259 research outputs found

    New interaction models for 360º video

    Get PDF
    Esta dissertação tem como principal objectivo a incorporação de um mecanismo de buffering num sistema de multimídia, capaz de oferecer experiências multivista adaptáveis. A incorporação deste mecanismo vem provocar melhorias na qualidade de serviço e na qualidade de experiência. O sistema recorre ao protocolo MPEG-DASH e a uma câmara convencional para detecção dos movimentos da cabeça do utilizador. O sistema incorpora ainda um mecanismo de adaptação automática da qualidade, ajustável às condições da rede. O mecanismo desenvolvido é composto por um proxy e tem o objectivo de minimizar o atraso existente na transição de vistas. O proxy será capaz de enviar três vistas em simultâneo, duas em baixa qualidade, enquanto a vista principal será enviada e apresenta ao utilizador em alta qualidade.Sempre que existe um novo pedido por parte do utilizador, o mecanismo irá comutar entre as vistas enviadas até receber a resposta por parte do servidor. Deste modo, esta dissertação pretende identificar as dificuldades que se colocam relativamente à disponibilização e transmissão eficiente deste tipo de conteúdos, assim como os compromissos necessários ao nível da qualidade de experiência do utilizador.Today, the fast technological evolution and the significant increase in the demand for multimedia content has boosted the development of the transmission mechanisms used for this purpose.This development had repercussions in several areas, such as the immersive experiences that include the 360º contents. Whether through live streaming or using on demand services, the quality of service and experience have become two points whose development has assumed high importance. The capture and reproduction of 360º content allows transmitting an immersive view of reality at a given moment. With this approach, the industry intends to provide a product with better audiovisual quality, more comfortable for the user and that allows a better interaction with the same. An example of this is the choice of the view that most appeals to us in a given event (for example, football matches or concerts). This dissertation has as main objective the incorporation of a buffering mechanism in a multimedia system, able to offer adaptive multivista experiments. The system uses the MPEG-DASH protocol for efficient use of network resources and a conventional camera for detecting the movements of the user's head, selecting the points of view that one wishes to visualize in real time. The system also incorporates an automatic quality adjustment mechanism, adjustable to the network conditions. The buffering mechanism is intended to increase the quality of experience and the quality of service, minimizing the delay in the transition of views. The mechanism will consist of a proxy capable of sending three views simultaneously. Of these views, two will be sent in low quality, while the main view will be sent and presented to the user in high quality. Whenever there is a new request from the user, the mechanism will switch between sent views until it receives the response from the server. Based on these assumptions, the dissertation intends to identify the challenges that are posed regarding the availability and efficient transmission of 360º content, as well as the necessary commitments regarding the quality of user experience. This last point is particularly significant, taking into account the network requirements and the volume of data presented by the transmissions of this type of content

    MediaSync: Handbook on Multimedia Synchronization

    Get PDF
    This book provides an approachable overview of the most recent advances in the fascinating field of media synchronization (mediasync), gathering contributions from the most representative and influential experts. Understanding the challenges of this field in the current multi-sensory, multi-device, and multi-protocol world is not an easy task. The book revisits the foundations of mediasync, including theoretical frameworks and models, highlights ongoing research efforts, like hybrid broadband broadcast (HBB) delivery and users' perception modeling (i.e., Quality of Experience or QoE), and paves the way for the future (e.g., towards the deployment of multi-sensory and ultra-realistic experiences). Although many advances around mediasync have been devised and deployed, this area of research is getting renewed attention to overcome remaining challenges in the next-generation (heterogeneous and ubiquitous) media ecosystem. Given the significant advances in this research area, its current relevance and the multiple disciplines it involves, the availability of a reference book on mediasync becomes necessary. This book fills the gap in this context. In particular, it addresses key aspects and reviews the most relevant contributions within the mediasync research space, from different perspectives. Mediasync: Handbook on Multimedia Synchronization is the perfect companion for scholars and practitioners that want to acquire strong knowledge about this research area, and also approach the challenges behind ensuring the best mediated experiences, by providing the adequate synchronization between the media elements that constitute these experiences

    A Comprehensive Survey of the Tactile Internet: State of the art and Research Directions

    Get PDF
    The Internet has made several giant leaps over the years, from a fixed to a mobile Internet, then to the Internet of Things, and now to a Tactile Internet. The Tactile Internet goes far beyond data, audio and video delivery over fixed and mobile networks, and even beyond allowing communication and collaboration among things. It is expected to enable haptic communication and allow skill set delivery over networks. Some examples of potential applications are tele-surgery, vehicle fleets, augmented reality and industrial process automation. Several papers already cover many of the Tactile Internet-related concepts and technologies, such as haptic codecs, applications, and supporting technologies. However, none of them offers a comprehensive survey of the Tactile Internet, including its architectures and algorithms. Furthermore, none of them provides a systematic and critical review of the existing solutions. To address these lacunae, we provide a comprehensive survey of the architectures and algorithms proposed to date for the Tactile Internet. In addition, we critically review them using a well-defined set of requirements and discuss some of the lessons learned as well as the most promising research directions

    Projeto de comunicação via streaming

    Get PDF
    Este trabalho apresenta um estudo de streaming de vídeo, o qual pode utilizar técnicas de adaptação de qualidade implementado com protocolo HTTP. Existem diversas técnicas para codificar o vídeo para que se possa criar um streaming, entre elas existem MPEGDASH, HLS e o MMT, que são estudadas neste trabalho. Com uma particularidade do MPEGDASH que foi utilizado no estudo de caso. Este trabalho apresenta também uma visão do ATSC 3.0, padrão já utilizado na Coreia do Sul e que faz uso de alguns segmentos do MPEGDASH, denominado ROUTE/DASH. O estudo de caso apresenta resultados de comutação de banda, que possibilita a visualização da mudança de imagem codificada em MPEGDASH.This paper studies video streaming, that can use techniques of adaptive streaming over HTTP. There are different video coding techniques that can be use on video streaming, among them there are MPEG-DASH, HLS and MMT, which are studied in this paper. However only MPEG-DASH is tested in this paper. This paper still presents a little about ATSC 3.0, standard already used South Korea, which also use some pieces of MPEG-DASH coding, that is named ROUTE/DASH. The test brings the results made by switching the bandwidth, which enable to see changes in image of the video coding with MPEG-DASH

    Delivery of 360° videos in edge caching assisted wireless cellular networks

    Get PDF
    In recent years, 360° videos have become increasingly popular on commercial social platforms, and are a vital part of emerging Virtual Reality (VR) applications. However, the delivery of 360° videos requires significant bandwidth resources, which makes streaming of such data on mobile networks challenging. The bandwidth required for delivering 360° videos can be reduced by exploiting the fact that users are interested in viewing only a part of the video scene, the requested viewport. As different users may request different viewports, some parts of the 360° scenes may be more popular than others. 360° video delivery on mobile networks can be facilitated by caching popular content at edge servers, and delivering it from there to the users. However, existing edge caching schemes do not take full potential of the unequal popularity of different parts of a video, which renders them inefficient for caching 360° videos. Inspired by the above, in this thesis, we investigate how advanced 360° video coding tools, i.e., encoding into multiple quality layers and tiles, can be utilized to build more efficient wireless edge caching schemes for 360° videos. The above encoding allows the caching of only the parts of the 360° videos that are popular in high quality. To understand how edge caching schemes can benefit from 360° video coding, we compare the caching of 360° videos encoded into multiple quality layers and tiles with layer-agnostic and tile-agnostic schemes. To cope with the fact that the content popularity distribution may be unknown, we use machine learning techniques, for both Video on Demand (VoD), and live streaming scenarios. From our findings, it is clear that by taking into account the aforementioned 360° video characteristics leads to an increased performance in terms of the quality of the video delivered to the users, and the usage of the backhaul links

    Immersive interconnected virtual and augmented reality : a 5G and IoT perspective

    Get PDF
    Despite remarkable advances, current augmented and virtual reality (AR/VR) applications are a largely individual and local experience. Interconnected AR/VR, where participants can virtually interact across vast distances, remains a distant dream. The great barrier that stands between current technology and such applications is the stringent end-to-end latency requirement, which should not exceed 20 ms in order to avoid motion sickness and other discomforts. Bringing AR/VR to the next level to enable immersive interconnected AR/VR will require significant advances towards 5G ultra-reliable low-latency communication (URLLC) and a Tactile Internet of Things (IoT). In this article, we articulate the technical challenges to enable a future AR/VR end-to-end architecture, that combines 5G URLLC and Tactile IoT technology to support this next generation of interconnected AR/VR applications. Through the use of IoT sensors and actuators, AR/VR applications will be aware of the environmental and user context, supporting human-centric adaptations of the application logic, and lifelike interactions with the virtual environment. We present potential use cases and the required technological building blocks. For each of them, we delve into the current state of the art and challenges that need to be addressed before the dream of remote AR/VR interaction can become reality

    Handoff Characterization of Multipath Video Streaming

    Get PDF
    Video streaming has become the major source of Internet traffic nowadays. Considering that content delivery network providers utilize Video over Hypertext Transfer Protocol/ Transmission Control Protocol (HTTP/TCP) as the preferred protocol stack for video streaming, understanding TCP performance in transporting video streams has become paramount. Recently, multipath transport protocols have allowed streaming of video over multiple paths. In this paper, we analyze the impact of handoffs on multipath video streaming and network performance on WiFi and cellular paths. We utilize network performance measures, as well as video quality metrics, to characterize the performance and interaction between network and application layers of video data for various network scenarios.Twelfth International Conference on Evolving Internet (INTERNET 2020), October 18-22, 2020, Porto, Portuga
    • …
    corecore