
California State University, San Bernardino California State University, San Bernardino

CSUSB ScholarWorks CSUSB ScholarWorks

Theses Digitization Project John M. Pfau Library

1996

Torus routing in the presence of multicasts Torus routing in the presence of multicasts

Hiroki Ishibashi

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Ishibashi, Hiroki, "Torus routing in the presence of multicasts" (1996). Theses Digitization Project. 1251.
https://scholarworks.lib.csusb.edu/etd-project/1251

This Thesis is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has
been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks.
For more information, please contact scholarworks@csusb.edu.

https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd-project
https://scholarworks.lib.csusb.edu/library
https://scholarworks.lib.csusb.edu/etd-project?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F1251&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F1251&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd-project/1251?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F1251&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

TORUS ROUTING IN THE PRESENCE OF MULTICASTS

A Thesis

Presented to the

Faculty of

California State University,

San Bernardino

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

Computer Science

By

Hiroki Ishibashi

March 1996

TORUS ROUTING IN THE PRESENCE OF MULTICASTS

A Thesis .

Presented .to the

Faculty of

California State University,

San Bernardino

• ; By

Hiroki Ishibashi

March 1996

Approved by:

Coraputer ScienceKay air

ConcepArt >ro on

3,
Date

ABSTRACT

: multicast-packet routing algorithms for torus ; ,

interconnection networks of arbitrary size and dimensipn are

presented. Multicast algorithm 1 uses repeated unicasts to

perform multicasts. Multicast algorithm 2 and Multicast

Algorithm 3 are new algorithms. These two algorithms are

fully adaptive for unicast packets and partially adaptive

for multicast packets in the sense that all paths are

minimal. Multicast Algorithm 2 requires only three central

queues, an injection queue (input buffer), and a delivery

queue (output buffer) per node. Multicast Algorithm 3

requires three more central queues and an extra re-injection

queue per node. The number of required central queues per

node for both Multicast Algorithms 2 and 3 are constant

regardless of the size and dimension of the torus network.

In the presence of a large number of multicasts on large ,

networks, the third multicast algorithm performs close to

the unicast algorithm. Since these algorithms are based on

small-sized packet switching method, they are applicable to

both multicomputer and Asynchronous Transfer Mode (ATM)

switch design. A new technique to build scalable torus

networks is also presented.

Ill

I would like to thank all faculty members for the

excellent education. I would especially like to express my

gratitude to Dr. Kay Zemoudeh who patiently'helped me in

completing this work. Also,, I would like to repeat my

thanks to Dr. Arturo Concepcioh and Dr. Owen Murphy who

reviewed this work.

Finally, I gratefully acknowledge the, support of my

XV

TABLE OF CONTENTS

ABSTRACT . Ill

ACKNOWLEDGMENTS iv

LIST OF:,TA^^ , vii

LIST OF IlM . . viii

CHAPTER i -- INTRODUCTION

1.1 MOTIVATION . . .
 ■ - 2

;i.2 ORGANIZATIOiSf OF CHAETERS
 ■ - '4'

CHAPTER 2 — PRELIMINARIES

2.1 SWITCHING METHODS

2.2 HYPERCUBE: INTERCONNECTION SETWORKS
 13

. 2.3: DEADLOCK,:.LIVELOCIC>;,;;AND STARVATION ■ .l®

; ^ 2.4;^ ADAPTIVE ROUTING;PROTOGOfiS; ; . . ; ! . 1^17

chapter 3 -- FULUY^MINIMi^-I^APTlVE^^^U^

: ON TORUS;NETW0RKD.:

; 3.1 DEFINITION OF %RMS :. 19

; 3.;2 assm . 20

: D.. . . . 22

3.4 NOTATION 30

3.5 THE UNICAST ALGORITHM ;3i.

CHAPTER 4 -- IMPLEMENTATION AND PERFORMANCE EVALUATION

OF THE UNICAST ALGORITHM

4.1 NODE ARCHITECTURE AND ORGANIZATION 35

4.1.1 FOLDED TORUS NETWORKS . :3:5

4.1.2 BASE UNITS 36;

V

;.4,.;i.3, ARGHiTEGTUR& BASE;UNITS 40

4.2 SIMULATION METHOD . 42

; 4.2.1^^^P^ . . 42

: ^ :4.2.2 simulation properties . . 43

^ ? 4V2.3^ ^^^ 44

: ■ 4..3 SIMULATION RESULT OE'THE UNIGASI" ALGORITH 46

GHAPTER 5 -- MULTIGASTS ON TORUS NETWORKS;

: 5.1 MULTIGAST NOTATION^ Vv • • • 49

> V5.R;MULTIGAST ALG^^^ 1 EIMPLISTIG . . . : 50

; -o . 5.;3 SIMULATION Result : of:multigast algorithm ;i 50

5.4 MULTIGAST algorithm 2 - RE-INJEGTlON • • 53^

; \ 5.5 PROOF OF GORREGTNESS
: ^/' FQR^^^M oi;

E.6 SIMULATION RESULT OF MULTICAST ALGORITHM, 2 63'

/ 5.7 MULTICAST ALGORITHM 3 > ;
: MULTIPLE CENTRAL QUEUES: ,: . ^ > . L -i • 7;' 67

5.8 PROOF OF GORREGTNESS :

FOR' MULTICAST ALGORITHM:3 . vE. ;. O:; 72

, : ; 5.9 SIMULATION:RESUET;,: OF: MULTICAST ALGORITHM - 3 80

: ; 5.10 COMPARISON OF the multicast algorithms . 86

GHAPTER 6 -- EXTENSION AND GORGLUSION

/ 6.1 EXTENSION TO THE MULTICAST ALGORITHMS:. . 89

Or.: ;6,,-2,0FUTUREr^WORK:..^ '.ov'O 90

r.;- , ■;5;-a:OGONGLUS:10N 90

REFERENCES v. O.,, ^ . 0: . . - 92

VI

LIST OF TABLES

Table 3 R Ordering in 8x9 Torus . . . 26

Table 3.2. Left-increasing Ordering in 8x9 Torus 27

Table 3.3. Inside-increasing Ordering in 8x9 Torus . . . 28

Table 3.5. The Functions A(a,,A:,.), (a,.,A:,.),

Table 5.1. Multicast2 - Pattern 3 (Heavy Traffic)

Table 5.2. Multicast3 - Pattern 3 (Heavy Traffic)

Table 3.4.:Outside-increasing Ordering in 8x9 Torus; . . 29

and when A:,. =9 30

Network Size: 8x8x8, 30% Multicasts . ., . ■ . V. ■ 66

Network Size: 8x8x8, 30% Multicasts 83

VI1

LIST OF ILLUSTRATIONS

a. LIST OF, FIGURES

. Figure 2.1. Network Latency of .Circuit Switching . . 7

Figure 2.4. Network Latency of Virtual Cut-Through

Figure 2.9. Taxonomy of Adaptive

Figure 3.1. The Queue Structure of

Figure 2.2. Network Latency of Message Switching . . 8

Figure 2.3. Network Latency of Packet Switching . . 10

and Wormhole 11

Figure ,2.5. Hierarchy of Switching Methods 12

Figure 2.6. Generalized Hypercube 14

Figure 2.7. Hyper-Rectangular 15

Figure 2.8. Taxonomy of HIN . . 16

Routing Protocols 18

the Unicast Algorithm.. . . . i 20

Figure 3.2. 8x9 Torus Network 25

Figure 3.3. 8x9 Torus with Right-increasing

Direction Edges 26

Figure 3.4. 8x9 Torus with Left-increasing

Direction Edges 27

Figure 3.5. 8x9 Torus with Inside-increasing

Direction Edges 28

Figure 3.6. 8x9 Torus with Outside-increasing

Direction Edges 29

Figure 3.7. An Example of a Route by

the Unicast Algorithm.: . 34

Figure 3.8. The Modified Queue Structure 34

VI11

Figure 4'.1. Linear Array 36

Figure 4.2. 1-D Torus 36

Figure 4.3. 1-D Folded Torus .

Figure 4.4. Base Unit for 1-D Torus 37

Figure 4.5. 3 Base Units and 2 End Pins 37

Figure 4.6. Base Unit for 2-D Torus 37

Figure 4.7. 2x2 Base Units in a 6x6 Folded Torus . -38

Figure 4.8. Base Unit for 3-D Torus 39

Figure 4.9. 2x2x2 Base Units

in a 2x4x4 Folded Torus 40

Figure 4.10. Single Node Implementation on a Chip . 41

Figure 4.11. An Example of Packet Priorities . . . 42

Figure 5.1. The Queue Structure of

Multicast Algorithm 2 53

Figure 5.2. An Example of a Multicast Used by

Multicast Algorithm 2 in an 8x9 Torus . 55

Figure 5.3. An Example of a Broadcast Used

Multicast Algorithm 2 in an 8x9 Torus . 57

Figure 5.4. The Queue Structure of

Multicast Algorithm 3 67

b. LIST OF GRAPHS

Graph 4.1. Unicast - Average Latency vs .■ Lambda
(Pattern 3 - Heavy Traffic)

- 8x8x8 Torus . . . 48

IX

Graph 5,1. Unicast and Multicastl - Average Latency

vs. Lambda (Pattern 3 - Heavy Traffic)

30% Multicasts on 8x8x8 Torus■ 52

Graph 5.2. 	Unicast, Multicastl, and Multicast2 - '
Average Latency vs. Lambda
(Pattern 3 - Heavy Traffic)
30% Multicasts on 8x8x8 Torus 65

Graph 5.3. Unicast, Multicastl, Multicast2, and
Multicast3 - Average Latency vs. Lambda
(Pattern 3 -(Heavy Traffic)
3,0% Multicasts on 8x8x8 Torus 82

Graph 5.4. Unicast, Multicastl, Multicast2, and
V Multicast3 - Average Latency vs. Lambda

(Pattern 3 - Heavy Traffic)
30% Multicasts on 4x4x4 Torus 84

Graph 5.5. Unicast, Multicastl, Multicast2, and
Multicast3 - Average Latency vs. Lambda
(Pattern 3 - Heavy Traffic)
50% Multicasts on 4x4x4 Torus 85

Graph 5.6. Comparison of Multicast Algorithms
(Pattern 3 - Heavy Traffic)
on 4x4x4 Torus 87

Graph 5.7. 	Comparison of Multicast Algorithms
for Single Source Broadcasts
on 4x4x4 Torus . . . , . . . , 88

X

CHAPTER 1 -- INTRODUCTION

Parallel computers with binary^^^

interconnection networks have been widely studied in the

last decade. Several commercial products, such as the

iPSC/860 from Intel Corporatioh, the nCUBE from nCUBE

Corporation, and the CM-2 from Thinking Machine Corporation

[19], were developed based on binary hypercube

interconnection networks. In massively parallel processing

(MPP) computers, interconnection network scalability is^

important. Binary hypercubes are not scalable. As the

number of dimension in the binary hypercube grows, the

number of nodes increases exponentially. Parallel computers

with mesh and torus intefconnection networks are more

desirable because of their scalability property [26]. d- .

dimensional mesh and;tori can be laid out in d.dimensions

using short wires. They can be built using identical

boards, each of which requires:; a Small , number of pins for

connections to other boaxds [5},. Example machines include

the Paragon from Intel Corporation [17], [19], [29], and the

T3D and the T3E from Cray Research [19].

The primary disadvantages of mesh and torus

interconnection .networks :are their relatively large diameter

and relatively small bisection width [5], [19], [28]. When .

a network is cut into two equal halves, the minimum number

of edges (channels) along the cut is called the bisection

width. The diameter of a network is the maximum shortest

path between any two nodes. These two network properties of

mesh and torus interconnection networks limit the ability of

global communications, such as multicasts and broadcasts.

However, torus networks have approximately twice the

bisection width compared with that of equal sized mesh

networks [51, [19]. In addition, the node symmetry of the

torus network eliminates congestion from edge nodes of an

equal sized and shaped mesh network [5].

1.1 MOTIVATION

A requirement for any routing algorithm is to deliver

all messages to the correct destinations without deadlock,

livelock, and starvation. The performances of parallel

computers mainly depend on the performance of its

communication network. Extensive research studies have been

completed on torus networks to develop efficient routing

algorithms. Most of the existing routing algorithms for

mesh and toirus networks do not consider multicasts [4], [5],

[7], [10], [12], [13], [14], [25], [27]. Multicasts are

one-to-many communications. It is still possible to perform

multicasts by sending multiple unicasts, but this method

increases network latency and causes network congestion

quickly. Broadcasts are one-to-all communications. There

are several broadcast algorithms for torus networks [22],

[32]; however, they are for wofrahole routing. (Most

broadcast algorithms cannot handle multicasts. Wormhole

routing is an efficient technique to hide network latencies

for large messages. In wormhole routing, each node has a

buffer which is normally less than the size of messages.

Also, wormhole routing routes a message in a pipeline

fashion. Due to these two properties of wormhole routing,

multiple links can be occupied by just one message. This is

the primary cause of low utilization of the channels. When,

the focus is on small-sized packets (for example 57 bytes),

the complexity of wormhole routing is wasted. These

broadcast algorithms are not efficient and even not

applicable to small packet switching. Packet switching is a

technique for routing small packets (or messages). It is

necessary to develop an efficient multicast algorithm for

small packet routing on a torus network. Broadcast is a

special case of multicast. Therefore, the multicast

algorithm also support broadcasts. The main thrust of this

work is to develop an efficient multicast algorithm for

small packet switching with minimum network latency. The

multicast algorithms presented here are based on the unicast

algorithm for packet switching by Cypher and Gravano [5], a

fully-miriimal-adaptive routing algorithm. Also, a new

technique to build scalable folded torus networks is

presented. Since ATM cells are small 53 byte messages, the

applicability of the multicast algorithms to ATM switches is

also studied. Most ATM switches are based on the multistage-

interconnection networks (MIN) [1], [8], [20], [24] or fast

time multiplexed buses. MINs are dynamic networks [18],

[19]. Here the application of static networks, including

torus networks, to ATM switches is also studied.

1.2 ORGANIZATION OF CHAPTERS

Chapter 2 introduces different types of switching

methods, hypercube interconnection networks, and routing

protocols. The definitions of deadlock, livelock, and

starvation are given. Also, adaptive routing protocols are

described. They are necessary to understand any routing

algorithm on a' torus network. In Chapter 3, the unicast

algorithm by Cypher and Gravano [5] is presented and^the

fundamental definitions are given. Chapter 4 describes a

new technique to build scalable folded torus networks. The

simulation method and the performance of the unicast

algorithm are studied in this chapter as well. In chapter

5, the formal definitions of Multicast Algorithm 1,

Multicast Algorithm 2, and Multicast Algorithm 3 are given.

Also, hhe proof of correctness for Multicast Algorithms 2

and 3 are presented. These algorithms are extensively

compared with one another based on the results of

simulations. Chapter 6 includes some possible extensions.

future work, and conclusions.

CHAPTER 2 ^- PRELIMINARIES

In this chapter, fundamental knowledge^ which is

necessary to discuss any routing protocol on a torus ■

networ]<i.:is ■ 'presented'.:

2.1 SWITCHING METHODS

In this section, several switching methods are

described and compared. A switching method is a mechanism

to transport information across a network. Network latency

is the amount of time required to transport a message from

its source to its destination.

In circuit switching, a complete path of communication

links must be setup between two nodes, the source node and

the destination node, prior to the actual communication..

This technique is based on the telephone switching method

used in most of the existing telephone networks [21]. Once

the path between two nodes is set up, there is no need for

further signaling or addressing. The minimum network

latency of circuit switching is proportional to

2N,xS,+L^

where N,, is the number of hops, 5, is the size of signal,

and is the length of the message (Figure 2.1). The

number of. hops is equal to the number of time that a message

is transferred between two adjacent nodes. Circuit

switching can cause a low channel utilization because qnce

links are in use/ hb other, node can use those links even if

they are idle [21]. Since the network latency is dominated

by the time required to setup a connection and links are

used by only two communicating nodes, this method is

advantageous for infreguent long messages. For frequent

short messages, there are too many overheads involved to

establish a connection beforehand. Therefore, circuit

switching is not suitable for small messages (packets).

3 Message orPacket

► Data or Content

f Header and Signaling Information

SOURCI-; isi I I ̂

:NOPEi 1

NODE 2

DESTINATION -TIME

Sig. Latency >

Network Latency

Figure 2.1. Network Latency of Circuit Switching.

In message switching(Store-and-Forward) , messages are

routed toward their destination nodes without establishing a

path. Message switching achieves a better channel

utilization than circuit switching by utilizing idle periods

of circuit switching [21] . By including addressing

information in the header, each message is routed toward its

destination dynamically by intermediate nodes. When a

message is received in an intermediate node, the message is

stored in a buffer temporarily and then is forwarded to a

selected adjacent node. The name "store-and-forward" is

derived from this routing characteristic. In this method,

each link is statistically shared by many nodes. Because

each message needs to be received completely at intermediate

nodes before it is forwarded to the next node, the

communication latency is much higher. The minimum network

latency is proportional to

where is the size of the header (Figure 2.2). In this

method, buffers in the nodes must be able to store the

longest message allowed.

SOURCE -iiiiliilAH 1

NODE 1

NODE2

DESTINATION -TIME

Network Latency

Figure 2.2. Network Latency of Message Switching.

Packet Switching is an improvement over message

switching by dividing a message into smaller packets. Each

packet has its own addressing information. This introduces

additional overhead, but the simultaneous use of links on a

path by a message is possible. Packet switching utilizes

the communication links more efficiently than message

switching [21]. A higher channel utilization and low

network latency are possible. The minimum network latency

is proportional to

N,x(S,+L^)+iN^-l)x(S,+L^) = (5,+I^)x(Ar^+(iV^-i))

where is the length of packet without header (Figure

2.3). The required buffer size is the packet size. Store

and-forward or packet switching is more suitable for ATM

traffic since ATM cells (packets) are small. In general,

store-and-forward and packet switching are simple techniques

which work well when messages or packets are small in

comparison with the channel widths [5]. If the messages

themselves are small and fixed size, it is possible to apply

store-and-forward directly to the algorithms presented here.

An example of this_scenario is ATM cells.

PI P2
Note:PI andP2are packets.

SOURCE

PI P2

NODE 1

PI P2

NODE2

DESTINATION -TIME

Network Latency

Figure 2.3. Network Latency of Packet Switching.

Virtual gut-through is a mixture of circuit switching

and packet switching. Virtual cut-through attempts to

overcome the extra latency that is introduced by message

switching and packet switching. It permits a message to be

transmitted to the next node before it is received

completely. The message or packet is divided into smaller

units called flow control units or flits [11], [16], [21].

When enough information for routing is received and the

selected outgoing channel is free, the transmission of the

flits to the next node starts- Once a message header(flit)

is accepted by the next node, the rest of the message or

packet follows the same path. Only when the outgoing

channel is busy, the message or packet needs to be stored at

the blocked intermediate node completely. On a heavily

loaded network, virtual cut-through performs similarly to

message switching or packet switching. On a lightly loaded

network, virtual cut-through performs similarly to circuit

,10

switching [21]. The minimum network latency is proportional

to '

refer to Figure 2.4. Virtual cut-through is suitable fd»r

lightly loaded networks, ahd it hides network latency. If

the messages or packets are small, there are small

differences between store-and-forward or packet switching

and virtual cut-through. While packet switching is the

simplest and most efficient method for small packets, it is

possible ;to use the algorithms presented here with virtual

cut-through.

SOURCE 1

NODE 1

NODE2

DESTINATION -TIME

Network Latency

Figure 2.4. Network Latency of Virtual Cut-Through and

Wormhole.'

Wormhole routing is similar to virtual cut-through with

a smaller buffer size. Virtual cut-through requires buffers

that are large enough to hold a complete packet or message.

Wormhole routing requires buffers that are the size of a

message header(flit). Wormhole routing reduces the required

size of the buffer in each node; however, there is a

11

drawback to the reduction of the buffer. When an outgoing

Channel is busy, other channels currently used by the

message cannot be freed, unlike virtual cut-through [11].

At light loads, wormhole routing behaves similar to virtual

cut-through. Under heavy loads, wormhole routing under-

utilizes the networks because of its blocking nature of

channels, and it does not perform similarly to message

switching or packet switching [11]. The minimum network

latency is the same as virtual cut-through. If heavy

traffic is expected or traffic is bursty in nature, wormhole

routing should hot be used. In general, routing algorithms

for packet switching and wormhole routing are not

interchangeable without modifications.

The hierarchy of switching methods is given in Figure

2.5. The arrows imply inheritances. For example, packet

switching inherits its fundamental switching properties from

message switching.

M essage SSwitching Circuit Switching

P a c k e t S w it c h in g

Virtual C u t-T h r o u g h

W o r m h p le R o u t in g

Figure 2.5. Hierarchy of Switching Methods

.12

2.2 HYPERCUBE INTERCONNECTION NETWORKS

This section formally defines Hypercube Interconnection

Networks (HIN). Many interconnection networks, including

torus and binary hypercube interconnection networks, belong

to the class of HIN.

Let N be the number of processors in an HIN. N can

be represented in a mixed radix form as

d-l

N= X ka_2 X x...xk^ =HK

i-0

where kf is the number of processors in dimension i . Then,

each processor between 0 and, N can be represented as a

d-tuple:

(^d-l > ̂ d-2'̂d-3'• • • ̂ 0)

where (0< a,. < A:,. -1) and d is the number of dimensions in the

network. By setting constraints on the values of d and k^ ,

and the interconnection of processors, different types of

HIN results.

Generalized HINs [3], [11]: each processor is

interconnected to every other processor whose address

differs in exactly one digit (Figure 2.6), or

is connected to

if a, a'.

A Hyper-simplified interconnection network is a

13

generalized HIN such that for all i in generalized HIN,

ki =k , ox

: is connected tg

■ ■'.'if ^

310

000 LQQ 200 300

Figure 2.6. Generalized Hypercube.

A Hyper'rectSLngulaf interconnection network [11] is a

generalized HIN where each processor is connected to every-

other processor whose address differs in exactly one digit

by +1 modulo the dimension radix (Figure 2.7) , or

is connected to

if ^ .

In a hyper-rectangular interconnection network, there are

cycles in each dimension. An edge between node (0,0,0) and

node (3,0,0) is an example of a wraparound connection.

14

312

310

000 m 200 300

Figure 2.7. Hyper-Rectangular.

;; k-ary n-cube interconnection networks: for all i , bi=k

and each processor is interconnected to every other

processor whose address differs in exactly one digit by +1

modulo k, or

a,,...,̂ 0) is connected to ,a^_2 a^)

1 ■ if ki =k and a,'=(fl,±1)mod .

By setting additional constraints on k-ary n-cube

interconnection networks, many well-known interconnection

networks can be built. For example, binary hypercubes can :

be represented by limiting the number of processors in each

dimension to two. A 2D torus can be represented by setting

the number of dimension to two. Likewise, a 3D torus is

represented by setting the number of dimension to three. In

general, A hyper-rectangular is called torus. Figure 2.8

shows the taxonomy of HIN.

15

Hyper-Simplified Hyper-Rectangular

K-ary «-cube

Binary «-cube Ternary rt-cube A-ary 2-cube A-ary 3-cube

(Hypercube) (2D Torus) (3D Torus)

Figure 2.8. Taxonomy of HTN. •

2.3 DEADLOCK, LIVELOCK, AND STARVATION

A routing algorithm has to guarantee freedom from

deadlock, livelock, and starvation. By avoiding these

conditions> a routing algorithm will eventually deliver a

message to its destination. The descriptions of.deadlock,

livelock, and starvation are given below.

Deadlock may occur when the routing, protocol waits for

the required resources, such as links and buffer spaces, to-

become available. Deadlock is a situation where no message

can move toward its destihation because of formation of

cyclic dependencies among network resources. ,

16

Livelock occurs when a message circulates in a network,

never reaching its destination. If a routing protocol does

not guarantee minimal paths, then there exists the

possibility of livelock. ' V r

Starvation occurs when a message waits for its required

resources indefinitely while those resources are allocated

to other messages. ■■■ '■'V.X:':; .. ^ ■

2.4 ADAPTIVE ROUTING PROTOCOLS

A routing protocol is a set of rules which defines how

a message is sent from its source to its destination.

Adaptive protocols have the ability to dynamically select

possible routes at each intermediate node. A message that

is routed by non-adaptive routing protocols can only take a

predetermined path. On a large-scale multicomputer,

multiprocessor, or network of computers, it is desirable to

apply an adaptive routing protocol to make more efficient

use of interconnection bandwidth [11] . Adaptive routing

protocols are classified as progressive or backtracking.

Progressive protocols always try to move forward and have a

limited ability to backtrack. Backtracking protocols

systematically search the network to find possible paths by

backtracking as needed. Backtracking protocols should not

be used in networks which require fast routing decisions,

but are suited for faulty networks.

17

Progressive anci backtraLcJciiig protdc^ classified

as misrouting or profitable. A link, which brings a message

closer to its destination, is called a profitable link. A

profitable protocol only uses profitable links for routing

at each node. A misrouting protocol can use both profitable

and non-profitable links. Misrouting might lead to

livelock. ^ '

Profitable and misrouting protocols are classified as

fully or partially adaptive. A fully adaptive protocol can

use all paths that are available for routing. A partially

adaptive protocol is restricted to use a subset of all paths

that are available for routing. If a routing protocol is

fully adaptive, profitable, and progressive, it is said to

be fully-minimal-adaptive. Figure 2.9 shows the taxonomy of

adaptive routing protocols [11].

Adaptive routing protocols

Progressive Backtracking

Misrouting Profitable Misrouting Profitable

Partially Fully Partially Fully Partially Fully Partially

Figure 2.9. Taxonomy of Adaptive Routing Protocols.

18

CHAPTER 3 -- FULLY-MINIMAL-ADAPTIVE UNICAST ON

TORUS NETWORKS

In this chapter, several definitions and assumptions

are given. They are necessary to describe the unicast

algorithm [5] and the multicast algorithms in Chapter 5.

Simulation result of the unicast algorithm is presented and

discussed at the end of Chapter 4.

3.1 DEFINITION OF TERMS

Each node in the torus network contains an injection

queue, a delivery queue, and three central queues (Figure

3.1). Packets can enter the.torus network only by being

placed in an empty injection queue in their source node.

Also, packets can be removed from the network only at their

destination node's delivery queue. The injection queue and

delivery queue are introduced to simplify the description of

the model. It is not necessary for these two queues to be

present. Consequently, only central queues are counted as

the number of queues required by a routing algorithm. Each

central queue in a node should be directly accessed from all

of the node's input ports.

Given the source and the destination node of a packet

and the queue in which the packet is currently stored, an

adaptive routing algorithm specifies a set of queues to

which the packet may be moved next. This set of queues is

19

called the packet's waiting set. A waiting set can consist

of queues either in the node that currently holds the packet

or in neighboring nodes. Injection queues are not allowed

to appear in waiting sets. The waiting set of a packet

which is currently in a delivery queue must be empty.

Injection queues are used only for introducing new packets

to the network. Delivery queues are used only for removing

packets which have reached their destination. When a packet

is moved from one queue to another, it occupies both of the

queues for a finite amount of time.

Injection

Queue

A

B

C

Delivery

Queue

Figure 3.1. The Queue Structure of the Unicast Algorithm.

3.2 ASSUMPTIONS

Several assumptions are made on the torus network

properties based on the "well-behaved buffer management" by

Giinther[15].

A1. No "starvation in poverty." No packet

remains in a queue forever while an infinite

20

number of packets enter and leave some queue

in its waiting set.

A2. A packet that is in the delivery queue of its

destination node will be removed from the

network within a finite time.

A3. 	 No "starvation in wealth." No packet remains

in a queue forever if there is a queue in its

waiting set which is empty or permanently

empty.

A1 and A2 ensure that packets never wait for a queue for an

infinitely long time without any reason. A3 prevents

starvation. Under the assumption of well-behaved buffer

management, Giinther has proved that a torus routing

algorithm is deadlock and starvation free [15].

Lemma 3.1 (Giinther): Given a total ordering of the

queues in the network, a routing network is free of deadlock

and no packet will remain in a single queue under the

assumption of well-behaved buffer management if one of the

following is satisfied for every packet:

• A packet is in the delivery queue of its destination

node.

• A packet has a waiting set that contains a higher

ordered queue than the one it occupies currently.

Lemma 3.1 does not force packets hb be routed through ^

queues in increasing order; it ensures that every packet

21

always has a chance to move to a higher ordered queue.

3.3 NODE ORDERINGS

Several useful node orderings were introduced by Cypher and

Gravano [5]. These node orderings are used to define the

queue orderings used in the algorithms introduced here. To

describe several node orderings, an 8x9 torus is used as an

example (Figure 3.2).

The following four node orderings are defined.

• Right-increasing ordering is the simple row-major

ordering of the nodes.

• Left-increasing ordering is simply the reverse of

the right-increasing ordering.

• Inside-increasing ordering assigns the smallest

values to the nodes near the wraparound edges of

the torus and the largest values to the nodes

near the center of the torus network.

• Outside-increasing ordering is simply the reverse

of the inside-increasing ordering.

Refer to Table 3.r, Table 3.2, Table 3.3, and Table 3.4.

Formally given an integer /,0</<d, let

«<o=nt («(o)=i).

J=0

22

For:any tptus riode label:of ,tke=<f , define

■ 'V ■ ^ ' y

Function Eval assigns a unique integer in the range of 0

through n-\ to each node. ; It interprets a node label as a

mixed radix representation of integers. To obtain the four

total orderings, the nodes are first re-labeled according to

the following functions [5]. Then, the Function Eval is

used to evaluate the new labels as integers. Given any

integer A:, >2 and'a^ where 0^a,. < k^ , we have

• /«i^i (orders the numbers 0 through k,. -1 in

increasing order from left to right),

• /i(a,,A:,.)= A:,-- a,. -1 (orders the number 0 through A:.:-h ;

in increasing order from right to left),

1 ,. Wi if a, < I A,/2 I
 : • fi{<^iA)=\\ ',t, /9 I _ 1 ., / y ; (orders the

[iJiCj /zj-a,.-i othenvise

numbers 0 through A^, -l from the outside to the

inside),

fA:,-a,-1 if n <U /2 I

' otherwise the

numbers 0 through A:, -1 from the inside to the .

Examples of these four functions are given in Table 3.5

23

The four functions to produce the total orderings from

the mixed radix representation of node labels are defined by

=£v£z/((y^), 2'^rf-2)'•••' (*^0'^0)))»

,a^_2'•••'̂ 0))

-£va/((/;(a^_i,A:^_1),(/^(arf_2,A:^_2),...,(//K'̂ 0)))'

Outside({a^_^,a^_2,...,aQ))

—-Ev(3f/((y (̂n^_],),(y^ 5)'•••'(^p '̂0)))■

A transfer of a packet from node x to an adjacent node y is

said to occur to the right if and only if x is smaller than

y in the right-increasing ordered torus network (Figure

3.3) . Similarly, a transfer of a packet from node x to an

adjacent node y is said to occur to the inside if and only

if X is smaller than y in the inside-increasing ordered

torus network (Figure 3.5) . For other orderings, refer to

Figure 3.4 and Figure 3.6.

24

5

0 cn

c .p

6 c;,

7 C

f] X] V fj V V

2 . 1 8

Figure 3.2. 8x9 Torus Network.

25

5 qj

0 1

Figure 3.3. 8x9 Tbrue with Right:-increasing,Directipn Edges

0 1 2 3 4 5 6 7 8

3 10 11 12 13 ;14 15 16 17

18 19 20 21 22 23 24 25 26

27 28 y,29 30 y 31; ::,3,2:^-. 33 34 ..•3;5:

36 37 38 39 40 41 42 43 44

45 46 47 48 49 50 51 52 53

54 55 56 57 58 59 60 61 62

63 64 65 66 67 68 69 70 71

Table 3.1. Right-increasing Ordering in 8x9 Torus,

26

 0 1

Figure 3.4. 8x9 Torus with Left-increasing Direction Edges

71 70 69 68 67 66 65 64 63

62 61 60 59 58 57 56 55 54

53 52 51^ 50 49 48 47 -46 45

44 43 42 41 40 39 38 37 36

35 34 33 32 31 30 29 28 27

26 25 24 23 22 21 20 19 18

IV. 16 15 14 13 12 10 9
11

V 6 5 4 3 2 1 0

Table 3.2. Left-increasing Ordering in 8x9 Torus

27

0 Cl

1 <•

3 Q

7 C

0 1 5

Figure 3.5. 8x9 Torus with Inside-increasing Direction

Edges.

0 1 2 3 8 7 6 b 4

3 10 11 12 17 16 15 14 13

18 13 20 21 26 25 24 23 22

27 28 23 , 30 35 34 33 32 31

53 64 65 6 6 71 70 b3 68 67

54 55 56 57 62 60 59 58

45 46 47 48 53 52 bl 50 49

36 37 38 33 44 43 42 41 40

Table 3.3. Inside-increasing Ordering in 8x9 Torus

28

 0 1

Figure 3.6. 8x9 Torus with Outside-increasing Direction

Edges.

71 70 59 68 63 64 65 66 67

52 51 . 50 59 54 55 55 57 58

53V 52 51 50 45 45 47 48 49

41
44, 43 42 36 37 38 39 40

8 7 5 5 0 1 2 3 4

17 15 15 14 9 10 11 12 13

26 25 24 23 18 19 20 21 22

35 34 33 32 27 28 29 30 31

Table 3.4. Outside-increasing Ordering in 8x9 Torus

29

a,: 0 1 2 4 . 8::

fA^.,9): 0 1 4 5 7 ;8

/i(«,.9): 8 7 ■5, 4 3 2 1

/;(«.,9) : 0 1 -7:2. ■ 3 8 ;; .7 - ;-.. 6 5

/o(«,,9) : 8 7 6 5 0 1 2 3

Table 3.5. The Functions (a,. ,A:,.) , fj(ai,kf), and
foiai,ki) When A:,. = 9 .

3.4 NOTATION

The following notations are used in the algorithms

described here. Let p be an arbitrary packet that is being

routed in a torus network.

queue (p) The queue in which p is currently stored.

node(p) The node in which p is currently located.

source(p) p's source node.

destination (p) p's destination.

wait (p) p's waiting set.

A waiting set consists of the; set of queues

to which the packet may be moved next.

neighbors (p) The set of nodes that are torus neighbors of

node (p) .

ok_nodes (p)	 Subset of neighbors(p) consisting of those

neighboring nodes that lie along a minimal

length path from node(p) to destination(p) .

ok_queues (p)	 The set of central queues in ok_nodes(p) that

are directly accessible from node(p).

30

3.5 THE UNICAST ALGORITHM

A minimal-fully-adaptive packet routing algorithm for

unicasts is introduced by Cypher and Gravano [5]. This

algorithm is proved to be deadlock, livelock, and starvation

free based on the well-behaved buffer management assumption

[15]. The advantage of this algorithm is that it requires

only three central queues per node regardless of the size

and dimension of the torus network. For example, "hop-so

far" scheme [25] requires larger queues than the diameter of

the torus. The Ngai and Dhar algorithm [27] is a novel

approach to avoid deadlock by tokens, but it requires more

buffers to route packets efficiently as the diameter

increases.,

The fully-minimal-adaptive algorithm for unicastings by

Cypher and Gravano is presented here. The algorithm is run

on every node to find wait(p) of any packet p. ok_nodes(p)

is calculated on each node using destination(p) and node(p)

every time p moves between any two queues as follows.

Let destination(p) be (node(p) he

. Let length = .

For i = 0 to d-l, do the following to find nodes to be

included in ok_nodes(p).

If kf modulo 2 = 0 AND I length I = [A',./2j Then

Include both positive and negative adjacent nodes on

dimension i .

Else if length >0 Then

If length < [^j/2j Then

31

Include an adjacent node in the positive

direction on dimension i .

Else

Include an adjacent node in the negative

direction on dimension i .

.End if

Else if length <0

If I length] < A:,./2j Then

Include an adjacent node in the negative

direction on dimension i.

Else

Include an adjacent node in the positive

direction on dimension i .

End if

End if

For example, on Figure 3.2, let node(p) be node (5,5) and

destination(p) he node (2,3). In this case, nodes (5,4) and

(4,5) are in ok_node3(p). Based on wait(p) and the current

condition of a network, node(p) decides the next movement of

packet p dynamically.

Unicast Algorithm:

Let A, B, and C be three central queues required by the

algorithm (Figure 3.1). Let p be an arbitrary packet

that is being routed by the algorithm. Let q =

queue(p), and x = node(p). The algorithm creates p's

waiting set (wait(p)) according to the following rules.

Case 1: q is an injection queue.

In this case, wait(p) consists of the A queue in x.

Case 2: q is an A queue.

In this case, there are two subcases.

Case 2a: 3y eok_nodes{p) such that Right(x)< Right(y).

In this subcase, wait(p) consists of all of the A

queues in ok_queues(p).

Case 2b: ly eok_nodes{p) such that Right(x)<Right(y).

In this subcase, wait(p) consists of the B queue in

Case 3: q is a B queue.

In this case, there are two subcases.

Case 3a: 3y eok_nodes(p) such that Left{x)<Left{y).

In this subcase, wait(p) consists of all of the B

32

queues in ok_gueues(p)

Case 3hi ly Gok_nodes(p) such that Left(x)<Left(y).

In this subcase, wait(p) consists of the C queue in

Case 4: g is a C queue.

In this case, there are two subcases.

Case 4a: x^destination(p).

In this subcase, wait(p) consists of all of the C

queues in ok_queues(p).

Case 4b; x=destination{p).

In this subcase, waitfpj consists of the delivery

queue in x.

Case 5: g is a delivery queue.

Consider a packet p that is routed from source node

(4,7) to destination node (2,2) in an 8x9 torus network.

Figure 3.7 represents one possible minimal path. The

sequence of packet movements in the queues is the injection

queue of node(4,7) to the A queue of node(4,7) to the A

queue of node(3,7) to the A: queue of node(3,8) to the B

queue of node(3,8) to the B queue of node(3,0) to the B

queue of node(2,0) to the C queue of node(2,0) to the C

queue of node(2,1) to the C queue of node(2,2) to the

delivery queue of node(2,2). The correctness of the

algorithm is proven [5].

The queue structure in each node should accommodate

multiple injection and delivery queues to prevent loss of

incoming and outgoing packets as in Figure 3.8. There is no

need to change the algorithm to handle multiple injection

and delivery queues.

33

 1
 ca

-I

5

Xitit ■f
6
 i
7

Figure 3.7, An Example of a Route by the Unicast Algorithm,

Injection
Queues

Deliveiy
Queues

Figure 3.8. The Modified Queue Structure.

34

CHAPTER 4 -- IMPLEMENTATION AND PERFORMANCE

EVALUATION OF THE UNICAST ALGORITHM

In this chapter, a technique to build scalable folded

torus networks is presented. Base units to build 1-, 2-,

and 3-dimensional folded torus networks and the

architectures of the base units used in the algorithms are

described. The performance characteristics of the unicast

algorithm are also.presented.

4.1 NODE ARCHITECTURE AND ORGANIZATION

The simplicity of the interconnections between nodes is

the primary advantag;e of the torus network [2], [5], [19].

Oh building large-scale parallel computers, the complexity

of wiring between nodes becomes an important issue. The

cost of k-ary n-cube; networks is dominated by the amount of

wire, rather than the number of switches required [19]. An

efficient method of building torus networks is prerequisite.

4.1.1 FOLDED TORUS NETWORKS

Consider a linear array interconnection network as in

Figure 4.1. By adding a wraparound connection between node

0 and node n^l in an n node linear array, a 1-dimensional

torus (1-D torus or ring) can be realized (Figure 4.2).

Note that the wraparound link is longer than other links.

This results in longer communication latency along the

35

wraparound edge. To equalize the length of all links, the

torus is folded along , its bisection link of its underlying

linear array, resulting in a perfect shuffle of nodes as in

Figure 4.3. This is the 1-D folded torus network.

0 1 2 3 4 5 0 1 2 3 4 5

Figure 4.1. Linear Array. Figure 4.2. 1-D Torus.

Figure 4.3. 1-D Folded Torus.

4.1.2 BASE UNITS

A 1-D folded torus network can be built Out of scalable

base units. Figure 4.4 indicates the base unit for l-D

folded torus networks. For example, a 6-node 1-D torus can

be built using three base units, and two end pins that are

placed at both ends (Figure 4.5). Such networks are easily

modifiable. To add more nodes to an existing network,

additional base units are inserted between an end pin and

the base unit next to the end pin. Possible network sizes

are multiples of two nodes.

36

Figure 4.4. Base Unit for 1-D Torus.

End pin Base unit0 Base unit 1 Baseijnit2 ; End pin

Figure 4.5. 3 Base Units and 2 End Pins.

Similarly, a 2-D folded torus can be built using the

base unit with four nodes (Figure 4.6).

Figure 4.6. Base Unit for 2-D Torus.

A 6x6 folded network can be built using 9 base units (Figure

4.7) V At a glance, folded torus networks seem to be

37

different from torus networks that were introduced in

Chapter 3. However, they are tOpologically equivalent [19]

and any algorithm that runs on a torus network also runs,

without any modifieation, on an equivalent folded torus

network. For the 2-D. torus, possible network sizes are

2mx2«, a:nd . m and « should be kept as close to

each other as possible to avoid large diameters. For

example, the sequence of 2x2, 2x4, 2x6, 4x4, 4x6, 4x8, 6x6,

etc. is the desirable way to scale up the 2-D torus network,

Figure 4.7. 2x2 Base units in a 6x6 Folded Torus,

38

For the 3-D torus, a base unit consists of eight nodes

(2x2x2) as in Figure 4.8. Figure 4.9 is an example of a

2x4x4 torus network using four such base units. Similar to

2-D base units, it is desirable to keep the diameter of the

networks small as possible. Possible network sizes are

2nx2mx2l where n>l, m>l, and />1. For example, the

sequence, 2x2x2, 2x2x4, 2x2x6, 2x4x4, 2x4x6, 4x4x4, etc., is

the desirable way to scale up the 3-D torus network.

Figure 4.8. Base Unit for 3-D Torus

39

7

7

Figure 4.9. 2x2x2 Base Units in a 2x4x4 Folded Torus.

4M.3 ARCHITECTURE OF BASE UNITS

The symmetry of folded torus networks makes them ideal

for VLSI implementation. Figure 4.10 shows the

implementation of a single node. Within a chip, queues are

hard-wired. Each queue has a tag (T). Tags are used to

indicate whether a queue is occupied or not. By checking

the tag of the next node's queue, neighboring nodes can

directly send a packet to the next node. Injection and

delivery queues are implemented as expandable caches, either

on or off the chip. Each chip is self-clocked, otherwise,

it would be difficult to synchronize all nodes on large

40

networks [6], [9]. To impTeraent the 1-D base unit, twb of

these nodes are placed in one chip. For the 2-D base unit,

four of these nodes are placed in one chip. Similarly,

eight of these nodes are placed in one chip for the 3-D basie

unit

Injection Cache

Injection queue

A ■ ■ ■■

e

Delivery queue

D elivery Cache

I/O Port

Figure 4.10. Single Node Implementation on a Chip.

41

4.2 SIMULATION METHOD

In this section, several important properties of the

simulation are discussed. The simulation method, which is

introduced in this section, is used for both the unicast

algorithm and the multicast algorithms. ■

4.2.1 PREVENTING STARVATION

On simulating the unicast algorithm, the assumptions of

well-behaved buffer management that were made in Section 3.2

need to be implemented. To prevent,starvation, priorities

are assigned to each incoming,link of A, B, and C queues.

The priorities are examined in a round robin fashion. For

example, each A queue on a 2-D torus network has an incoming

link from its injection queue and the A queues of its north,

east, south, and west neighbors. An example of the

priorities of the A queue is shown in Figure 4.il.

Injection queue

From A queue ofnorth node

From A queue ofwest node ^ From A queue ofeast node

A

From A queue ofsouth node

Delivery queue

Figure 4.11. An Example of Packet Priorities

42

with these priorities, if there are packets from the east

and the north neighbors, the packet from the east neighbor

will be placed in the A queue, since it has a higher

priority. After the packet is placed in the A queue, the

priorities are rotated in a clockwise fashion. This

priority scheme ensures the fairness. Similarly, the B and

C queues use the same priority scheme.

4.2.2 SIMULATION PROPERTIES

Packets will arrive at the injection queues based on

the negative exponential distribution with mean inter-

arrival time = 1/X. Each node has its own X. Packets are ;

removed from the delivery queues based on the negative

exponential distribution with mean = l/|x. Each node has its

own |u,. The size of each packet is 57 bytes. This packet

size is based on the size of ATM cells (53 bytes). It

includes 4 more bytes in the header to include routing

information. The inter-queue latency is the amount of time

required to move a packet between two queues on the same

node. 100 ns is assigned to the inter-queue latency. The

inter-node latency, which is the amount of time required to

move a packet between two nodes, is 450 ns on average. This

average inter-node latency is calculated based on the

43

arcllitecture of the base unit. To move a packet between

base units, an 800 ns latency is assumed. Within a base

uniti the in^^ latency is 100 ns. The probability^^i^

sending a packet to a node outside of a base unit is 0.5.

Similarly, the probability of sending a packet within a base

unit is 0.5. Therefore, the average inter-node latency is

obtained by ■ ,

100 wj'X 0.5+800nsx 0.5=450ns.

Consequently, the channel bandwidth is calculated as 1 C

57 bytesx8bits

450ns

Network latency is measured from the moment when a ■ .

packet is placed in the injection queue until its arrival at

the delivery queue.

Network throughput is calculated as

number of packe^ts delivered

Network throughput= .

unit time ;

Queue utilization is the percent of the time when

central queues are occupied. Since each node only

manipulates its central queues, the queue utilization is a

good indication of the node utilization.

4.2.3 SIMULATION PATTERNS

Three simulation patterns are prepared for a 4x4x4

44

torus network and a 8x8x8 torus network. Pattern 1 creates

moderate traffic. Pattern 2 creates medium traffic.

Pattern 3 creates heavy traffic. A set of A, and jo, is

assigned to each simulation. Based on X and |i, new rates,

X' and |u', are assigned to each node as follows.

• Pattern 1 (Moderate Traffic):

II

4x4x4 torus network;

1 node

2 nodes
 A,' =1/10

61 nodes
 X' = 1/100

8x8x8 torus network:

1 node
 1' = 1 : -:r

11 nodes
 1' = 1/10

500 nodes
 1' = 1/100

14.' = |a, for all nodes on both torus networks

• Pattern 2 (Medium traffic):

For both 4x4x4 and 8x8x8 torus networks:

Yt nodes
 1' = 1

Vi nodes
 1' = 1/2

Vi nodes

Y nodes
 1' - 31/4

H' = fx for all nodes

• Pattern 3:

45

For both 4x4x4 and 8x8x8 torus networks:

Each node is randomly assigned A.' based on the

negative exponential distribution with mean - A..

Each node is randomly assigned |J,' based on the

negative exponential distribution with mean =)x.

It is important to ndte that As on the graphs in the

following sections and chapters do not indicate the average

A' for each pattern. The average A' (the actual input rate)

is calculated by taking the average of A' of all nodes. For

example, the calculation of the average A' of pattern 2 for

a 4x4x4 torus network is

16x2+16xA/2+16x;i/4+16x3x;i/4

Average X'= ■ ■ •:——.

64 ,

4.3 SIMULATION RESULT OF THE UNICAST ALGORITHM

Graph 4.1 is the result of the simulation for the

unicast algorithm using pattern 3 (heavy traffic) on the

8x8x8 torus network. The Consultative Committee on

International Telegraphy and Telephony (CCITT) defines the

average allowable latency of 450 pis for ATM switches [8].

This limit is indicated on all the graphs presented here.

Any latency beyond this limit is unacceptable. The result

46

of the unicast simulation is used to compare the latency of

the multicast algorithms in the next chapter.

47

Graph 4.1. Unicast: - Average Latancy vs. Lambda

(Pattern 3 - Heavy Traffic) 8x8x8 Torus
1.00E-03 n

4.50E

04

1.00E-04 -

o
0

&
c ♦ Unicast
<1>

— CCITT Standard
4^

00 0
D)

2

1
1.00E-05 -

1.00E-06
o o o o o o o o o o o o
o o o o o o o o o o o o
o o o o o o o o o o o o
o o o o o o o o o o o o

CM CO lO CD h 00 a> o CM
T— V-

Lambda(Packet/sec)

CHAPTER 5 -- MULTICASTS ON TORUS NETWORKS

ATM traffic frequently includes multicasts. CATV and

Video conferencing are examples of services that require

frequent use of multicasts [30]. Existing packet routing

algorithms for the torus networks cannot handle multicasts

efficiently [5]>/[10], [25], [27] The minimal-fully

adaptive algorithm by Cypher and Gravano [5] is not an

exception. It is specifically designed for unicasts. '

Multicasts algorithms exist for wormhole routing, but are

neither suitable nor applicable to packet switching. In

this chapter, three multicast algorithms are presented.

5.1 MULTICAST NOTATION

; 'Define a multicast packet as a packet which includes

the multicast operator in its destination; for example, in

is the multicast operator indicating multicast on

dimension i . (2, *) on an 8x9 torus network is a multicast

to (2,0), (2,1), (2,3), (2,4), (2,5), (2,6), (2,7), and

(2,8). On the same network, broadcast can be specified by

(*/*) With this notation, it is hard to multicast to a set

of arbitrary chosen nodes. To multicast to a set of

arbitrary chosen nodes, a multicast or a broadcast, with a

message content which selects the arbitrary chosen nodes, is

49

sent first chosen nodes will act upon ^

succeeding.multiGast.s: or Broadcasts while others ignore

them. This continues hntil another multicast or broadcast,

terminates this mode of operation.

5/2 MULTICAST ALGOfelTip^ I

One way to accbmplish a multicast is to send multiple

unicasts. The process of sending unicasts from a source

node is completely sequential. This implies extra

latencies, and more traffic On the network. To accomplish

muTticasts. by multiple unicastSy it is not necessary to

modify the unicast algorithm or the queue structure on each

node/ A multicast packet generates all of its corresponding

unicast packets: sequentially while at the front of the

injection queue.

5.3 SIMULATION RESULT OF MULTICAST ALGORITHM 1

Graph 5.1 shows the simulation result for Multicast

Algorithm 1 on pattern 3 (heavy traffic). The network size

is 8x8x8. 30% of the packets are multicast'packets. They

are randomly generated with random target planes, A target

plane is a «-dimensional plane if a destination contains n

multicast operators where (i<n<d-\. For example, a target

plane is./a line if a destination contains one multicast

operator. Every node on a target plahe receives a copy of

50

packet from its source node. Since the simulation of

multicasts took too long for higher percent of multicasts,

30% multicasts was selected. However, 30% and 50%

multicasts were simulated and their results are shown in

Section 5.10. The graph clearly indicates that Multicast

Algorithm 1 performs poorly. With 20,000 packets per second

mean arrival rate, network latency is already above the

CCITT standard. Therefore, it is necessary to investigate

more efficient multicast algorithms.

51

Graph 5.1. Unicast and Multicastl - Average Latency vs. Lambda

(Pattern 3 - Heavy Traffic)

30% Multicasts on 8x8x8 Torus

1.00E-03 1

4.50E-04

1.00E-04
▲ •Unicast

o
0) ■

■ - Multicastl
(0

-■— CCITT Standard

Ui

(6

ISJ -J

0)

D)

(0

0

1.00E-05

1.00E-06

o
o
o
o

o
o
o
o

o
o
o
o
o

o
o
o
o

o
o
o
o

o
o
o
o

o
o
o
o

o
o
o
o

o
o
o
o

o
o
o
o

o
o
o
o

o
o
o
o

CvlCN CO in CO r-- 00 Gi

Lambda (Packet/sec)

5.4 MULTICAST ALGORITHM 2 - RE-INJECTION

The second multicast algorithm tries to reduce network

latencies when compared with Multicast Algorithm 1. The

inefficiency Multicast Algorithm i;;is in its sequential

generation of unicasts at the source node to perform

multicasts. This algorithm handles multicasts more:;

efficiently by re-injecting multicast packets into the

injection queue. There is no change in the queue structure

of the nodes except for the possibility of inserting a

packet from the C queue to the injection queue as in Figure

5.1. 'V ; '• .■ I-

Injection
Queue

B

Delivery
Queue

Figure 5.1. The Queue Structure of

Multicast Algorithm 2.

Similar to the unicast algorithm, packets enter the torus

network by being placed in the injection queue and leave the

network from the delivery queue. Routing of a multicast

53

packet consists of two parts, adaptive unicast and

distribution. Multicast packets like unicast packets go

through a minimally adaptive route to get to one of the

nodes in the 1-, 2-, 3-, etc. dimensional target plane.

This is the adaptive unicast part of the algorithm. Once on

the target plane, the packet is distributed along dimension

i{0<i<d), then each node distributes the packet along the

next dimension if necessary. This process continues until

all desired nodes of the multicast are reached. This

process is the distribution part of the algorithm.

Multicast Algorithm 2 creates much less traffic than

Multicast Algorithm 1. Also, the path traversed from a

source node to each destination of the multicast is minimal.

For example, consider a multicast packet p that is routed

from source node (4,2) to destination nodes (2,*) in an 8x9

torus (Figure 5.2).

54

lo

1 citll

2

3

4 ..0...|.^...|.0...|
t'"i i'"T"""j■"■f"":j-i—-i-■•i•-. I

i I ..J....1.

5

! 6.-.C'

7 A / A

0 1 4 . 5 8

Figure;5.2. An Example of a Multicast Used by Multicast
I Algorithm 2 in an 8x9 Torus.

The route (4,2) —>• (3,2) —> (2,2) is the adaptive unicast part,

when packet p is in node (2,2) , the distribution part

starts. At this point, two duplicates of packet p, packet q

and packet r,v are produced. Packet g's destination is set

to node (2,6) and packet r's to node (2,7) and are placed in

the injection queue of hbde (2,; . Packet p itself is ;

placed in the delivery queue of the current node (2,2) .

Since the routings of g and r are analogous, we concentrate

on packet g. Starting from the injection queue of node

(2;,2) , packet g; is routed to node (2, 3) . From node (2,3)

packet gi moves to node (2,4) , but at this time, node (2>3)^^ ;

55

creates a duplicate of packet q. This duplicated packet is

eventually routed to the delivery queue of node (2,3).

After passing through node (2,5) and being copied by node

(2.5), packet g will arrive at its destination node (2,6)

and move to the delivery queue of node (2,6).

Figure 5.3 is an example of a broadcast, a packet with

destination (*,*), on ari 8x9 torus. From the source node

(6,2), four duplicate packets are re-injected with

destinations (*,6), (*,7), (2,2), and (1,2). While the

packet with destination (*,6) is being routed, nodes (6,3),

(6,4),(6,5), and (6,6) produce two copies with destinations

in the next dimension and re-inject them in its injection

queues. Each node except for (6,6) passes the packet to the

next node while eventually placing a copy in its delivery

queue. Node (6,6) just places the packet in its delivery

queue. For example, node (6,5) receives a packet from node

(6,4) and places a duplicate packet with destination (2,5)

and a duplicate packet with destination (1,5) in its

injection queue. Node (6,5) also passes a copy to node

(6.6) and moves the packet towards its delivery queue.

56

0

1
 mmm

f

7

V

0 1 2 3 4 5 6 1 8

Figure 5.3 An Example of a Broadcast Used by Multicast

Algorithm 2 in an 8x9 Torus.

In order to design Multicast Algorithm 2, the

calculation of ok_nodeB(p) must be redefined. For the

unicast algorithm, ok_nodes(p) is a set of neighboring nodes

that lie along a minimal length path to the destination.

For Multicast Algorithm 2, we will try to find o7c_nodes('pj

by removing the multicast operator from the mixed radix

representation of the node labels. The following is the

algorithm to create a temporary destination node label to

find ok_nodes(p).

\fa^{0<i<d—\) in destination node (a^_i ,...,ao) such

57

that , replace with a- from the current node

For example, if a packet p is currently in node(6,4) and its

destination is node(*,6), the temporary destination will be

node(6,6). Now, ok_nodes(p) can be found from the temporary

node label as in the unicast algorithm. By introducing a

special flag direction, a subset of ok_nodes(p), called the

allowed_nodes(p), will be calculated. The allowed_nodes(p)

based on the direction is as follows:

let x=node(p) and y eok_nodes{p),

If direction = ALL Then

allowed_nodes(p)=ok_nodes{p)

Else if direction = POSITIVE Then

allowed nodes{p)={y\Right(x)< Right(y)}

Else if direction = NEGATIVE Then

allowed_nodes(p)={y\Left{x)< Left(y)}

Similar to ok_queues(p), allowed_queues(p) is defined as a

set of central queues in allowed_nodes(p) that are directly

accessible from nodeYpJ. A formal description Of Multicast

Algorithm 2 is given below.

Multicast Algorithm 2

Let A, B, and C be three central queues required by the

algorithm (Figure 5.1). Let p be an arbitrary packet

that is being routed by the algorithm. Let q-

queue(p), and x = node(p). Two flags, direction and

distribution, are used. When packets are inserted to

the injection queue, for both unicast and multicast

packets, the distribution flag is set to NO. The

direction flag is set to ALL for both types of packets

initially. The distribution flag can be set to NO,

COPY, or PASS to control the duplication of packets on

each node. When distribution = NO, p is either a

58

unicast packet or a multicast packet in the adaptive

unicast phase. When distribution = COPY, p is in the •

distribution phase of the multicast/and it is required

to make a duplicate'packet. Vlhen distribution - PASS,

p is in the distribution phase of the multicast, and it

is not necessary to-make a duplicate packet.

During the distribution phase of the multicast, the

following sub-tasks become necessary.

Duplicate: Send a copy of p to the next node. Change
destination(p) as follows.

Vi/j.(0</<J-1) in destination node such

that Of , replace a,, with a- from the current node

a;).

Change_Flags ; Change direction of p to ALL and set

distribution to COPY before x sends p to the next

node.

Multi_Duplicate: When p moves to the delivery queue, do

the following.

For i= 0 to d-I Do

If «,.= '*' where a, is in destination node

(a,;_i,...,a,.,...,ao) then

• put a duplicate of p in the injection queue

with a new destination, direction, and

distribution as follows.

tmp=bi-_k^/2\ where is in current node

If tmp>0 then

af^tmp

.. Else 1

aj=tmp+kj

End If

direction = NEGATIVE

distribution = PASS

• put second duplicate of p in the injection

queue with a new destination, direction, and

distribution as follows.

If ki mod2=0 Then

flf,. =(6,- +[A:,. /2J-1)mod k^

Else

a,. =(6,+_kf /2J)mod k^

End If

59

direction = POSITIVE

distribution = PASS

tii =bt

End For

The algorithm creates p's waiting set wait(p) based on

the following cases.

Case 1: g is an injection queue.

In this case, wait(p) consists of the A queue in x.

Case 2: g is an A queue.

In this case, there are two subcases. . ,,

Case 2a: ea/fo 	 that Right(x)<Right{y).

■	 In this subcase, wait(p) consists of all of the A
queues in allowed_queues(p).
If distribution = PASS Then

Perform Change_Flags

If distribution = COPY Then

Perform Duplicate

End If

Case 2b: 3_y eallowed_nodes(p) such that Right(x)< Right(y).
In this subcase, wait(p) consists of the B queue in
X-. ■ ■:/: - A /-. ^

Case 3: g is a B queue.

In this case, there are two subcases.

Case 3a: 3^ eallowed_nodes(p) such that Left{x) <Left{y) .

In this subcase, wait(p) consists of all of the B

: queuesi in: allowed_queues (p) .
If distribution = PASS Then

Perform Change_Flags
If distribution = COPY Then

Perform Duplicate
End If

Case Sht ly sallowed_nodes(p) such that Left{x) <Leff(y) .
In this subcase, wait(p) consists of the C queue in
X .

Case 4: g is a C queue.
In this case, there are three subcases.

Case 4a: x ^ destination(p) AND | allowed_nodes (p) | 0.
In this subcase, wait (p) consists of all of the C
queues in allowed_queues (p) .
If distribution = PASS Then

Perform Change_Flags

Else If distribution = COPY Then

Perform Duplicate

End If

Case 4b: x ^ destination(p) AND | allowed_nodes (p) | — 0

60

In this subcase, of the delivery

queue in x. Perform Multi_Dupulicate

Case ̂ ci X-destinatidn(0.,

In this subcase, war consists• of; the deliv

queue in x.

Case 5: g is a delivery queue.

5.5 PROOF OF CORRECTNESS FOR MTlLTICAST ALGORITHM;2

In this section, freedom frora deadlock, livelock, and,

starvation is shown for Multicast Algorithm 2. Since the

queue structure of Multicast Algorithm 2 is not changed from

the unicast algorithm, it is immediate that it is free from

deadlock, livelock, and starvation for unicasts.

Definition: Let q be any queue in the torus network

that is used by Multicast Algorithm 2, and let x denote the

node in which q is located and n denote the nodes in the

torus network. The ranking function Rankl(g) is defined as

follows.

Right(x) if q is an injection queue

n+Rightix) if q is an A queue

Rank\{q)=\2n+Left(x) ifqisaBqueue

3n+Inside{x)^ i^

An+Right(x) if is a delivery queue

The following lemma, due to Cypher and Gravano, still holds

for Multicast Algorithm 2.

Lemma 5.1 (Cypher and Gravano): Let p be any packet

that is being routed by Multicast Algorithm 2 and let q =

queue(q). Either q is the delivery queue in destination(p)

61

 I

Qx ■ thexe exists a\: queue w Such that Rank!(q) <

Rankl(w).

The following lemma pxoves that Multicast Algorithm 2/;;

is fxee of livelock.

Lemma 5.2: If p is any multicast packet that is being

xouted by Multicast Algorithm 2, then p will be stored in at

most a finite number of queues before being placed in the

delivery queue of its destination nodes.

Proof: Because p always takes a minimal length path to

all its destinations, it visits only a finite number of

nodes. When p finishes the adaptive part of the multicast

algorithm, it is:sent to the delivery queue of the current

node and two duplicate packets p' and p" are put into the

injection queue of the current node for each dimension i of

the multicast. Whenever, p, p', or p" visit a node, they

are stored in each injection. A, B, C, and delivery queue at

most once because the multicast algorithm visits each queue

type in monotonically increasing order. □

To finish the proof for Multicast Algorithm 2, there is

one assumption that needs to be made. Since Multicast

Algorithm 2 re-feeds duplicate packets from the C queue into

the injection queue, the injection queue needs to be large

enough not to cause deadlock. In the worst case, the

injection queue can be filled and deadlock can happen.

However, because of the simulation result in the next

62

section, a large enough queue size can be chosen to prevent

deadlocks.

Theorem 5.3: Multicast Algorithm 2 is free of deadlock,

livelock, arid sharvation.

Proof:

• Deadlock Free - from Lemmas 3.1 and 5.1, and the

assumption above Multicast Algorithm 2 can be

prevented from deadlock.

• Starvation Free - from Lemmas 3.1 and 5.1, it

follows that once a packet has been placed in an

injection queue, it never remains in a single

queue forever. Lemma 3.1. Therefore, Multicast

Algorithm 2 is free of starvation.

• Livelock Free - from Lemma 5.2 and the fact that

no' single packet remains in a single queue

forever, every packet will eventually arrive at

the delivery queue of its destinations.

Therefore Multicast Algorithm 2 is free of

livelock. □

5.6 SIMULATION RESULT OF MULTICAST ALGORITHM 2

Graph 5.2 shows the simulation result of Multicast

Algorithm 2 with the unicast algorithm and Multicast

Algorithm 1. Pattern 3 (heavy traffic) with 30% multicast

63

packets is used. The network size is 8x8x8. Multicast

Algorithm 2 shows significant improvement over Multicast

Algorithm 1. By simply re-injecting multicast packets to

the injection queue, Multicast Algorithm 2 can handle

multicasts much more efficiently. Table 5.1 shows other

results of the simulation. It is important to note the

maximum injection queue size and the average injection queue

size. When the average latency exceeds 1 second, the

maximum injection queue size is 279 and the average

injection queue size is 191.980. With the maximum injection

queue size of 279 (279x57 bytes), 1 MByte is more than

sufficient to prevent deadlocks. 1 MByte with current

technology is a very reasonable queue size. Therefore,

Multicast Algorithm 2 requires only reasonably sized

injection queues.

64

5
9

Av
er
ag
e
La

te
nc

y(
se

c)

1
0
0
0
0
 -

2
0
0
0
0
-
^

i
Q

 1
3

13

3
0
0
0
0

U
l

t
o

4
0
0
0
0
	

U
)

o

d
p

5
0
0
0
0

(
T

f
t

6
0
0
0
0

(
t

&
t

<c
t

S
I

7
0
0
0
0

C
O

C
O

0

8
0
0
0
0

U
)

 a

9
0
0
0
0

<1

1
0
0
0
0
0

r
t

1
1
0
0
0
0
-

N
)

H
)

H
)

1
2
0
0
0
0
 J

=1
 8
 S
 S

C
O

Jf
i.

S
I

r
-
K

K
,
^

^

Network Avg. Latency Max. Avg. Max. Delivery Avg. Delivery Avg. Queue

X

Throughput (sec) Injection Injection Queue Size Queue Size Utilization

(bps) Queue Size Queue Size (%)

10000 1.38E+10 5.85E-06 6 1.455 7 1-357 9.458

20000 2.52E+10 6.56E-06 5 1.473 14 2.270 . 17.952

30000 3.19E+10 6,89E-06 5 1.485 44 5.296 24.084

40000 4.36E+10 3.2IE-05 .105 15.504 : 1.05 26.961 50.082

50000 3.68E+10 3.39E-04 193 104.573 53 6.058 69.260

50000 2.73E+10 1.OOE-02 223 145.932 32 2.776 ,85.527

70000 2.05E+10 3.31E-01 270 174.515 12. 1.930 88.919

80000 ; 1.35E+10 1.51E+01 279 191.980 11 1.539 93.874

CTi

CTi

Table 5.1; Multicast2 - Pattern 3 Traffic;

Network Size: 8x8x8, 30% Multicasts

 I

5.7!MULTICAST ALGORITHM 3 - MULTIPLE CENTRAL QUEUES

Although Multicast Algorithm 2 handles multicasts much

more efficiently than.Multicast Algorithm 1, congestion in

the jA,: B, and.C queues caused hy the re-injection of packets

quickly slows down the algorithm. Unicast packets may be

unnecessarily delayed. Multicast algorithm: 3 handles

multicasts in a separate set of queues, D, E, and F as in

! ■ ' ■ ■ ■ ' • ■ ■ .

! ■ ' ■ ■ ' ■ ■■ . ' . ' ■ • ■ ' ■ ■ .
Figure 5.4.

Injection Re-injection

Queue Queue

A D

B E

C F

Delivery

Queue

Figure 5.4. The Queue StruGture of

Multicast Algorithm 3.

An additional queue, called re-injection queues is

introduced. In Multicast Algorithm 3, multicast packets are

■ ■ ! ■ . ■ ■ ' • . ' 1 ■
duplicated in the C , D, E, or F queues and placed in the

re|-injection queue. Multicast packets in the re-injection

qupue will move to the D queue to perform multicasts. By

67

handling multicasts in separate queues, unicast packets will

■ ■ ■ ■ ■ ■ ■ ■ ■ " ■

not be delayed unnecessarily. Similar to Multicast

Algorithm 2, unicast packets are handled as in the unicast

algorithm. allowed__nodes(p) and allowed_queues(p)^ are

generated as in Multicast Algorithm 2. Multicast Algorithm

3 uses the same partially adaptive routing method as

Multicast Algorithm 2. After a multicast packet reaches its

target plane, Multicast Algorithm 2 places duplicate packets

into the injection queue of the current node while Multicast

Algorithm 3 places duplicate packets into the re-injection

queue of the current node. Therefore, the distribution part

of the algorithm is completely separated from the adaptive

part of the algorithm. For example, consider a multicast

packet p that is being routed from source node (4,2) to

destination nodes (2,*) in an 8x9 torus.(Figure 5.2). While

p is on nodes (4,2), (3,2), and (2,2), the adaptive unicast

part of Multicast Algorithm 3 is performed and p is stored

in the injection. A, B, or C queue of these nodes. Once p

has reached node (2,2), two duplicate packets of p will be ■

created and stored in the re-injection queue of node (2,2).

Thereafter, these copied packets of p will be handled only

in the re-injection, D, E, F, and delivery queues. The

following is the formal definition of Multicast Algorithm 3.

Multicast Algorithm 3

Let A, B, C, D, E, and F be Six central queues required

68

by the algorithm (Figure 5.4). Let p be an arbitrary

packet that is being routed by the algorithm. Let g =

queue(p), and x = node(p). Tvio flags, direction and

distribution, are used. When packets are inserted to

the injection queue, for both unicast and multicast

packets, the distribution flag is set to NO. The

direction flag is set to ALL for both types of packets

initially. The distribution flag can be set to NO,

COPY, or PASS to control the duplication of packets on

each node. When distribution = NO, p is either a

unicast packet or a multicast packet in the adaptive

unicast phase. When distribution - COPY, p is in the

distribution phase of the multicast, and it is required

to make a duplicate packet. When distribution = PASS,

p is in the distribution phase of the multicast, and it

is not necessary to make a duplicate packet.

During the distribution phase of the multicast, the

following sub-tasks become necessary.

Duplicate: Send a copy of p to the next node. Change

destination(p) as follows.

Va,.(0</ <d-1) in destination node (a^_, ,...,Uq) such

that a,. replace with a' from the current node

Ufl) •

Change_Flags : Change direction of p to ALL and set

distribution to COPY before x sends p to the next

node.

Multi_Duplicate: When p moves to the delivery queue, do

the following.

For i= 0 to d-1 Do

If a,.- '*' where a,, is in destination node

5...5 5...5Uq) then

• put a duplicate of p in the injection queue

with a new destination, direction, and

distribution as follows.

tmp=,b^ —\di]12^ where 6,. is in current node

If tmp>0 then

cij=tmp

Else, ■ .

ai=tmp+

. End . If :- ,

direction = NEGATIVE

distribution = PASS

69

• put second duplicate of p in the injection

queue with a new destination, direction, and

distribution as follows.

•If - , 	 Then

a,=(6,.+_kj/2J-1)mod A:,.

a,. =(6,+_ki /2J)mod

■	 '"_ End If

direction = POSITIVE

distribution = PASS

: End For \

The algorithm creates p's waiting set wait(p) based on

the following cases.

Case 1: g is an injection queue.

In this case, wait(p) consists of the A queue in x

Case 2: g is an A queue.

In this case, there are two subcases.

Case 2a: 3y eallowed_nodes{p) such that Right(x)<Right(y).

In this subcase, wait(p) consists of all of the A

queues in allowed_queues(p).

Case 2b: eallowed_ nodes{p) such that Right(x)< Righl(y).

In this subcase, wait(p) consists of the B queue in

Case'3: q is a B queue .

In this case, there are two subcases.

Case 3a: eallowed_ nodes(p) such that Left(x)<Left(y).

In this subcase, wait(p) consists of all of the B

queues in allowed_queues(p).

Case 3h i lyeallowed_nodes{p) such that Left{x)<Left{y).
In this subcase, wait(p) consists of the C queue in

;; X-. \ ' ' ■' ' ■ "v /, . ' '''
Case 4: g is a C queue.

, In this case, there are three subcases.

Case 4a: x^destination{p) AND|allowed_nodes(p)| 0.

In this subcase, wait(p) consists of all of the C

queues in allowedjqueues(p).

Csise 4b: x^destination{p)'and|allowed_nodes(p) \ —0.

In this subcase, wait(p) consists of the delivery

^ queue in x, Perform Multi_Dupulicate.

Case 4c: x=destination{p).

\ In this subcase, wait(p) consists of the delivery

70 :

. queue .iriv■ x:>
Ckse 5: queue.
In this case, there are two subcases.

Case 5^t By sallowed_nodes{p)
such that Inside{x^ < lnside:(y). t

; In thie subcaee,; ii7ait (pj consists of all of: the D
queues in allowed_queues(p) .

i; if disttd-hution = PASS Then
: iPerfortn Change_Flags
Else If distribution = COPY Then

Perform Duplicate ■

End If

Case 5b: ly eallowed_nodes(p)
such that Inside(x) < Inside(y) .

In this subcase, wait(p) consists of the E queue in
..ii : /. ' .V i ■■r ■

Case 6: g is a E queue.
In this case, there are two subcases.

Case 6a: e allowed_ nodes{p)
such that .

In this subcase, wait(p) consists of all of the E
queues in allowed_queues (p) .
If distribution = PASS Then

Perform Change_Flags

Else If distribution = COPY Then

Perform Dupulicate

End If

Case 6b: Jiy sallowed_nodes{p)
such that Ontside{x) < Ontside{y) .

In this subcase, wait(p) consists of the F queue in
X .

In this case, there are two subcases.

Case 7: g is a F queue.

In this case, there are three subcases.

Case 7a: x ̂ destination{p) AND \ allowed_nodes (p) \ ^ 0.

In this subcase, wait (p) consists of all of the F

queues in allowed_queues (p).

If distribution - PASS Then

Perform Change_Flags

Else If distribution = COPY Then

Perform Duplicate

End If

Case 7b: x f destination{p) and | allowed_nodes (p) \ = 0 .
In this subcase, wait(p) consists of the delivery
queue in x. Perform Multi_Duplicate.

71

Case 7c: x=destination{p).

in this subcase, ivait the;:delivery ,4

queue in x.

Case 8; q is a Re-injection queue.

In this case, wait(p) consists of the D queue in x.

Case 9: g is a delivery queue..

5.8 PROOF OF CORRECTNESS FOR MULTICAST ALGORITHM 3

Similarly to Multicast Algorithm 2, unicast packets are

routed based on the unicast algorithm. To prove Multicast

Algorithm 3 is free of deadlock and starvation, the total

ordering of queues in the torus has to be defined.

The following lemma [5] is used to prove that packets

that are stored in C queues only move to the inside. This

lemma is essential to prove that Multicast Algorithm 3 is

free from deadlock and has been proved.

Lemma 5.4 (Cypher and Gravano): Let p be any packet

that is being routed by the algorithm, and let; (a^_j,a^_2,...,.ao)

denote the address of node(p). If queue(p) is a C queue,

then for each dimension i , (0</<d), either p requires no ■,

further moves or along dimension / or p's next move along

dimension i will, occur inside.

The following lemma shows that packets that are stored

:in F queues only moves to the inside. This fact will be

important to prove that Multicast,Algorithm 3 is, free from

deadlock along with Lemma 5.4.

Lemma 5.5: Let p be any packet that is being routed

72

the algorithm, and let denote the address of

node(p). If queue(p) is an F queue, then for each dimension

i , (0<i<d), either p requires no further moves along

dimension i or p's next move along dimension i will occur

,inside.

Proof: For each multicast operation on dimension i ,

Multicast Algorithm 3 creates two duplicate packets. These

two copied packets are required to traverse at most [_A:;/2j

hops. Since any duplicate packet needs to be routed on the ■

dimension of multicast operation only, we can concentrate on

a 1-dimensional torus. Let s be the node on which two

.icate packets are created. Consider 5 cases.

Case 1: s -\k^ 12\

Packets in both the positive and negative directions

need to move to the E queue. When they finish

traversing the distance of /ij, then they are in the

E queue. Therefore, in the F queue, they require no

further movement.

Case 2: s = 0.

In this case, packets in both the positive and negative

directions finish traversing the distance of

while they are in the D queues. Therefore, when they

reach the F queues, they require no further movement.

73

Case 3: s = A:, -1.

In this case, a packet in the negative direction stays

in the D queues to move the length of _k^ /2j, and in

the F queue, it requires no further movement. A packet

in the positive direction first moves to the E queue of

s to move along the wraparound connection. Then it

moves to the F queue to move inside only.

Case 4: 0<5<[A',. /2j.

A packet in the positive direction stays in the D

queues until node^^^^^^^i^L^ 1-^. At node [_A:j /2j, it moves to

the E queue to move outside. When the packet reaches

the F queue, it requires no further movement. A

packet in the negative direction first moves to the E

queue of s in order to move in the negative direction.

It stays in the E queues until the wraparound

connection. To move along the wraparound connection,

it moves to the F queue. Thereafter, it only moves

inside.

Case Si _k^ 12\<s <k^ .

A packet in the positive direction first needs to move

to the E queue of s so that it can move in the positive

direction. After it moved along the wraparound

connection, it moves to the F queue to go inside only.

74

A packet in the negative direction stays in the D

queues until it reaches node [A:,/2j. At node

it moves to the E queue to move outside. When the

packet reaches the F queue, it requires no further

movement. □

Definltion: Let q be any queue in the torus network

that is used by Multicast Algorithm 3, and let x denote the

node in which g is located. Again, n denotes the number of

nodes in the torus network. The following function Rank2(q)

is defined as follows.

Right(x) ^q is aninjection queue

3n+Inside{x) if q is a C queue

Rank2{qf=\^n^Righ^^ if qis a re-injection queue
5n + Inside(x) ifqisaD
6n + Outside(x) if q is an E queue
ln+inside(xf if qis a F queiie
Sn + Right(x) if q is a delivery queue

The ranking of injection, A, B, C, and delivery queues are

still the same as in the ranking function Rankl(q) of

Multicast Algorithm 2. Multicast Algorithm 3 routes unicast

packets as in the unicast algorithm and Multicast Algorithm

2. Therefore, for unicast packets, Multicast Algorithm 3 is

immediately free of deadlock, livelock, and starvation.

75

Lemma 5.6: Let p be any packet that is i^eing routed by

Multicast Algorithm 3 and let q = queue(p). Either q is the

delivery queue in destinatiDnfpJ or there exists a queue

% < Rank2(i/).

Proof: Let x=node{p). Consider each of the case of the;

definition of waitj(P):;separately. Also; remember that when

two, duplicate packets of p are created for each multicast

dimension i in the C or F queue and placed into the re-

injection queue of the current node, the original packet p

will be moved to the delivery queue of the current node to

be removed from the network. Thereafter, the rest of

multicasting is carried out by these new duplicate packets.

Case 1: q is an injection queue.

In this case, let w be the A queue in x and note that

Rank2(q) < Rank(w).

Case 2: q is an A queue.

In this case there are two subcases.

Case 2a: 3y eallowed_nodes(p) such that Right(x)< Right{y).

In this subcase, let w be the A queue in y and note

that Rank2(q) < Rank2(w).

In this subcase, let w be the B queue in x and

node that that Rank2(q) < Rank2(w).

Case 2b; 3>'sallowed_nodes{p) such that Right(x)< Right(y).

Case 3: q is a B queue.

76

In this case there are two subcases.

Case 3a: 3y fallowed_nodes(p) such that Left(x)< Left(y).

In this subcase, let w be the B queue in y and

note that Rank2(q) < Rank2(w).

Case 3b: ly gallowed nodes(p) such that Left(x)< Left(y).

In this subcase, let w be the C queue in y and

note that Rank2(q) < Rank2(w).

Case 4: q is a C queue.

In this case there are three subcases.

Case 4a: x^destination{p) AND \allowed_nodes(p) \ 0.

In this subcase, let be any node in

allowed_nodes(p). It follows from Lemma 5.4 that

Inside(x)<Inside(y), so let w be the C queue in y and

note that Rank2(q) < Rank2(w).

Case 4b: x^destination(p) and \allowed_nodes(p)\ =0.

In this subcase, let w be the delivery queue in x

and node that Rank2(q) < Rank2(w).

Case 4c: x-destination(p).

In this subcase, let w be the delivery queue in x

and node that Rank2(q) < Rank2(w).

Case 5: q is a D queue.

In this case there are two subcases.

Case 5a: 3y Gallowed_^nodes{p)

77

such that Inside(x)<Inside(y).

In this subcase, let w be the D.queue in y and

note that Rank2(q) < Rank2(w).

Case 5h: ly eallowed_nodes(p)

such that Inside{x)<Inside{y).

In this subcase, let w be the E queue in x and

note that Rank2(q) < Rank2(w).

Case 6: q is an E queue.

In this case there are two subcases.

Case 6a: 3y eallowed_}iodes(p)

such that Outside{x)< Outsideiy).

In this subcase,, let w be the E queue in y and

note that Rank2(q) < Rank2(w).

Case 7h: 3y Gallowed_nodes(p)

such that Outside(x)< Outside{y).

In this; subcase,, let w be the F queue in x and

note that Rank2(q) < Rank2(w).

Case 7: q is an F queue.

In this case there are three subcases.

Case 7a; x^destination{p) AND|allowed_nodes(p)| 0.

In this subcase, let y be any node in

allowed_nodes(p). It follows from Lemma 5.5 that

Inside{x)<Inside{y), so let w he the F queue in y and

78

note that Rank2(q) < Rank2(w).

Case 7b: x^destination(p) and|alIowed_nodesYp^|=0.

In this subcase, let w be the delivery queue in x

and node that Rank2(q) < Rank2(w).

Case 7c: x=destination{p).

In this subcase, let w be the delivery queue in x

and node that Rank2(q) < Rank2(w).

Case 8: q is a ire-injection queue.

In this case let w be the D queue in x and note that

Rank2(x) < Rank2(w).

Case 9: q is a delivery queue.

In this case, the lemma holds trivially. □

To finish the proof for Multicast Algorithm 3, there is

one assumption that we need to make as we did for Multicast

Algorithm 2. Since Multicast Algorithm 3 re-feeds duplicate

packets from the F queue into the re-injection queue, the

re-injection queue needs to be large enough not to cause

deadlock. This assumption becomes reasonable when we study

the simulation result in the next section, and it is

possible to choose a large enough queue size.

Theorem 5.7: Multicast Algorithm 3 is free of deadlock,

livelock, and starvation. .

Proof:

• Deadlock Free - from Lemmas 3.1 and 5.6, and the

79

assumption above, Multicast Algorithm 3 can be

prevented from deadlock.

• Starvation Free - from Lemmas 3.1 and 5.6, it

follows that once a packet has been placed in an

injection queue, it never remains in a single queue

forever. Lemma 3.1. Therefore, Multicast Algorithm

3 is free of starvation.

• Livelock Free - from Lemma 5.2 and the fact that no

single packet remains in a single queue forever,

every packet will eventually arrive at the delivery-

queue of its destinations. Therefore Multicast

Algorithm 3 is free of livelock. □

5.9 SIMULATION RESULT OF MULTICAST ALGORITHM 3

Graph 5.3 indicates simulation results of Multicast

Algorithm 3 on an 8x8x8 torus network with the results of

the other algorithms. The latency curve of Multicast

Algorithm 3 is much closer to the latency curve of the

unicast algorithm. This result clearly indicates that

multicast algorithm 3 handles multicasts better than the

previous two multicast algorithms. Table 5.2 shows other

results of the simulation. The injection queue and the re-

injection queue do not grow large. When the average latency

exceeds 1 second, the sum of the maximum injection queue

80

size (253 packets) and the: maximum re-injection queue size

(9 packets) is even smaller than the maximum injection queue

size of Multieast Algorithm 2 (279 packets), Multicast

Algorithm 3 requires reasonably sized injection ah<A

injection queues. Also, the size of injection queue; i yery

close to 1 most of the timei This indicates that unicasts

packets are not delayed unnecessarily. It is interesting to

observe the size of re-injection queue. Once congestion

starts on the network, the size of the re-injection queue t

drops significantly. This result indicates that congestion

is mainly occurring in the A, B, and C queues. Two

simulation results of three multicast algorithms on a 4x4x4 ;

torus network using pattern 3 are given in Graphs 5.4 and

4.5. In Graph 5.4, multicast packets are 30% of all

packets. In Graph 5.5, multicast packets are 50% of all

packets. In every case. Multicast Algorithm 3 outperforms

Multicast Algorithm 1 and Multicast Algorithm 2.

81

1.00E-03

Graph 5.3. Unicast, Multicastl, Multicast2, and MulticastS

Average Latency vs. Lambda (Pattern 3 - Heavy Traffic)

30% MulticastS on 8x8x8 Torus

-

4.50E-04

00

to

1.00E-04 -

o
o
v>

o
D)

IS
o

♦ Unicast

Multicastl

A Multicast2

-X—MulticastS

— CCITT Standard

1.00E-05 -

1.00E-06
o
o
o
o
T—

o
o
o
o
CM

o
o
o
o
CO

o
o
o
o

o o o
o o o
o o o
o o o
lO CO

Lambda(Packet/sec)

o
o
o
o
CO

o
o
o
o
G)

o
o
o
o
o

o
o
o
p

o
o
o
o
CM
T—

Networlc Avg. Max. Ayg::;; Max. Re- Avg. Re- Max. Avg.;: Avg. Queue

X

Throughput Latency Injection ;Injection irijfection injection Delivery Delivery Utiliza

(bps) (sec) Queue Size Queue Size Queue Size Queue Size Queue Size Queue Size tion (%)

10000 1.61E+10 6.00E-06 ■ -2 1.002 2.223 ; 6: 1.459 10.710

20000 3.71E+ip 6.17E-06 1.003 ■ ■":::& 2.318 ■^"■11: 2.521 7 24.340:

30000 4.52E+10 : 6.31E-06 . ■1.007 2.367 39 6 .229 33.246■ -2

40000 b.82E+10 7.08E-06 1.021 2.669 .v, . ;:i37- 59.332 1 47.190■ ':2- 7

50000 4.90E+10 8.71E-06 ^3 1.026 67.783 177 47..711 81.266:'7 114
60000 3.71E+10 ;3.72E-05 2 1.017 ; : , 158 116.040 : r . 194. 21.107 93.106

70000 3.57E+10 3.80E-04 ;79 1.432 :166 121.114 225 15.901 98.076

80000 2.68E+10 6.92E-03 201 111.297 2.399 : : 16 2.405 93.109. ' ̂
00
U)

90000 2.64E+10 4.57E-0i 224 140.589 2.255 14 2.594 ■ 95.710

,^ , .9100000 2.44E+10 2.09E+01 ; 253, 165.974 ■ 2,. 223 r 9 1.821 95.808

Table 5.2. Multleast3 - Pattern 3

Network Size: 8x8x8, 30% Multicasts

Graph 5.4. Unicast, MulticastlV Mult:icast2, and MulticastS

Average Latency vs. Lambda (Pattern 3 - Heavy Traffic)

30% Multicasts on 4x4x4 Torus
1.00E-03 -1

4.50E-04

1.00E-04 -
-Unicast

o
o -Multicasti

>» - Multicast2
0
c

-Multicasts

00
-I — CCITT Standard
0)
Ui
(S

1
1.00E-05 -

1.00E-06
o o o o o o o o o o o o o o o o o o o
o o o o o o o o o o o o o o o o o o o
o o o o o o o o o o o o o o o o o o o
o o o o o o o o o o o o o o o o o o o
T— Cvl CO m CD 00 G> o T— CM CO ID CD N 00

■v- T— T— T— \— T— T— T— T— T—

Lambda (Packet/sec)

S
8

Av
er
ag
e
La
te
nc
y(

se
c)

1
0
0
0
0
-

Q

2
0
0
0
0"

3
0
0
0
0
 -

i
Q

0
1

4
0
0
0
0
-

5
0
0
0
0"

6
0
0
0
0"

0
1

 o

w

o

k
!

f
t

6
9

7
0
0
0
0"

ST

8
0
0
0
0
-

3

f
t

o
-

C
t

&

90

00
0
+

w

S-
10

00
00
+

f
t

(
D

8

o

1
1
0
0
0
0
+

0)

s

c
t

CJ

1
2
0
0
0
0
 -

(
t

H

(
D

f
t

H

H

1
3
0
0
0
0
 -

P

0

il
^

0
)

U
)
 (
A

H
3

1
4
0
0
0
0
 -

1
5
0
0
0
0
 -

1
6
0
0
0
0"

a

1
7
0
0
0
0"

H
)

1
8
0
0
0
0"

H
)
 0

1
9
0
0
0
0
^

U
)

I
I

O

O

O

O

w

0
)

0
)

Ji
)

(/
)

(/
)
^
 ̂
^

ST

CO

Fo

^

D

C
L
-
,

■
Q
)

B.
'
;

5.10 COMPAEISON OF THE MULTICAST ALGORITHMS

Graph 5.6 shows the simulation results of 30%

; . ;m^ multiGasts.: together,for -a network .size of

(heavy traffic). Unlike the latency

curves of Multicast Algorithm 1 and Multicast Algorithm 2,

the two latency curves of Multicast Algorithm 3 are very

close to each other. This indicates that Multicast ^

Algorithm 3 is much more sustainable than the other two

multicast algorithms in the sense that it can handle higher

traffic rates without degrading its performance. Also,

Multicast Algorithm 3 with 50% multicasts performed better

than Multicast Algorithm 2 with 30% multicasts.

The simulation results of.pattern 2 (medium traffic)

came out to be the same except that the latency curves are

shifted to the right. The simulation results of pattern 1

(moderate traffic) are not interesting since the latency

curves are flat. However, Multicast Algorithm 1 shows an

increase in latency time.

Graph 5.7 shows the result of a single source

broadcasts. One selected node continuously issues broadcast

packets. The performance difference between Multicast

Algorithm 1 and Multicast Algorithm 2 is obvious. Multicast

Algorithm 1 cannot support this simulation pattern at all.

Similar to the other simulation results, Multicast Algorithm

3 performs the best among all.

86

1.00E-03 -I

Graph 5.6. Comparison of Mul-bicas-t Algorithms

(Pattern 3 - Heavy Traffic) on 4x4x4 Torus

4.50E-04

00

<1

o
o

c

Q

0
D>
(0

o

1.00E-04 -

♦ Unicast

—■-—Multicasti - 30%

— -A — Multicasti - 50%

— Muiticast2 - 30%

- - Multicast2 - 50%

—•—Multicast3 - 30%

h - Multicast3 - 50%

CCITT Standard

1.00E-05 -

k-
A

%

1.00E-06
o
o
o
o

o
o
o
o
CM

o
o
o
o
CO

o
o
o
o

o
o
o
o
lO

o
o
o
o
CO

o
o
o
o

o
o
o
o
00

o
o
o
o
(3)

o
o
o
o
o

o
o
o
o

Lambda (Packet/sec)

o
o
o
o
CM

o
o
o
o
CO

o
o
o
o

o
o
o
o
If)

o
o
o
o
CO

o
o
o
o
h-

o
o
o
o
CO

o
o
o
o
O)

1.00E-03

Graph 5.7. Comparison of Multicast Algorithms

for single Source Broadcasts on 4x4x4 Torus

4.5DB04

00

CO

1.d0E-04

o
o

>*
o
■c •

S
w
.J
o
o
(0
fc. '
o

Multicast!

, M . Multicast2

MulticastS

-- CCITT Standard

1.00E-05

1 OOE-Oa H
o
o
o
o

1
o
o
o
o
CM

o
o
o
o
CO

I
o
o
o
o

I
o
o
o
o
lO

I
o
o
o
o
CD

I—I—h
o o o
o o o
o o o
o o o

CO Gi

o
o
o
o
o

I I I I I
o o O o o o o
o o o o o o Q
o o o o o o O
o o o o o o O

CM CO ^r LO CD
T— T-? T— T— ■*— T- . ■

Lambda (Packet/sec)

I
o O
Q O
o ; O
Q O
CO G)

■ yr. ■ r-r

I
O O
O O
o O
o O
o T-^

CM CM

-I—I—4—1
O O O O
O O O O
O O O O
O O O O
CM CO lO
CM CM CM CM

h—f-
O O
O O
O O
O O
CD
CM CM

O
O
O
O
CO
CM

CHAPTER 6 -- EXTENSION AND CONCLUSION

In this chapter, several extensions to the multicast

algorithms to improve their performance are discussed.

6.1 EXTENSION TO THE MULTICAST ALGORITHMS

The first extension to the multicast algorithms is to

increase the size of each central queue so that they can

hold more packets. The routing algorithms will remain the

same. This will alleviate or postpone the congestion

problem.

In this work, it has been assumed that communication

channels are not multiplexed to keep the simplest form. To

apply multicast algorithms to ATM switches, it is necessary

to make better use of communication channels to increase

network throughput. By time multiplexing each channel, a

single physical channel can be thought of as multiple

channels. This technique is called virtual channels [21].

It is possible to have a multiple set of central queues in

each node by assigning a virtual channel to each set of

central queues. In this method, each node can hold more

packets and the communication channels will be highly

utilized.

Extending the multicast algorithms to larger packets,

it is possible to apply virtual cut-through as a routing

method to hide latency. This enhancement is not suitable

89

for ATM traffic.

6.2 FIJTURE WORK

An integrated circuit design CAD tool, such as Magic,

can be used to implement and test the base units. Also, the

optimiization of network throughput for the multicast

algorithms needs to be studied as it applies to ATM

switches. Ignoring the scalability, larger queue size for

larger networks might decreases network latency even

further. To find the correlation between queue size and

network size, future research can be pursued by either

simulations or probabilistic models. In addition,

application of these algorithms to fault tolerant routing

algorithms can be studied.

6.3 CONCLUSION

Two new multicast routing algorithms for torus networks

of arbitrary size and dimension are presented. If a

conventional unicast algorithm is used to handle multicasts,

sudden increases in communication latencies are not

avoidable (Multicast Algorithm 1). Multicast Algorithm 2

reduces the latency by using the same number of central

queues as the unicast algorithm [5]. Multicast Algorithm 3

reduces the latency significantly by using separate queues J

for multicast operations. The torus network has significant

90

advantages over the mesh. However, the presence of cycles

in each dimension makes the development of routing

algorithms on torus networks difficult. It is hoped that

this work will contribute to the development of parallel

computers and ATM switches using torus networks.

91

REFERENCES

[1] , R. Y. Awdeh and H. T. Mouftah, "The Split-Switching

(SSN): A'High-performan Multicast ATM

Switch," International Journal of Communication

Systems, Vol. 8, pp. 191-202, 1995.

[2] 	D. Basak and K. Panda, "Scalable Architectures with

■ : ^ k-ary n-cube cluster-c Organization," The proceedings

; of the Fifth IEEE Symposium on Parallel and Distributed

. Processing, 1993, pp. 780-787.

[3] 	L. N. Bhuyan and D. P. Agrawal, "Generalized Hypercube

and Hyperbus Structures for a Computer Network," IEEE

: Transactions on Computers, Vol. C-33, No. 4, pp. 323
■ 333, April 1984. . ■ 	 ■ v

[4] 	R. V. Boppana and S. Chalasani, "Fault-Tolerant

Wormhole Routing Algorithms for Mesh Networks," IEEE
Transactions on Computers, Vol. 44, No. 7, pp. 848-864,

July 1995. .1

[5] 	R. Cypher and L. Gravano, "Storage-Efficient, Deadlock-

Free Packet Routing Algorithms for Torus Networks,"

IEEE Transactions on Computers, Vol. 43, No. 12, pp.

1376-1385, December 1994. l v

[6] 	W. J. Dally and C. L. Seitz, "The Torus Routing Chip," ■
Distributed Computing, Vol. 1, No. 3, pp. 187-196,
September 1986. / .

[7] 	W. J. Dally and C. L. Seitz, "Deadlock-Free Message

Routing in Multiprocessor Interconnection Networks,"

IEEE Transactions on Computers, Vol. C-36, No. 5, pp.

■■ 547-553, May 1987.

[8] 	M. De Prycker, Asynchronous Transfer Mode, Ellis

Horwood, New York, NY, 1993.

[9] 	A. Fisher and H. T. Kung, "Synchronizing Large VSLI

Processor Arrays," IEEE Transactions on Computers, Vol.

C-34, No. 8, pp. 734-740, August 1985.

[10] D. Gelernter, "A DAG-Based Algorithm for Prevention for

Store-and-forward Deadlock in Packet Networks, "IEEE

Transactions on Computers, Vol. C-30, No. 10, pp. 709
715, October 1981. .1,

92

[11] p. T. Gaughan and S. YalamandhiIi, >'Adaptive Routing ■ ;
Protocols for Hypercube Interconnection Networks," IEEE
Computer, Vol. 26, No. 5, pp. 12-23, May 1993.

[12] C. J. Glass and L. M. Ni, "The Turn Model for Adaptive

Routing," Journal of the Association for Computing v

Machinery, Vol. 41, No. 5, pp. 874-902, September 1994.

[13] L. Gravano et al., "Adaptive Deadlock- and Livelock-

Free Routing With all Minimal Paths in Torus Networks,"

IEEE Transactions on Parallel and Distributed Systems,

Vol. 5, No. 12, pp. 1233-1251, December 1994.

[14] Q. Gu and J. Gu, "Two Packet Routing Algorithms on a

Mesh-Connected Computer," IEEE Transactions on Paraller

and Distributed Systems, Vol. 6, No. 4, pp. 436-440,

.April 1995. '

[15] K. D. Giinther, "Prevention of deadlocks in packet-

switched data transport systems," IEEE Transactions on

Communications, Vol. 29, No. 4, pp. 512-524, April

1981:" .

[16] J. L. Hennessy]and D. A. Patterson, Computer

Architecture A Quantitativ& Approach, Morgan Kaufmenn

Publishers, Inc., San Metro, CA, 1996.

[17] R. M. Hord, Parallel Supercomputing in MIMD

Architectures, CRC Press, Inc., Boca Raton, FL, 1993.

[18] K. Hwang and F. A. Briggs, Computer Architecture and

Parallel Processing, McGraw-Hill, Inc., New York, NY,

1984. v''-:

[19] K. Hwang, Advanced Computer Architecture Parallelism,

Scalabi1ity, Programmabi1ity, McGraw-Hill, Inc., New

York, NY, 1993.

[20] A. Jajszczyk and W. Kabacinski, "A Growable ATM

Switching Fabric Architecture," IEEE Transactions on

Communications, Vol. 43, No.2/3/4, pp. 1155-1162,

March/April 1995.

[21] P. Kermani and L. Kleinrock, "Virtual Cut-Through: A

' New Computer Communication Switching Technique,"

Computer Networks, Vol. 3, pp. 267-186, 1979.

93

[22] S. Lee, "Circuit-Switched Broadcasting in d-Dimensipnal

Tori and meshes," The proceedings of Eighth

International Parallel Processing Symposium, 1994, pp.

■ 5SA-SS9;.- ^

[23] S. Lee and K. G. Shin, "Interleaved All-to-All Reliable

Broadcast on Meshes and Hypercubes," IEEE Transactions

on Parallel and Distributed Systems, Vol. 5, No. 5, pp.

449-458, May 1994.

[24] F. T. Leighton, Introduction to Parallel Algorithms

and Architectures: Arrays Trees Hypercubes, Morgan

Kaufmann Publishers, Inc., San Metro, CA, 1992.

[25] P. M. Merlin and P. J. Schweitzer, "Deadlock Avoidance

in Store-and-Forward Networks-I: Store-and-Forward

Deadlock," IEEE Transactions on Communications, Vol.

COM-28, No. 3, pp. 345-354, March 1980.

[26] P. Mohapatra and C. R. Das, "On Dependability

Evaluation of Mesh-Connected Processors," IEEE

Transactions on Computers, Vol. 44, No. 9, pp. 1073
1084, September 1995.

[27] J. Y. Ngai and S. Dhar, "A Deadlock-free Routing

Control Algorithm for Torus Network based ATM

Switches," The proceeding of SUPERCOMM/ICC, 1992, pp.

709-713.

[28] M. J. Quinn, Designing Efficient Algorithms for

Parallel Computers, McGraw-Hill, Inc., New York, NY,

1987.

[29] M. J. Quinn, Parallel Computing Theory and Practice,

McGraw-Hill, Inc., New York, NY, 1994.

[30] R. Rooholamini and V. Cherkassky, "Finding the Right

ATM Switch for the Market," IEEE Computer, Vol. 24, No.

4, pp. 16-28, April 1994.

[31] W. Stallings. Data and Computer Communications,

Macmillan Publishing Company, New York, NY, 1994.

[32] Y. Tsai and P. Mckinly, "A Broadcast Algorithm for All-

Port Wormhole-Routed Torus Networks," The Proceedings

of the Fifth Symposium on the Frontiers of Massively

Parallel Computation, 1995, pp529-536.

94

	Torus routing in the presence of multicasts
	Recommended Citation

