340 research outputs found

    An O(1)-Approximation for Minimum Spanning Tree Interdiction

    Full text link
    Network interdiction problems are a natural way to study the sensitivity of a network optimization problem with respect to the removal of a limited set of edges or vertices. One of the oldest and best-studied interdiction problems is minimum spanning tree (MST) interdiction. Here, an undirected multigraph with nonnegative edge weights and positive interdiction costs on its edges is given, together with a positive budget B. The goal is to find a subset of edges R, whose total interdiction cost does not exceed B, such that removing R leads to a graph where the weight of an MST is as large as possible. Frederickson and Solis-Oba (SODA 1996) presented an O(log m)-approximation for MST interdiction, where m is the number of edges. Since then, no further progress has been made regarding approximations, and the question whether MST interdiction admits an O(1)-approximation remained open. We answer this question in the affirmative, by presenting a 14-approximation that overcomes two main hurdles that hindered further progress so far. Moreover, based on a well-known 2-approximation for the metric traveling salesman problem (TSP), we show that our O(1)-approximation for MST interdiction implies an O(1)-approximation for a natural interdiction version of metric TSP

    Integrating continuous differential evolution with discrete local search for meander line RFID antenna design

    Get PDF
    The automated design of meander line RFID antennas is a discrete self-avoiding walk(SAW) problem for which efficiency is to be maximized while resonant frequency is to beminimized. This work presents a novel exploration of how discrete local search may beincorporated into a continuous solver such as differential evolution (DE). A prior DE algorithmfor this problem that incorporates an adaptive solution encoding and a bias favoringantennas with low resonant frequency is extended by the addition of the backbite localsearch operator and a variety of schemes for reintroducing modified designs into the DEpopulation. The algorithm is extremely competitive with an existing ACO approach and thetechnique is transferable to other SAW problems and other continuous solvers. The findingsindicate that careful reintegration of discrete local search results into the continuous populationis necessary for effective performance

    Resource management for heterogeneous computing systems: utility maximization, energy-aware scheduling, and multi-objective optimization

    Get PDF
    Includes bibliographical references.2015 Summer.As high performance heterogeneous computing systems continually become faster, the operating cost to run these systems has increased. A significant portion of the operating costs can be attributed to the amount of energy required for these systems to operate. To reduce these costs it is important for system administrators to operate these systems in an energy efficient manner. Additionally, it is important to be able to measure the performance of a given system so that the impacts of operating at different levels of energy efficiency can be analyzed. The goal of this research is to examine how energy and system performance interact with each other for a variety of environments. One part of this study considers a computing system and its corresponding workload based on the expectations for future environments of Department of Energy and Department of Defense interest. Numerous Heuristics are presented that maximize a performance metric created using utility functions. Additional heuristics and energy filtering techniques have been designed for a computing system that has the goal of maximizing the total utility earned while being subject to an energy constraint. A framework has been established to analyze the trade-offs between performance (utility earned) and energy consumption. Stochastic models are used to create "fuzzy" Pareto fronts to analyze the variability of solutions along the Pareto front when uncertainties in execution time and power consumption are present within a system. In addition to using utility earned as a measure of system performance, system makespan has also been studied. Finally, a framework has been developed that enables the investigation of the effects of P-states and memory interference on energy consumption and system performance

    Γ (Gamma): cloud-based analog circuit design system

    Get PDF
    Includes bibliographical references.2016 Summer.With ever increasing demand for lower power consumption, lower cost, and higher performance, designing analog circuits to meet design specifications has become an increasing challenging task, On one hand, analog circuit designers must have intimate knowledge about the underlining silicon process technology's capability to achieve the desired specifications. On the other hand, they must understand the impact of tweaking circuits to satisfy a given specification on all circuit performance parameters. Analog designers have traditionally learned to tackle design problems with numerous circuit simulations using accurate circuit simulators such as SPICE, and have increasingly relied on trial-and-error approaches to reach a converging point. However, the increased complexity with each generation of silicon technology and high dimensionality of searching for solutions, even for some simple analog circuits, have made trial-and-error approaches extremely inefficient, causing long design cycles and often missed market opportunities. Novel rapid and accurate circuit evaluation methods that are tightly integrated with circuit search and optimization methods are needed to aid design productivity. Furthermore, the current design environment with fully distributed licensing and supporting structures is cumbersome at best to allow efficient and up-to-date support for design engineers. With increasing support and licensing costs, fewer and fewer design centers can afford it. Cloud-based software as a service (SaaS) model provides new opportunities for CAD applications. It enables immediate software delivery and update to customers at very low cost. SaaS tools benefit from fast feedback and sharing channels between users and developers and run on hardware resources tailored and provided for them by software vendors. However, web-based tools must perform in a very short turn-around schedule and be always responsive. A new class of analog design tools is presented in this dissertation. The tools provide effective design aid to analog circuit designers with a dash-board control of many important circuit parameters. Fast and accurate circuit evaluations are achieved using a novel lookup-table transistor models (LUT) with novel built-in features tightly integrated with the search engine to achieve desired speed and accuracy. This enables circuit evaluation time several orders faster than SPICE simulations. The proposed architecture for analog design attempts to break the traditional analog design flow using SPICE based trial-and-error methods by providing designers with useful information about the effects of prior design decisions they have made and potential next steps they can take to meet specifications. Benefiting from the advantages offered by web-hosted architectures, the proposed architecture incorporates SaaS as its operating model. The application of the proposed architecture is illustrated by an analog circuit sizer and optimizer. The Γ (Gamma) sizer and optimizer show how web-based design-decision supporting tool can help analog circuit designers to reduce design time and achieve high quality circuit

    Resource management in heterogeneous computing systems with tasks of varying importance

    Get PDF
    2014 Summer.The problem of efficiently assigning tasks to machines in heterogeneous computing environments where different tasks can have different levels of importance (or value) to the computing system is a challenging one. The goal of this work is to study this problem in a variety of environments. One part of the study considers a computing system and its corresponding workload based on the expectations for future environments of Department of Energy and Department of Defense interest. We design heuristics to maximize a performance metric created using utility functions. We also create a framework to analyze the trade-offs between performance and energy consumption. We design techniques to maximize performance in a dynamic environment that has a constraint on the energy consumption. Another part of the study explores environments that have uncertainty in the availability of the compute resources. For this part, we design heuristics and compare their performance in different types of environments

    Practical robust optimization techniques and improved inverse planning of HDR brachytherapy

    Get PDF

    A three-phase approach for robust project scheduling: an application for R&D project scheduling

    Get PDF
    During project execution, especially in a multi-project environment unforeseen events arise that disrupt the project process resulting in deviations of project plans and budgets due to missed due dates and deadlines, resource idleness, higher work-in-process inventory and increased system nervousness. In this thesis, we consider the preemptive resource constrained multi-project scheduling problem with generalized precedence relations in a stochastic and dynamic environment and develop a three-phase model incorporating data mining and project scheduling techniques to schedule the R&D projects of a leading home appliances company in Turkey. In Phase I, models classifying the projects with respect to their resource usage deviation levels and an activity deviation assignment procedure are developed using data mining techniques. Phase II, proactive project scheduling phase, proposes two scheduling approaches using a bi-objective genetic algorithm (GA). The objectives of the bi-objective GA are the minimization of the overall completion time of projects and the minimization of the total sum of absolute deviations for starting times for possible realizations leading to solution robust baseline schedules. Phase II uses the output of the first phase to generate a set of non-dominated solutions. Phase III, called the reactive phase, revises the baseline schedule when a disruptive event occurs and enables the project managers to make “what-if analysis” and thus to generate a set of contingency plans for better preparation

    A Matheuristic for Integrated Timetabling and Vehicle Scheduling

    Get PDF
    Planning a public transportation system is a complex process, which is usually broken down in several phases, performed in sequence. Most often, the trips required to cover a service with the desired frequency (headway) are decided early on, while the vehicles needed to cover these trips are determined at a later stage. This potentially leads to requiring a larger number of vehicles (and, therefore, drivers) that would be possible if the two decisions were performed simultaneously. We propose a multicommodity-flow type model for integrated timetabling and vehicle scheduling. Since the model is large-scale and cannot be solved by off-the-shelf tools with the efficiency required by planners, we propose a diving-type matheuristic approach for the problem. We report on the efficiency and effectiveness of two variants of the proposed approach, differing on how the continuous relaxation of the problem is solved, to tackle real-world instances of bus transport planning problem originating from customers of M.A.I.O.R., a leading company providing services and advanced decision-support systems to public transport authorities and operators. The results show that the approach can be used to aid even experienced planners in either obtaining better solutions, or obtaining them faster and with less effort, or both
    • …
    corecore