70 research outputs found

    New Fault Tolerant Multicast Routing Techniques to Enhance Distributed-Memory Systems Performance

    Get PDF
    Distributed-memory systems are a key to achieve high performance computing and the most favorable architectures used in advanced research problems. Mesh connected multicomputer are one of the most popular architectures that have been implemented in many distributed-memory systems. These systems must support communication operations efficiently to achieve good performance. The wormhole switching technique has been widely used in design of distributed-memory systems in which the packet is divided into small flits. Also, the multicast communication has been widely used in distributed-memory systems which is one source node sends the same message to several destination nodes. Fault tolerance refers to the ability of the system to operate correctly in the presence of faults. Development of fault tolerant multicast routing algorithms in 2D mesh networks is an important issue. This dissertation presents, new fault tolerant multicast routing algorithms for distributed-memory systems performance using wormhole routed 2D mesh. These algorithms are described for fault tolerant routing in 2D mesh networks, but it can also be extended to other topologies. These algorithms are a combination of a unicast-based multicast algorithm and tree-based multicast algorithms. These algorithms works effectively for the most commonly encountered faults in mesh networks, f-rings, f-chains and concave fault regions. It is shown that the proposed routing algorithms are effective even in the presence of a large number of fault regions and large size of fault region. These algorithms are proved to be deadlock-free. Also, the problem of fault regions overlap is solved. Four essential performance metrics in mesh networks will be considered and calculated; also these algorithms are a limited-global-information-based multicasting which is a compromise of local-information-based approach and global-information-based approach. Data mining is used to validate the results and to enlarge the sample. The proposed new multicast routing techniques are used to enhance the performance of distributed-memory systems. Simulation results are presented to demonstrate the efficiency of the proposed algorithms

    Performance evaluation of distributed crossbar switch hypermesh

    Get PDF
    The interconnection network is one of the most crucial components in any multicomputer as it greatly influences the overall system performance. Several recent studies have suggested that hypergraph networks, such as the Distributed Crossbar Switch Hypermesh (DCSH), exhibit superior topological and performance characteristics over many traditional graph networks, e.g. k-ary n-cubes. Previous work on the DCSH has focused on issues related to implementation and performance comparisons with existing networks. These comparisons have so far been confined to deterministic routing and unicast (one-to-one) communication. Using analytical models validated through simulation experiments, this thesis extends that analysis to include adaptive routing and broadcast communication. The study concentrates on wormhole switching, which has been widely adopted in practical multicomputers, thanks to its low buffering requirement and the reduced dependence of latency on distance under low traffic. Adaptive routing has recently been proposed as a means of improving network performance, but while the comparative evaluation of adaptive and deterministic routing has been widely reported in the literature, the focus has been on graph networks. The first part of this thesis deals with adaptive routing, developing an analytical model to measure latency in the DCSH, and which is used throughout the rest of the work for performance comparisons. Also, an investigation of different routing algorithms in this network is presented. Conventional k-ary n-cubes have been the underlying topology of contemporary multicomputers, but it is only recently that adaptive routing has been incorporated into such systems. The thesis studies the relative performance merits of the DCSH and k-ary n-cubes under adaptive routing strategy. The analysis takes into consideration real-world factors, such as router complexity and bandwidth constraints imposed by implementation technology. However, in any network, the routing of unicast messages is not the only factor in traffic control. In many situations (for example, parallel iterative algorithms, memory update and invalidation procedures in shared memory systems, global notification of network errors), there is a significant requirement for broadcast traffic. The DCSH, by virtue of its use of hypergraph links, can implement broadcast operations particularly efficiently. The second part of the thesis examines how the DCSH and k-ary n-cube performance is affected by the presence of a broadcast traffic component. In general, these studies demonstrate that because of their relatively high diameter, k-ary n-cubes perform poorly when message lengths are short. This is consistent with earlier more simplistic analyses which led to the proposal for the express-cube, an enhancement of the basic k-ary n-cube structure, which provides additional express channels, allowing messages to bypass groups of nodes along their paths. The final part of the thesis investigates whether this "partial bypassing" can compete with the "total bypassing" capability provided inherently by the DCSH topology

    Analysis of wormhole routings in cayley graphs of permutation groups.

    Get PDF
    Over a decade, a new class of switching technology, called wormhole routing, has been investigated in the multicomputer interconnection network field. Several classes of wormhole routing algorithms have been proposed. Most of the algorithms have been centered on the traditional binary hypercube, k-ary n-cube mesh, and torus networks. In the design of a wormhole routing algorithm, deadlock avoidance scheme is the main concern. Recently, new classes of networks called Cayley graphs of permutation groups are considered very promising alternatives. Although proposed Cayley networks have superior topological properties over the traditional network topologies, the design of the deadlock-free wormhole routing algorithm in these networks is not simple. In this dissertation, we investigate deadlock free wormhole routing algorithms in the several classes of Cayley networks, such as complete-transposition and star networks. We evaluate several classes of routing algorithms on these networks, and compare the performance of each algorithm to the simulation study. Also, the performances of these networks are compared to the traditional networks. Through extensive simulation we found that adaptive algorithm outperformed deterministic algorithm in general with more virtual channels. On the network performance comparison, the complete transposition network showed the best performance among the similar sized networks, and the binary hypercube performed better compared to the star graph

    Performance analysis of wormhole switched interconnection networks with virtual channels and finite buffers

    Get PDF
    An efficient interconnection network that provides high bandwidth and low latency interprocessor communication is critical to harness fully the computational power of large scale multicomputer. K-ary n-cube networks have been widely adopted in contemporary multicomputers due to their desirable properties. As such, the present study focuses on a performance analysis of K-ary n-cubes employing wormhole switching, virtual channels, and adaptive routing. The objective of this dissertation is twofold: to examine the performance of these networks, and to compare the performance merits of various topologies under different working conditions, by means of analytical modelling. Most existing analytical models reported in the literature have used a method originally proposed by Dally to capture the effects of virtual channels on network performance. This method is based on a Markov chain and it has been shown that its prediction accuracy degrades as traffic increases. Moreover, these studies have also constrained the buffer capacity to a single flit per channel, a simplifying assumption that has often been invoked to ease the derivation of the analytical models. Motivated by these observations, the first part of this research proposes a new method for modelling virtual channels, based on an M/G/1 queue. Owing to the generality of this method. Daily's method is shown to be a special case when the message service time is exponentially distributed. The second part of this research uses theoretical results of queuing systems to relax the single-flit buffer assumption. New analytical models are then proposed to capture the effects of deploying arbitrary size buffers on the performance of deterministic and adaptive routing algorithms. Simulation experiments reveal that results from the proposed analytical models are in close agreement with those obtained through simulation. Building on these new analytical models, the third part of this research compares the relative performance merits of K-ary n-cubes under different operating conditions, in the presence of finite size buffers and multiple virtual channels. Namely, the analysis first revisits the relative performance merits of the well-known 2D torus, 3D torus and hypercube under different implementation constraints. The analysis has then been extended to investigate the performance impact of arranging the total buffer space, allocated to a physical channel, into multiple virtual channels. Finally, the performance of adaptive routing has been compared to that of deterministic routing. While previous similar studies have only taken account of channel and router costs, the present analysis incorporates different intra-router delays, as well, and thus generates more realistic results. In fact, the results of this research differ notably from those reported in previous studies, illustrating the sensitivity of such studies to the level of detail, degree of accuracy and the realism of the assumptions adopted

    A Dag Based Wormhole Routing Strategy

    Get PDF
    The wormhole routing (WR) technique is replacing the hitherto popular storeand- forward routing in message passing multicomputers. This is because the latter has speed and node size constraints. The wormhole routing is, on the other hand, susceptible to deadlock. A few WR schemes suggested recently in the literature, concentrate on avoiding deadlock. This thesis presents a Directed Acyclic Graph (DAG) based WR technique. At low traffic levels the proposed method follows a minimal path. But the routing is adaptive at higher traffic levels. We prove that the algorithm is deadlock-free. This method is compared for its performance with a deterministic algorithm which is a de facto standard. We also compare its implementation costs with other adaptive routing algorithms and the relative merits and demerits are highlighted in the text

    Efficient Multicast Algorithms for Mesh and Torus Networks

    Get PDF
    With the increasing popularity of multicomputers, efficient way of communication within its processors has become a popular area of research. Multicomputers refer to a computer system that has multiple processors, they have high computational power and they can perform multiple tasks concurrently. Mesh and Torus are some of the commonly used network topologies in building multicomputer systems. Their performance highly depends on the underlying network communication such as multicast. Multicast is a communication method in which a message is sent from a source node to a certain number of destinations. Two major parameters used to evaluate multicast are time that a multicast process takes to deliver the message to all destinations and traffic that indicates the number of links used for this process. Research indicates that in general, it is NP- complete to find an optimal multicasting algorithm which is efficient on both time and traffic. This thesis suggests two new algorithms to achieve multicast in mesh and torus networks. Extensive simulations of these algorithms show that in practice they perform better than existing ones

    Effects of injection pressure on network throughput

    Get PDF
    ©2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.Recent parallel systems use multiple injection ports and various injection policies, but little is known about their impact on network performance. This paper evaluates the influence that these injection interfaces have on maximum sustained throughput in adaptive cut-through torus networks by modeling the number of injection queues (1 or 4), and the allocation of new packets to those queues. Network evaluations for medium to large size 2D tori show that designs with multiple injection ports do not improve performance under uniform traffic. On the contrary, they result in more pressure from the injection interface to acquire the scarce network resources of an already clogged system. Interestingly, for small networks, a single injection FIFO queue, with the HOLB it entails, indirectly provides the much needed injection control. For networks with thousands of nodes and multiple injection channels, as those being implemented in current massively parallel processors, this implicit form of congestion control is not enough. In such systems, restrictive injection policies are required to prevent routers from being flooded with new packets for loads beyond saturation.C. Izu, J. Miguel-Alonso, J.A. Gregori

    The MANGO clockless network-on-chip: Concepts and implementation

    Get PDF

    Submicron Systems Architecture Project: Semiannual Technial Report

    Get PDF
    No abstract available
    corecore