was also considered, but was 

not as heavily weighed in the decision making process. 
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Figure 11c. Latency - MAPcast with MAX_ATTEMPTS set at 20. WAIT_MEAN allowed to vary. 

 

D. MAPcast Protocol 
 
A MAPcast broadcast begins with the source node encoding a number of packets. This 

set produces 2*K encoded packets from the original K data packets. The source, which is 

mobile node, then loads these packets into its transmission schedule in consecutive time 

slots with MAX_ATTEMPTS transmission attempts left. This number of attempts may 

seem unnecessary, as there is no way for the source’s neighbors to send NACK packets, 

since no other node could have transmitted a packet that the source has not already. There 
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is, however, the possibility that the node has no neighbors for a particular transmission 

attempt. If this were the case then the packet would “die out” and never be injected into 

the network if the source had only one attempt at its transmission. 

 The source begins making its transmission attempts. The likewise any forwarding 

nodes attempt to transmit their scheduled packets at the scheduled time step. In the event 

that two packets are scheduled at the same time, the packet placed in the schedule first is 

attempted and the other(s) is attempts on at the next time. When a transmission attempt is 

made the transmitter broadcasts an advertisement packet (ADV) to nodes within range. 

These nodes reply with the appropriate ACK/NACK message as described above. The 

node attempting to transmit then sets the probability of forwarding as shown in Eq. (2). If 

the transmission does in fact occur, the neighboring nodes which replied with an ACK 

place the packet in their transmission schedule at the Gaussian random time from the 

present with MAX_ATTEMPTS attempts remaining. If the transmission did not occur 

the attempting node reduces its remaining attempts and reschedules for a time in the 

future which is chosen from the Gaussian random set. Having these times be random 

rather then set times allows the network to have a chance to exploit many different time 

steps. Also by not transmitting at set times, the strain on the network from a large number 

of nodes attempting to transmit at the same time is reduced. This situation would occur 

when many nodes that received a packet have all scheduled its forwarding for the same 

time instant in the future, a situation that occurs if some of those nodes moved in the 

same direction at similar speeds. While MAPcast does not directly address MAC layer 
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contention issues, they were considered while developing the protocol. If a packet’s 

remaining attempts is reduced to zero the packet is removed from the schedule. 

  This process continues with nodes decoding and recoding where appropriate as 

explained in Section III.B. The protocol does not require that nodes somehow convey the 

fact that they have received the entire original data, like some methods, especially those 

utilizing rateless coding. This is due to the fact that as more of the nodes of the network 

receive the requisite γ⋅K packets needed to decode, the probability of forwarding packets 

decreases and the increasing numbers of packets “die-out” from the network.  

Fig. 12 depicts the flowchart of the MAPcast protocol. Fig. 13a, 13b, and 13c depict the 

propagation of the broadcast through the network. Each snapshot of the propagation is 

separated by 500 deciseconds. We can see that by time 8000 ds, the entire network has 

received the broadcast. See Table I for the parameters of the network. 
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Figure 12. Flowchart of the MAPcast Protocol 
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Figure 13a. Data propagation of MAPcast in a 1000 node network. Red nodes indicate nodes that 
have not received γK packets. Green nodes are nodes that have received γK packets. Snapshots are 
in 500 ds intervals. (500ds-3000ds) 
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Figure 13b. Data propagation of MAPcast in a 1000 node network. Red nodes indicate nodes that 
have not received γK packets. Green nodes are nodes that have received γK packets. Snapshots are 
in 500 ds intervals. (3500ds-6000ds) 
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Figure 13c. Data propagation of MAPcast in a 1000 node network. Red nodes indicate nodes that 
have not received γK packets. Green nodes are nodes that have received γK packets. Snapshots are 
in 500 ds intervals. (6500ds-8000ds)
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CHAPTER IV 
 
 

SIMULATION RESULTS 

 

Chapter IV presents the results obtained from simulating the MAPcast protocol in a 

mobile network. These results are compared to existing methods of broadcast, especially 

focusing on other methods of probabilistic broadcast. Additionally, these methods were 

modified to include rateless coding. In this way the performance of MAPcast can be 

examined while isolated from the gains of rateless coding on its own. 

A. Mobility Pattern 

For the simulations the node mobility was created using the random waypoint model. 

In this model nodes are initially distributed in a uniformly random manner within the 

bound of the field F, which has dimensions Xmax by Ymax. Each node uniformly at 

random selects a destination location within the field of the simulation (X ∈ [0,Xmax], 

Y∈[0,Ymax]) , and then moves to the location with velocity v, which is also uniformly 

distributed (v ∈ [0,Vmax]). Each node then moves directly toward its destination at its 

selected velocity. When a node reaches its destination it selects a new destination and 

velocity in the same manner until the end of the mobility trace at T time units. Table I 

depicts the parameters and their corresponding values chosen for our simulations. 
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TABLE I 
MOBILITY TRACE PARAMETERS 

Variable Symbol Value 
Field width Xmax 500 (m) 
Field height Ymax 500 (m) 

Max. 
Velocity 

Vmax 2 (m/s) 

Max. Time 
Units 

T 10000 ds (deci 
second) 

Number of 
Nodes 

M 1000 

 

B. MAPcast Parameters 

Due to the stochastic nature of the protocol, the system is simulated a number of times 

which are then averaged out to give a good statistical look at the data. This is to eliminate 

variation due to the source of the broadcast (which is randomly chosen for each 

simulation run) as well as the probability based nature of the packet forwarding. For 

MAPcast, the simulation was run ten times for each variation of the simulation 

parameters. For the final version of MAPcast the following parameters were chosen as 

shown in Table II.  

• K – the number of uncoded packets to be transmitted 

• N – the number of coded packets the source node transmits 

• γ - rateless code overhead – percentage of K packets required for decoding 

• Td – number of time units required to decode message and encode new packets 

• MAX_ATTEMPTS – the number of times a node will attempt to transmit a given 
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packet 

• WAIT_MEAN – mean time units before next transmission attempt for a given 

packet in the schedule 

• WAIT_VAR – variance of time units before next transmission attempt 

• R – maximum transmission range for each node 

TABLE  II 
MAPCAST PARAMETERS 

K 1000 
N 2000 
γ 1.03 

Td 200 (ds) 
MAX_ATTEMPTS 20 

WAIT_MEAN 200 (ds) 
WAIT_VAR 50 (ds) 

R 25 (m) 
 

C. Comparison Protocols 

For the comparison protocols, the following parameters were used that are common to 

all methods. Methods utilizing rateless coding as well had the same K, N and γ as 

MAPcast. Also all comparison protocols, except distance-based dynamically adjusted 

probabilistic forwarding (DDAPF) [14], have one attempt at transmission and only one 

time unit wait between packet reception and transmission attempt. Methods that utilize 

packet decoding and retransmission use the same Td as MAPcast. 

DDAPF [14] is an adaptive probabilistic forwarding method proposed by Khan et al. 
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that uses exponential functions to set forwarding parameters. The method sets a 

forwarding probability based on the distance d between sender and receiver as given by:  
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where R is the transmission range. 

  There is also a waiting period for retransmission that is similarly based on this 

distance. Our implementation of the protocol uses a k ([14]’s notation) value of 1, and a 

Max_delay of 10 (ds).  Another version of this protocol was tested that uses rateless 

coding (called rateless-DDAPF) as well.  
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D. Simulation Results 

MAPcast was tested against Flooding and fixed probabilistic methods of broadcasting 

that did not include rateless coding. These methods were found to have extremely low 

reachability, compared to MAPcast, and so were not included in the results section of this 

thesis. Therefore, in this thesis we integrated Flooding and PBcast with rateless coding to 

improve their performance. 

Fig. 14a shows the network reachability of MAPcast as well as the reachability of a 

flooding transmission using rateless coding.  

 
Figure 14a. Reachability - MAPcast vs. Rateless-Flooding 



 39 

Flooding with rateless coding (call it Rateless-Flooding) is a method in which the source 

node encodes the data and transmits a number of these encoded packets. The other nodes 

in the network forward these packets with p = 1. It is evident from the Fig. 14a that 

MAPcast has a large gain over Rateless-Flooding in terms of reliability, in that it is able 

to deliver the message to the entire network, while Rateless-Flooding cannot. This is due 

to the fact that MAPcast has multiple attempts to transmit as well as a wait time between 

transmission attempts. This enables the nodes to travel a bit, and thus the connectivity 

graph of the network changes between the time of reception and the time of transmission. 

Therefore if there are any regions of the network that are partitioned (disconnected) from 

other regions of the network, the nodes have a chance to establish connectivity with the 

portioned regions. Also the multiple transmission attempts adds the ability to only 

forward in “good” regions (areas that have a high portion of nodes without the packet), 

this decreases superfluous transmissions.  

In Fig. 14b we see the difference in power consumption between MAPcast and Rateless-

Flooding. It shown in the figure, in terms of power consumption, MAPcast uses only 

about 20% of Rateless-Flooding’s power, which is a significant reduction of power 

consumption.  
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Figure 14b. Power Consumption - MAPcast vs. Rateless-Flooding 
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Next we see MAPcast compared with a probabilistic broadcast (PBcast) model with 

forwarding probability p that uses rateless coding at the source only. Fig. 15a and 15b 

show the reachability and power usages, respectively for different values of p. Again we 

see that even at the highest probability, Rateless-PBcast is unable to achieve the 

reliabilities that MAPcast can. Similarly, we see that for all but the lowest forwarding 

probabilities (p=0.3), MAPcast uses lower energy to achieve its reachability. It should be 

noted though that rateless-PBcast with p=0.3 has a very low reachability. 

 
Figure 15a. Reachability - MAPcast vs. Rateless PBcast with forwarding probability p. 
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Figure 15b. - Power Consumption - MAPcast vs. Rateless PBcast with forwarding probability p. 

 

In Fig. 16a and 16b the performance of MAPcast is evaluated against the DDAPF 

protocol described in [14]. Fig. 16a shows the reachability of the two protocols. Notice 

that DDAPF has a much quicker time to asymptote than MAPcast. This is due to the 

much shorter retransmit delay in DDAPF; however, final reachability of MAPcast is 

higher than that of DDAPF. Fig. 16b shows the power consumption of the protocols. 

Again we see a huge power savings in MAPcast. 
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Figure 16a. Reachability - MAPcast vs. DDAPF 
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Figure 16b. Power Consumption - MAPcast vs. DDAPF 

 

MAPcast was also compared to a version of DDAPF that was modified to use rateless 

coding. This was done to ensure that the gains achieved by MAPcast over DDAPF are 

not simply due to rateless coding, but are indicative of the superiority of MAPcast’s 

forwarding characteristics. Fig. 17a shows the reliability results for Rateless DDAPF 

along with regular DDAPF (as in [14]) and MAPcast for comparison. From this figure we 

can see that the inclusion of rateless coding allows the network to fully distribute the data 

to the entire network (reachability of 100%). Also the latency is very low. However, in 

Fig. 17b it can be seen that the power consumption is very high, on the order of 17 times 
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greater than MAPcast if we consider the power usage at the point that final reliability is 

reached. (Approximately 2900 ds). 

 
Figure 17a. Reachability - MAPcast vs. DDAPF with Rateless coding 

 
In Fig 17b it can be seen that Rateless-DDAPF continues to transmit packets after all 

nodes in the network have received γ⋅K packets. This is because the Rateless-DDAPF has 

no method to notify the nodes that transmissions are no longer necessary. This problem is 

taken care of in MAPcast by the ADV system. 
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Figure 17b. Power Consumption - MAPcast vs. DDAPF with Rateless Coding 

 

Fig. 18a and 18b show the reachability and power consumption, respectively, for a 

probabilistic forwarding model using rateless coding at the source at well as decoding 

and re-encoding at nodes that are able to decode the entire message.  This is similar to the 

Collaborative rateless broadcast (CRBcast) protocol in [11,12], but without the additional 

packet requests and advertisements associated with the forwarding node recoding.    
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Figure 18a. Reachability - MAPcast vs. CRBcast with forwarding probability p. 
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These results show that while the implemented CRBcast with forwarding probability 

p≥0.4 can deliver reliabilities on par with MAPcast, MAPcast achieves large power 

savings (Fig. 18b). The power consumption of MAPcast is only 20% of that of the next 

best method (i.e. CRBcast with forward probability  p = 0.4). This gain is mainly 

achieved because CRBcast was developed for stationary networks while MAPcast is 

designed taking into account the mobility of nodes in a MANET.   

 

 
Figure 18b. Reachability - MAPcast vs. CRBcast with forwarding probability p. 
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CHAPTER V 
 
 

CONCLUSION 

 

A. Remarks 
In this thesis, we considered the problem of reliable and energy efficient broadcasting in 

mobile ad-hoc networks. We proposed a broadcasting protocol, referred to as MAPcast, 

which is based on adaptive probabilistic broadcasting and rateless coding. We have seen 

how MAPcast can achieve great power savings over other probabilistic broadcast 

methods. We have also shown the large gain in reliability offered by rateless coding at 

the source as well as relaying nodes. The scheme that has closest result to MAPcast is 

CRBcast, which we showed MAPcast outperforms it by 80% less energy consumption. 

 The MAPcast protocol has been shown to be a large improvement over existing 

protocols in terms of energy efficiency. However this improvement comes at the expense 

of latency. MAPcast generally has a higher latency than other schemes. It is this extra 

time that MAPcast exploits to achieve its high gains. MAPcast lets the nodes’ mobility 

carry the burden of data distribution rather than use extra energy in the form of redundant 

transmissions. By waiting and allowing multiple transmission attempts the node can 

“choose” better transmission opportunities rather than waste a transmission for mediocre 

results. 
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B. Future Work 
Additional investigation and expansion of MAPcast is desired. The protocol could be 

tested against mobility patterns with higher mobility (larger Vmax) as well as less 

randomness in the movements of the nodes (i.e. set patterns of movement). Additionally 

we propose to add a feature to MAPcast that would reschedule future transmission 

attempts to occur immediately if a node is in a region of prime transmission opportunity, 

based on the number of neighbors that lack the advertised packet. In this method, if a 

transmission attempt is assigned a forwarding probability that was higher than some 

threshold (e.g. 90%), then the node in question would change the time scheduled for 

transmission of all packets in its schedule to the current time. This would effectively 

cause the node to attempt all of it’s transmissions for immediate consecutive time slots. 

Alternatively the stimulus for this action could be based on the number of ACK returns, 

rather than the ratio of ACK/NACK which the probability is set from. In this scenario a 

node would reschedule its transmissions if the node receives some threshold of ACK 

messages (e.g. 10) in response to an ADV message. These changes could help the 

MAPcast protocol to further exploit the mobility pattern, by taking advantage of these 

high efficiency (in terms of nodes reached per transmission) situations. 
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