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Abstract

Planning a public transportation system is a complex process, which is usually broken down in
several phases, performed in sequence. Most often, the trips required to cover a service with the
desired frequency (headway) are decided early on, while the vehicles needed to cover these trips are
determined at a later stage. This potentially leads to requiring a larger number of vehicles (and,
therefore, drivers) that would be possible if the two decisions were performed simultaneously. We
propose a multicommodity-flow type model for integrated timetabling and vehicle scheduling. Since
the model is large-scale and cannot be solved by off-the-shelf tools with the efficiency required by
planners, we propose a diving-type matheuristic approach for the problem. We report on the efficiency
and effectiveness of two variants of the proposed approach, differing on how the continuous relaxation
of the problem is solved, to tackle real-world instances of bus transport planning problem originating
from customers of M.A.I.O.R., a leading company providing services and advanced decision-support
systems to public transport authorities and operators. The results show that the approach can be
used to aid even experienced planners in either obtaining better solutions, or obtaining them faster
and with less effort, or both.

Keywords: Public transport, timetabling, vehicle-scheduling, integrated approach, matheuristic

1 Introduction

Public transportation companies often face complex logistic problems. In particular, vehicles and crews
represent expensive resources for the operators, that require efficient utilization. Planning in a public
transportation system is usually decomposed into stages, that are solved in sequence, namely: Network
Design (ND), TimeTabling (TT), Vehicle Scheduling (VS) and Crew Scheduling (CS). The first two steps
define the type of service to be offered: ND determines the set of lines (and connections) and how often
the service is offered along the lines, while TT defines the departure and arrival time of the individual
trips on the given lines, in order to meet the desired frequency of service. The last two steps are, instead,
devoted to resource allocation: VS is the assignment between buses and trips, such that each trip is
covered by exactly one bus and the schedules of all the vehicles are feasible, while CS is the assignment
of crews and trips, such that each trip is covered by a crew and all the crew schedules satisfy the required
logical and legal restrictions. We refer the reader to [11] for a detailed description of the various stages,
and to [20] for a global review of the crucial strategic and tactical steps of transit planning.

There is a vast literature addressing each one of the above steps individually. Yet, because of the
interdependence of the stages, planning in sequence possibly produces suboptimal solutions. This is in
particular true for the vehicles and drivers needed, that are only determined in the later steps of the
planning process. Unfortunately, decomposing into stages is often necessary to make the solution time
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compatible with the requirements of the planners. It is generally argued [8] that the two intermediate
stages, TT and VS, are “the bulk” of the decision process. Indeed, recent developments in transit
planning, including this work, focus on the integration of these two steps.

In particular, our contribution consists in a new model for the Integrated Timetabling and Vehi-
cle Scheduling (ITTVS) problem. Under some assumptions on the VS constraints, that are particu-
larly reasonable for the urban planning context and can be somewhat relaxed, the model is a compact
multicommodity-flow type problem; however, its size and the relative weakness of the continuous relax-
ation are such that the problem cannot be solved by off-the-shelf tools with the efficiency required by the
planners. We therefore also propose a diving-type matheuristic approach for the problem, which produces
good-quality solutions in reduced time. We report experiments on several real-world ITTVS instances
originating from customers of M.A.I.O.R., a leading company providing services and advanced decision
support systems to public transport authorities and operators, showing that good-quality solutions—in
particular, if compared with those manually constructed by experts of the transport companies and ac-
tually used in operations—can be obtained with a reasonable computational effort. The variant of the
approach where the continuous relaxation of the model is tackled by forming its Lagrangian relaxation
w.r.t. the linking constraints, and approximately solving the corresponding Lagrangian Dual by means of
a bundle-type method, appears to be particularly promising as the size and complexity of the instances
grow.

The structure of the paper is as follows. In Section 2, we provide a general description of the TT and
VS as individual steps, and we review the literature dealing with attempts at integrating the two; the
derived taxonomy allows us to frame our contribution. Then, Section 3 presents the base case scenario
for our real-world application, which is mathematically formulated in Section 4. Section 5 discusses some
important extensions to the base case scenario. Our matheuristic approach is described in Section 6, and
computational results are discussed in Section 7. Finally, in Section 8, we draw some conclusions.

2 Literature Review

2.1 Timetabling

Timetabling (TT) is the process of creating a schedule starting from the route network and the desired
frequency of service. The result is a set of trips, with the scheduled times at the terminals and major
points on the routes, a.k.a. the timetable. Timetabling can be periodic (“clock-face”) or non-periodic. If
the order of the events is fixed, the latter can be efficiently solved by shortest path techniques. If events
appear periodically, an ordering is not possible, this is why the periodic event scheduling problem (PESP)
is NP-hard [30]. In the case of non-periodic TT one usually measures the headway of a line, i.e., the time
separating the service at its main stop by consecutive runs; this specifies how often bus service should be
offered, and is clearly the inverse of the frequency over a time period, usually considered in “clock-face”
timetabling.

The TT problem aims at finding “good quality” timetables, from the viewpoint of users of the trans-
portation service. This may mean different things. Perhaps the simplest one is regularity, whereby one
seeks to find a timetable where the trips have exactly the frequency/headway required for the line they
belong to (in the corresponding time window), or at least the distance of the actual frequency from the
desired one is minimized. This is the only reasonable measure if the topology consists of a single (al-
beit, possibly, “complex”) line, as in our experiments. However, when multiple lines are considered, the
transfer coordination or synchronization variant is also studied, where one is rather interested in finding
schedules that minimize transfer and/or waiting time of passengers (or other synchronization measures)
at the stops connecting different lines. That is, the aim is to coordinate the trips on different lines; clearly,
this requires modelling passengers’ waiting and transfer activities during vehicle changes.

In the context of transit planning, TT is included within operational planning. The reason is twofold;
(i) timetabling occurs frequently (e.g., every 3-6 months); (ii) it is from the timetables that vehicle and
crew schedules are constructed. Yet, the goal of timetabling is a tactical one, since it aims at optimizing
passengers’ service. This is in contrast to the VS and CS, that are typically intended to minimize
operating costs.
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2.2 Vehicle Scheduling

If the lines and the timetable are given, so is the set of trips, i.e., sequences of arrival/departure times at
each stop of a given line, that must be operated by the same vehicle. The set of trips is the input of VS,
which aims at optimally covering them, typically minimizing the number of vehicles needed and/or some
other measure of the required effort, such as deadheads (i.e., vehicle movements that do not constitute
transportation service) or other operating costs, while meeting all operational constraints. VS plays an
important role in the public transport planning process, since it is the first planning step, where the
primary focus is put on minimizing costs, while previous steps typically focus on optimizing passenger
service. The vehicle scheduling problem is the task of building an optimal set of sequences of trips, each
sequence—called vehicle schedule—to be performed by an individual vehicle, such that each trip of a
given timetable is covered by exactly one sequence. A sequence of trips assigned to a vehicle results in a
vehicle route, that might very well serve several lines (interlining). Multi-depot VS is NP-hard (cf. [6]),
while the single-depot case can be solved in polynomial time [3], provided there are no constraints on
how a chain can be formed, apart from compatibility between two trips (taking into account max/min
waiting time at terminals and/or deadheading, if allowed). More complex variants also consider different
types of vehicles (e.g., number of seats, level of comfort, etc.)

2.3 Literature Review

With only one exception, all the works in the literature considering integrated timetabling and vehicle
scheduling in urban public transport deal with the transfer coordination version of the TT, i.e., where the
objective is to minimize the transfer and waiting time for passengers. To the best of our knowledge, the
first two papers are [7] and [9]. The former presents a 4-step sequential approach with a single feedback
loop that determines a timetable and the corresponding vehicle schedules. The solution approach of the
latter, instead, is based on a genetic algorithm to simultaneously optimize the fleet size without interlining
(i.e., each bus can serve only one line) and the waiting and transfer time of passengers.

In general, a crucial characteristic of all approaches is that the integrated problem has a bi-objective
nature; that is, it aims simultaneously at maximizing the timetable quality from the passengers’ point of
view, and minimizing the operating cost of vehicle schedules from the service provider’s point of view.
Clearly, these two objectives are potentially in contrast to each other; thus, a main decision, when
developing an integrated model is on how the interaction between the two contrasting objective functions
should be managed. Correspondingly, we subdivide all the articles in the literature according to the
strategy they adopt in this respect:

• Shifting. An important stream of research is based on the idea of solving the VS problem allowing
some flexibility to change the timetable, thus leading to the Vehicle Scheduling with Time-Windows
(VSP-TW) problem. That is, the timetable is given as an input, and arrival times can only be
modified (shifted) by a small amount, in order to allow for cheaper vehicle schedules. Clearly, this
approach prioritises the service provider’s objective function (operating cost); however, it does so,
because the quality of the timetable is somewhat guaranteed by the fact that only minor modifi-
cations, w.r.t. the nominal one, are allowed. Hence, in multi-objective parlance, these methods are
akin to budgeting ones, where one objective is optimized subject to the constraint that the other one
cannot become worse than a given threshold (although in this case the threshold is only indirectly
specified).

• Weighting. The other classical approach in multi-objective optimization consists in having, as
objective function, the weighted sum of the two original ones. As usual, the issue with this kind
of approaches is that of finding weights that accurately represent the preferences of the decision
maker.

• Pareto-front. To account for the inherent difficulty of the two previous approaches, i.e., that of
selecting either an appropriate budget or appropriate weights, it is possible to try to produce a
set of Pareto-optimal (i.e., non dominated) solutions. This can be done, for example, by solving
the budgeted/weighted versions of the problem with several choices of the budget/weights, or,
alternatively, using population-based algorithms, as they naturally generate multiple solutions.
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• Bilevel programming. This approach takes a different stance, where one of the two objective func-
tions is that of the leader (say, the service provider), who optimizes it, while the followers (say, the
users) react by optimizing their own (say, their travel time), subject to the leader choices.

• Reordering. Finally, in this specific context, the idea has been proposed that it might be possible to
obtain “more integrated” solutions by simply reordering the classic sequence of the planning steps
outlined at the beginning of this section.

We will now briefly describe all the papers in the literature as subdivided among the five above categories.
It might be appropriate to mention at this point that, due to the complexity of the problem, most of
these studies propose meta-heuristic algorithms such as Iterated Local Search (ITL), Tabu-Search (TS),
Large Neighborhood Search (LNS), Genetic Algorithms (GA), and Simulated Annealling (SA).

2.3.1 Shifting

This kind of approach can be traced back to the seminal paper [23], which considers (small) departure
time windows in which the departure time of a service trip can be shifted, and use a discrete time-space
network to determine feasible trip combinations. The solution approach is based on column generation
together with heuristics. The time-space network model of [23] is extended in [31], where a hierarchical
approach for VS is developed, combining mathematical programming models, to optimize the type and
the number of vehicles for each trip, with a SA approach, that allows the trip starting times to be shifted
in time. In the network, vertices are departures and arrivals of a vehicle at a specific time and station
(or the depot), such as the beginning or end of a service trip, and edges link two actions that can be
performed by the same vehicle. A vehicle schedule corresponds to a flow through the network, so that the
computation of the optimal vehicle schedule can be performed by calculating a minimal cost circulation
through the network, with additional constraints guaranteeing that all service trips are performed exactly
once. Similarly, the use of VSP-TW in the context of tactical timetable analysis is discussed in [5], where
it is suggested to model the VSP-TW as a Vehicle Routing Problem with Time Windows (VRP-TW)
and to estimate the potential of vehicle savings for a given timetable by allowing wider departure time
windows (up to 20 minutes) for service trips. Recently, [15] proposes a matheuristic that combines the
idea of shifting with that of weighting. The algorithm iteratively solves a bi-objective mathematical
formulation (minimization of passenger transfers and operational costs) of the ITTVS allowing timetable
modifications for a subset of timetabled trips, while solving the full VS problem.

2.3.2 Weighting

The ITTVS with time windows and balanced departure times is studied in [29]; the problem is modeled
as a VRP-TW, that includes the balancing of trips departure times and minimization of deadheads in
the objective function, and it is solved by a hybrid LNS approach that decomposes the problem into
a scheduling and a balancing component. The Simultaneous Vehicle Scheduling and Passenger Service
Problem (SVSPSP) has been defined for the first time in [28], where an integrated solution approach is
proposed, based on the LNS used in [12] to solve the multiple depot vehicle scheduling problem (MDSVP);
the approach is tested on the Greater Copenhagen Area. A solution approach based on TS is presented
in [22], where at each iteration the timetable is altered and the optimal trip assignment is recomputed
solving a linear quasi-assignment problem. An interactive tool called NetPlan is described in [13, 14] that
integrates timetabling and vehicle scheduling. The tool is developed by GIRO, a privately owned company
based in Montreal that provides software and services to plan and manage public transport operations;
however, the papers provide little detail about the heuristics used.

2.3.3 Pareto-front

Two integer linear programming models for TT and VS are defined in [2] and combined in a bi-objective
integrated model that is solved repeatedly using a budgeting approach. A ITTVS model (without inter-
lining) is presented in [32] and solved by the direct application of a multi-objective GA.
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2.3.4 Bi-level

A bi-level ITTVS integer programming model is developed in [1] and it is solved using a specialized TS
algorithmic framework. A more complex bi-objective and bi-level approach is presented in [24, 25] to
study how much the changes on timetable and vehicle scheduling affect users trips choice behaviour. In
the model, the upper level is a service provider, that creates timetables and vehicle schedules to minimize
total operating costs and passenger waiting/travel time, while the lower level are public transport users,
who choose their travel paths in a user optimal manner, responding to the operator decision (transit
assignment problem).

2.3.5 Reordering

A “reverse shifting” approach is proposed in [21] and tested on real-life instances from France; the input is
the current timetable, vehicle and crew schedule, and the timetable is adjusted by a TS approach keeping
the vehicle and driver schedules fixed. In [27] the process starts by designing the vehicle routes; then
these routes are interpreted as lines and the corresponding frequency is defined, finally the timetabling
phase assigns an arrival and a departure time to each stop of the route. The objective function is designed
in order to measure the “attractiveness” for passengers, using an origin-destination matrix of potential
transport demands and maximizing the probability that a (potential) traveler between two locations
decides to use public transportation rather than a private one. The heuristic is applied to a case study
that optimizes the local bus system in Gottingen.

2.4 Contributions of this paper

As already mentioned, almost all the previously cited articles focus on the transfer coordination version
of the TT, save for [29], where regularity (i.e., minimizing the deviation from the desired headways) is
considered. Also, almost all the contributions use meta-heuristics, save for [15], where a matheuristic
approach is developed for an integrated bi-objective formulation (but with the transfer coordination
objective function).

The ITTVS problem at MAIOR is non-periodic, with regularity objective function for the TT com-
ponent, and single depot, single vehicle type VS model; the characteristic features of our problem are
described in Section 3. The contributions of the paper are the following. First, we consider a real-world
bus planning application at MAIOR and present an integrated solution approach for two steps (i.e., TT
and VS), that were previously solved in sequence by customers of the company. This allows us to test our
integrated approach on real-world instances provided by Italian public transport providers, comparing
them with those previously produced by the sequential approach. Thus, we are able not only to compare
the objective values, showing that the integrated approach significantly reduces them, but also to have
our solutions evaluated by expert transport planners, which certified them to be of “better quality”,
according the their judgement. This is important, because our integrated approach is based on weight-
ing, and the proper selection of weights is crucial for the practical quality of the solution. Moreover,
to our knowledge, our approach is the first matheuristic for ITTVS with regularity objective function.
Finally, we consider some extensions for dealing with “complex” single-line topologies and constraints
on the number of vehicles, which are important for the practical applicability of the approach in some
customers’ environments.

3 Problem Description

This section describes the specific characteristics of the “base case” ITTVS problem at MAIOR, where
the topology is that of a simple single line. This is only for simplicity of exposition, in that the math-
ematical formulation presented in Section 4 immediately extends to multiple independent lines (that is,
independent from the TT side, while potentially linked in the VS one). Less trivial extensions are shown
in Section 5, in particular for when multiple routes (besides the two obvious ones) actually pertain to the
same line (i.e., a complex single line).

The main input to the integrated TT-VS problem is a public transportation network (PTN), a set
of potential trips T , and the desired (a.k.a. ideal) headways for each of the time windows in which the
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operating interval is subdivided, and for each direction. In general, a PTN is given under the form of
a graph, where the nodes correspond to bus stops or depots, and the links correspond to direct bus
transits; however, the actual graph description of the PTN is inconsequential for our treatment. A simple
(single) line is a bi-directional path AB in the PTN between two terminals A and B (i.e., start/end
stops of a line). Usually a simple line has two directions, called in-bound and out-bound and denoted by

D = { ~AB , ~BA }, respectively; however, a circular line (where A = B) may have only one direction. In
more general cases, a single line may comprise multiple routes or patterns for each direction, as discussed
in Section 5; however, in this paragraph patterns and directions coincide, as shown in Figure 1. A trip
corresponds to a pattern/direction in the PTN that has to be operated by some vehicle at a given time.
Since each trip belongs to a given pattern/direction, we define T = [ Td ]d∈D as the “direction partition” of
T . Each trip i ∈ T is characterized by a start and end terminal, denoted by sn(i) and en(i), respectively,
while the corresponding departure time from sn(i) and arrival time at en(i), are denoted by st(i) and
et(i), respectively. Even in the case of a simple single line, for VS purposes it is necessary to consider
in the PTN, besides the terminal nodes A and B, also the single deposit node O (but not any other
intermediate stop of the line).

terminal A terminal B

depot O

Figure 1: Simple single line

In the following, we will denote by N the set of terminals of the involved lines (say, N = {A , B })
and by N+ = N ∪ {O }. For each direction, a main stop is identified, symbolized by a “clock” in Figure
1, which is used to calculate the headways. Although the figure may suggest that the main stop needs be
the same for the two directions of a simple line, this is not necessarily true in practice (especially since
the stops along the two directions could be disjoint). Also, the main stop may, or may not, coincide with
one of the terminals of the line.

TT components. Each trip i ∈ T is associated to a uniquely identified pattern/direction d(i). The
trip specifies the arrival time at each stop of the pattern, including the arrival time a(i) at the main stop
of d(i). Since we assume only one vehicle type, the arrival times of a given trip are the same for all the
vehicles. A timetable πd for a direction d ∈ D is a subset of its potential input trips Td; a timetable is
then just the union of |D| (independent) timetables, one for each direction, i.e., π = [πd ]d∈D. Given a
timetable π, the (actual) headways of a direction d w.r.t. π are the times separating each two consecutive
trips i, j in πd passing at its main stop, i.e., a(j) − a(i). In our non-periodic planning, a time horizon
T is given (say 5:00–24:00, i.e., each day is treated independently). As the desired frequency of service
typically varies along the day, T is partitioned into k time windows defined by k + 1 time instants t0,
t1, . . . , tk, where t0 and tk are the initial and final time instants of T . We will denote by h(i) the time
window in which trip i happens; for simplicity we will only deal with the case in which trips are completely
contained in a time window, but only minor changes (whose details are not worth reporting) are required
to account for “border effects” when they do not. For each time window h and each direction d ∈ D,
we are given the ideal headway Ihd , together with minimim and maximum headways Ihd ≤ Ihd ≤ Īhd . A
feasible timetable πd ⊂ Td for a direction d ∈ D is a timetable such that:

• the (actual) headway of each two consecutive trips i and j in πd is feasible, i.e., a(j) − a(i) ∈
[ I

h(i)
d , Ī

h(i)
d ] (with a minor variation if h(i) 6= h(j));

• the first and the last trip of πd belong to given subsets T ini
d and T fin

d of initial and final trips,
specified as an input to the problem.

To evaluate the quality of a timetable, a penalty function is given specifying how to compute the cost
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of the deviation of a feasible actual headway ā ∈ [ Ihd , Ī
h
d ] from the ideal one Ihd . The actual form of

this function is immaterial for our model, just assuming the trivial properties that the penalty is zero if
ā = Ihd , and larger than zero (typically, nondecreasing in | ā− Ihd |) otherwise.

VS components. In the VS literature, traveling between two trips without passengers on board is
called a deadhead trip. In particular, a vehicle leaving a depot to reach the start-terminal of a trip is said
to be performing a pull-out trip; similarly, it performs a pull-in trip when it returns to the depot from
the end-terminal of a trip. For each node n ∈ N+ and for each time window h we are given a minimum
and a maximum stopping-time, denoted by δhmin,n and δhmax,n, respectively; however, we typically assume

that there is no maximum stopping time at the depot, i.e., δhmax,O = +∞ for all h. For each terminal
n ∈ N and for each time window h, we are also given the travel time for a pull-in and pull-out trip,
denoted by thn+ and thn−, respectively. In general, two trips are said to be compatible if they can be
covered consecutively by the same vehicle. In our application, we distinguish two types of compatibilities
between two trips i, j ∈ T :

• in-line compatibility means that en(i) = sn(j), i.e., trip j starts at the same terminal in which i

ends, and δ
h(i)
min,en(i) ≤ st(j)− et(i) ≤ δ

h(i)
max,en(i), i.e., the waiting time at the terminal between trip

the end of i and the start of trip j is feasible;

• out-line compatibility means that en(i) 6= sn(j) and st(j) − et(i) ≥ t
h(i)
en(i)+ + δ

h(i)
min,O + t

h(j)
sn(j)−; in

other words, there must be enough time between the end of trip i and the start of trip j to perform
a pull-in trip from en(i), wait the minimum amount of time at the depot, and then perform a
pull-out trip towards sn(j). Note that pull-in and pull-out trips are not included in T , as they are
not (passenger) service trips (i.e., no passengers on board).

In our case study deadheading is not allowed, so that if en(i) 6= sn(j) the vehicle cannot move directly
from one terminal to the other, but it must perform an out-line compatibility. Yet, deadhead trips could
make sense and therefore be allowed, subject to time compatibility, without this impacting the general
structure of our model (barring some specific details discussed later on). A feasible schedule for a vehicle
is composed of an initial pull-out trip, a sequence of compatible (service) trips in T , possibly separated
by pull-in/out trips, and a final pull-in trip to return to the depot. In general, feasible schedules for a
vehicle can be seen as sequences of vehicle blocks, where each block consists of a sequence of (service)
trips in T , that starts and ends at the depot without returning to it in the middle of the sequence; if
deadheading is allowed, deadhead trips may need to be specified to complete the description of a feasible
schedule for a vehicle. A feasible vehicle schedule Ω is a subset of the input potential trips T that can
be partitioned in feasible schedules for single vehicles, possibly satisfying a constraint on the maximum
number of vehicles to be used if it is imposed.

The objective of our integrated problem is to provide a solution that optimally balances the service
provider cost (VS objective) and the users satisfaction (TT objective). The latter is simply captured by
minimizing the sum of the costs of all the deviations between the actual headways and the desired ones,
each one measured by the penalty function alluded to above. The former is somewhat more complex.
Since one of the main costs for the service provider is usually due to the number of vehicles used, the
primary VS objective is the minimization of the number of bus schedules. Two secondary measures of the
service provider cost are the time spent by the vehicles waiting at the terminals (for drivers will typically
have to man them even when stationary, thus increasing labour cost), and the time spent by the vehicles
performing pull-in and pull-out—and deadhead, if allowed—trips (for the same reason as above, plus
the fact that vehicles typically consume some fuel). Note that, if dead-heading is not allowed, the latter
secondary objective typically minimizes the number of vehicle blocks. The relative importance of these
terms is defined by weighting parameters in the VS objective function; this is in addition to the weights
given to the two different overall objective functions (TT and VS), but the selection of the sub-weights
for the VS part is typically done even when solving the problem by separate phases, and therefore these
are well-established in practice (also because they can ultimately be reduced to monetary costs). The
selection of the weights for the primary objective functions is more delicate, which is why judgement by
experts was required to evaluate the solutions produced by the integrated approach before the results
could be deemed satisfactory.
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4 Mathematical Model

We now present the mathematical model for the ITTVS as described in the previous section. We will
often make reference to the “base case” scenario of a simple single line for illustration, although the model
readily extends to any number of lines (patterns). The model consists of |D| TT sub-problems, one for
each direction, a single VS sub-problem, and some linking constraints, that guarantee integration. The TT
sub-problems select an optimal subset of trips T ∗ ⊂ T , corresponding to feasible timetables π∗ = [π∗d ]d∈D
for all directions, that minimize the total cost of deviation from the ideal headways. The VS sub-problem
constructs a feasible vehicle schedule Ω∗ with minimum operator cost out of the selected trips T ∗; in
other words, Ω∗ is a vehicle schedule cover of π∗. Clearly, the subproblems are not independent since the
vehicle schedule depends on the choice of T ∗, which is what the linking constraints provide by ensuring
that the trips covered by Ω∗ correspond to all and only the trips used in the timetable.

We propose a Mixed Integer Linear Programming (MILP) multicommodity flow-type model, based on
node-arc formulations where arc flow variables represent either the timetables or the vehicles schedule.
That is, we construct one directed graph for each of the TT subproblems (direction d) and one directed
graph for the VS subproblem, as described in Subsection 4.1 and Subsection 4.2, respectively. Finally,
the integrated MILP formulation, comprising the linking constraints, is shown in Subsection 4.3.

4.1 TT model

The TT model is based on representing feasible timetables in terms of paths on a directed TT graph
GTT

d = (NTT
d , ATT

d ), which is a compatibility graph. For a given direction d ∈ D, the nodes of the
corresponding TT graph represent the trips in Td plus a dummy source O−d and a dummy sink O+

d :
NTT

d = Td ∪ {O−d , O
+
d }. The arcs in ATT

d leaving the source node O−d end in the nodes corresponding
to the set of potential initial trips T ini

d , and symmetrically for those entering the sink node O+
d . An arc

(i, j) ∈ ATT
d between two trips i, j ∈ Td exists if and only if i and j are neither “too close” or “too far

apart”, i.e., the corresponding headway is feasible. Its cost is computed off-line with the selected penalty
function, which can therefore be arbitrary (in practice, a piecewise-linear function with a fixed cost is
used). It is trivial to see that GTT

d is acyclic and that a path between O−d and O+
d in GTT

d corresponds to
a feasible timetable πd, the cost of the path (sum of the costs of the arcs) being the total cost of violation
of ideal headways. Being GTT

d acyclic, each TT sub-problem—were they independent, which they are
not—could be easily solved as an acyclic shortest path (SP) problem, whose complexity is linear in |ATT

d |
and therefore at worst quadratic in |Td| (but in practice basically linear in |Td|, since many trips are not
compatible due to the constraints on the minimum and maximum headway).

Example 1. Consider the small example in Figure 2 with 5 trips. GTT
d consists of two dummy nodes

(source O−d and sink O+
d ) and 5 trip nodes, for simplicity all belonging to the same time window. The

time indicated inside the trip nodes represents the arrival time a(i) at the main stop. The ideal headway
is 2 minutes, with minimum and maximum headway of 1 and 3 minutes, respectively. The cost of the
arcs (in blue) is computed using as simple penalty function the absolute value of the deviation from
the ideal headway, in seconds. The minimum cost feasible O−d -O+

d path in the graph correponds to the
timetable 7:01–7:03–7:05, that has a cost of 0, which means that the optimal total deviation from the
ideal headways is 0, as it is immediate to verify.

O- 7:00 7:01 7:03 7:05 7:06 O+
60

60

60

0

0 60

Figure 2: GTT
d compatibility graph.

4.2 VS model

The VS model is based on representing feasible vehicle schedules in terms of flows on a single directed
VS graph GV S = (NV S , AV S ), which is also basically a compatibility graph: the VS sub-problem is not
separable per direction, because the schedule for each single vehicle can–and usually does—cover trips
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belonging to different directions (interlining). Using compatibility graphs to represent VS is well-known
in the literature [3]; however, in a standard VS, such as when the problem is solved in the classical
planning sequence, one typically has to construct feasible vehicle schedules that cover all the trips of
some input timetable π∗. In our ITTVS, instead, the optimal timetable π∗ is unknown (being part of the
integrated decision), hence the VS sub-problem feasible space consists of all feasible vehicle schedules that
can be constructed from the whole input set of trips T . Indeed, a vehicle schedule is, from a combinatorial
point of view, a sequence of trips such that two subsequent ones are compatible according to the given
VS constraints.

In the following, we will actually present two different VS graphs, which attain different trade-offs
between |NV S | and |AV S | (basically, the number of linear constraints and variables in the corresponding
MILP sub-model). Common to both versions is that NV S contains two nodes i− and i+ for each trip
i ∈ T , representing the start and the end of trip i, respectively.

“Pure” compatibility graph. In the first variant, besides the previously mentioned trip beginning
and ending nodes, GV S only contain two further nodes O− and O+, whose out-coming and in-coming arcs
respectively represent a vehicle performing the first pull-out and the last pull-in trips of the corresponding
schedule. As for AV S , it contains six types of arcs:

1. Trip arcs (i−, i+) for each trip i ∈ T (red arcs in Figure 3), with capacity 1 and 0 cost; a unit of
flow on the arc means that the corresponding trip i is “covered” in the vehicle schedule.

2. In-line compatibility arcs (i+, j−) for each pair of trips i and j that are in-line compatible (blue
arcs in Figure 3); a unit flow on the arc means that the bus covering trip i will be waiting at the
terminal en(i) = sn(j) and then start trip j. These arcs have capacity 1 and cost proportional to

the extra waiting time st(j) − et(i) − δh(i)min,en(i) w.r.t. the minimum waiting time at en(i) in the

given time window.

3. Out-line compatibility arcs (i+, j−) for each pair of trips i, j that are out-line compatible (green
arcs in Figure 3); a unit of flow on the arc means that the vehicle covering trip i will perform a
pull-in trip from en(i) in time window h(i), then perform a pull-out trip to the sn(j) in time window
h(j) ≥ h(i), then finally start performing trip j. These arcs have capacity 1 and cost proportional

to t
h(i)
en(i)+ + t

h(j)
sn(j)−, i.e., the sum of the pull-in/out travel times in the corresponding time windows.

4. Start arcs (O−, i−) for each trip i ∈ T (dotted arcs in Figure 3); a unit of flow on the arc means
that a vehicle will perform a pull-out trip to sn(i) as the first activity of its vehicle block. These

arcs have capacity 1 and cost proportional to the pull-out time t
h(i)
sn(i)−.

5. End arcs (i+, O+) for each trip i ∈ T (also dotted arcs in Figure 3); a unit of flow on the arc means
that a vehicle will perform a pull-in trip to return to the deposit from en(i) as the last activity of

its vehicle block. These arcs have capacity 1 and cost proportional to the pull-in time t
h(i)
en(i)+.

6. Return arc, the single (O+, O−) (omitted in Figure 3). This is added in order to allow any number
of units of flow, i.e., vehicles, to depart from O− and reach O+, thereby being used to define the
vehicle schedule. By setting all deficits of the nodes to 0, this defines a circulation problem on the
VS graph. The arc has capacity equal to the maximum fleet cardinality (if any, +∞ otherwise) and
a “large” cost (w.r.t. those that can typically be expected on the other types) representing the cost
of using one more vehicle in the vehicle schedule.

Example 2. Consider the set T formed of the 5 trips described in Table 2. For simplicity, each trip
lasts 90 minutes, travel times from/to the deposit to/from both terminals are all equal to 15 minutes,
and all minimum stopping times are 30 minutes. In the table, for each trip i we report the corresponding
direction (i.e., either ~AB or ~BA), its start and end time st(i) and et(i), and the start/end depot time
instants sd(i) and ed(i). These are respectively the last instant in which a vehicle can start a pull-out

trip in time to reach sn(i) and perform the trip i (sd(i) = st(i)− th(i)sn(i)−), and the first instant in which

a vehicle, after having performed a pull-in trip from en(i) at the end of trip i, is ready to leave again the

deposit (ed(i) = et(i)+ t
h(i)
en(i)+ +δ

h(i)
min,O). Figure 3 shows the “pure” compatibility graph for the example.
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i direction st(i) et(i) sd(i) ed(i)

1 ~AB 7:00 8:30 6:45 9:15

2 ~BA 9:00 10:30 8:45 11:15

3 ~AB 11:00 12:30 10:45 13:15

4 ~BA 13:00 14:30 12:45 15:15

5 ~AB 15:00 16:30 14:45 17:15

Table 1: A VS example.

1- 1+

2- 2+

3- 3+

4- 4+

5- 5+

O- O+

Figure 3: GV S “pure” compatibility graph for the example.

The issue with this variant of GV S is that it has a rather large number of out-compatibility arcs.
Indeed, if a trip ends rather early (with respect to the planning horizon), it is likely to be out-compatible
with most of the subsequent trips. We can reduce the number of arcs constructing an alternative VS
graph as follows.

Compatibility/time-space graph. To remove all the out-compatibility arcs, we can introduce “time-
depot” nodes Ot for properly chosen time instants t. In particular, for each trip i ∈ T we will define
the start-time-depot Osd(i) and end-time-depot Oed(i), with the start/end depot time instants sd(i) and
ed(i) having been defined in Example 2. We denote by T̄ the set of time instants corresponding to all
the start/end time-depot nodes in GV S . Next, after having removed the out-line compatibility arcs we
add the following arcs:

• Time arcs (Ot, Ot+1) for all pairs (t, t+ 1) of time instants in T̄ , where t+ 1 = min{ t′ ∈ T̄ : t′ >
t } (vertical green arcs in Figure 4). These are the typical “holding arcs” in time-space graphs,
representing the fact that all vehicles at the deposit at t that have not just started a pull-out trip
will remain at the deposit until t + 1. The cost of these arcs is 0 and the capacity is set equal to
the maximum fleet cardinality (if any, +∞ otherwise).

• Pull-in arcs (i+, Oed(i)) for all i ∈ T (diagonal green arcs in Figure 4), representing the fact that
the vehicle having just performed trip i performs a pull-in to the deposit, where it arrives at time

ed(i). These arcs have capacity 1 and cost proportional to the pull-in time t
h(i)
en(i)+.
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• Pull-out arcs (Osd(i), i
−) for all i ∈ T (diagonal green arcs in Figure 4), representing the fact that

the vehicle performs a pull-out trip at time sd(i), i.e., just in time to subsequently start trip i.

These arcs have capacity 1 and cost proportional to the pull-out time t
h(i)
sn(i)−.

Basically, in this version the depot nodes O− and O+ are expanded in a space-time (line) graph repre-
senting the status of the depot (number of vehicles available there) at all possible times where it may
change; this is why we dub it a “compatibility/time-space graph”. In this version, each out-compatibility
arc between two trips i and j is replaced by the i+–j− path consisting of a pull-in arc from i+ to Oed(i), a
sequence of time-arcs connecting the time-depot nodes Oed(i) and Osd(j), and a pull-out arc from Osd(j)

to j−. The advantage of this version is that of replacing the potentially O(|T |2) out-line compatibility
arcs with O(|T |) new nodes and arcs. Note that for some i 6= j, one may have ed(i) = sd(j), which
means that there may be strictly less than 2|T | nodes Ot (and that, unlike in Figure 4, these nodes
can have more than three incident arcs). In our experiments, the compatibility/time-space graph has
usually outperformed the “pure” compatibility one. As a final remark, if deadheading is allowed, then
deadhead arcs must be added to AV S (in either version) that are analogous to out-line compatibility arcs
save for not contemplating a return to the depot. This may seem to run contrary to the rationale of the
compatibility/time-space graph, but in practice deadheading is likely to be only possible for relatively few
pairs of trips for which en(i)/sn(j) and/or et(i)/st(j) are “rather near”, in that otherwise it is more rea-
sonable (or required by regulations) to return to the depot anyway. Thus, the compatibility/time-space
graph may also be a sensible choice in the presence of deadheading.

1- 1+

2- 2+

3- 3+

4- 4+

5- 5+

Osd(1)

Oed(1)

Osd(2)

Oed(2)

Osd(3)

Oed(3)

Osd(4)

Oed(4)

Osd(5)

Oed(5)

O- O+

Figure 4: GV S compatibility/time-space graph.

Whatever the chosen version, if the VS subproblem could be solved independently—and it can not—
then it would be a min-cost circulation problem, i.e., a minimum cost network flow (MCF) on GV S ,
which is polynomially solvable. Actually, the optimal solution to the VS sub-problem would trivially be
the zero circulation, as the arc costs are non-negative and the node deficits are zero. In fact, it is due
to the linking constraints described in the next sub-section, that flow will be forced to traverse the trip-
arcs corresponding to the trips T ∗ selected by the TT sub-problems, and therefore produce a non-zero
circulation (vehicle schedule Ω∗).

It should be remarked that the VS subproblem discussed in this section may not be capable of
expressing some constraints on the vehicle routes that may be necessary in certain cases, such as those
depending on the total time/distance travelled by the vehicle (refuelling, cleaning, servicing, . . . ). Yet,
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some constraints on the vehicle schedules can indeed be represented by appropriate modifications to
either the TT graphs or the VS graph; examples are provided in the next Section 5. Furthermore, it is in
principle possible to replace the graph-based VS model with any more expressive one, e.g. based on set
partitioning formulations, without changing the overall structure of the integrated model (except, very
possibly, making the ITTVS even more difficult to solve in practice).

4.3 TT-VS integrated model

The integrated model combines the VS graph (in whatever version) and the TT graphs for all directions
d ∈ D to yield the following MILP model:

min αcx+
∑

d∈D c
dyd (1)∑

(m,n)∈ATT
d
ydm,n −

∑
(n,m)∈ATT

d
ydn,m = bdn n ∈ NTT

d , d ∈ D (2)

ydn,m ∈ {0, 1} (n,m) ∈ ATT
d , d ∈ D (3)∑

(m,n)∈AV S xm,n −
∑

(n,m)∈AV S xn,m = 0 n ∈ NV S (4)

0 ≤ xn,m ≤ un,m (n,m) ∈ AV S (5)∑
(n,m)∈B(i) y

d(i)
n,m = xi−,i+ i ∈ T (6)

The MILP formulation is clearly formed of three distinct blocks. Constraints (2) are the flow conservation
constraints of the TT subproblems, where ydn,m are the arc flow variables on ATT

d ; the deficits bdn for TT

are all 0 except for n ∈ {O−d , O
+
d }, which, together with (3), ensures that the solution describes a path

between O−d and O+
d in GTT

d (timetable πd). Similarly, xn,m are the arc flow variables on AV S , and
(4) the corresponding flow conservation constraints describing a circulation (vehicle schedule Ω) in GV S .
The capacities un,m are all 1 except that of the return arc (O+, O−) and the time arcs (if any); the
variables need not be declared integer, once this is done for the yd, due to the total unimodularity of flow
constraints. Finally, (6) are the linking constraints ensuring that a trip is performed in the VS if and
only if it is chosen by the corresponding TT; B(i) is the backward star of the node of NTT

d(i) corresponding

to trip i, i.e., the set of all arcs in ATT
d(i) entering it.

The bi-objective nature of the integrated TT-VS problem is modeled using the weighted objective
function (1), where the VS objective is scaled by a coefficient α representing the decision-maker pref-
erences in terms of priority between the two objectives. As already remarked, the VS costs c already
are obtained by properly weighting one main VS objective with two minor ones, which means that con-
structing (1) requires properly choosing no less than three scaling parameters. Of course, the main one
is α, governing the compromise between the two contrasting objective functions of the problem (service
quality vs. service provider cost). The experience of MAIOR personnel has been instrumental in properly
setting these weights.

5 Extensions

We now describe two extensions of the models presented in the previous Section that allow to deal with
nontrivial constraints on either the TT or the VS by properly modifying the underlying graphs. This
is done primarily to show the flexibility of our approach and its capacity to be adapted to the different
needs of different service providers, which is one of the defining technical capabilities that makes MAIOR
a global player in its market.

5.1 Complex lines

The first extension that we consider is that of a complex single line, which has two sets of terminals A
and B; each trip has the form either ~AiBj or ~BjAi for Ai ∈ A and Bj ∈ B. Thus, each direction of the
line is actually composed of more than one pattern, corresponding to different choices of the terminals.
Crucially, all the patterns have to share a common central segment, where the main-stops are located,
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as depicted in Figure 5 for the so-called “double Y” topology. Indeed, the headway for a direction is
computed as the time separating two consecutive trips i and j at the main-stop running in that direction,
irrespectively from the pattern they belong to, i.e., from the specific starting terminal in A and ending
one in B. Accounting for this case is actually simple enough provided that trips from different pairs of
terminals follow a regular scheme. Indeed, for a complex line, service providers typically specify how the
trips of the line alternate between different pairs of terminals, for instance by a simple departure sequence
scheme σd and arrival sequence scheme σa, as illustrated in the following example.

Example 3. Consider the double Y topology, shown in Figure 5, with departure scheme σd = (A1 , A2 )
and arrival scheme σa = (B1 , B1 , B2 ). This means that trips must alternate first one vehicle departing
from A1 and then one departing from A2, and a vehicle arriving from B2 after two consecutive ones
arriving from B1. Since the departure scheme has length 2, while the arrival scheme has length 3, the
complete departure-arrival sequence scheme σ = (A1-B1 , A2-B1 , A1-B2 , A2-B1 , A1-B1 , A2-B2 ) has
length 6, and repeats indefinitely along all the planning horizon.

terminal A1

terminal A2

depot

terminal B1

terminal B2

Figure 5: “Double Y” complex single line.

Therefore, it is only necessary to modify the TT subproblem to account for the fact that the trips
have to follow the scheme σ. In fact, nodes of GTT

d are trips, i.e., pairs of terminals; arcs can therefore
be seen as having the general form ( sn(i)-en(i) , sn(j)-en(j) ) (although, of course, the time of the trip
also plays a role). Ensuring that the chosen path follows the right sequence basically only amounts at
removing compatibility arcs between nodes that violate it, although they would be feasible in terms of the
corresponding headway. However, this would work on the original GTT

d only if each trip type (oriented
pair of terminals) appeared at most once in σ; yet, as our example shows, this is not necessarily true.
Hence, one also needs to keep track of the position in σ of the current node ( sn(i)-en(i) ), in order to
construct the correct compatibility arcs. This can be done by replicating it for each of its occurrences in
σ, as the example below further illustrates.

Example 3 (continued). In our example, (A1-B1 ) appears twice in σ, so we need to replicate all the
nodes of this type twice to recognise whether it is the first or the second occurrence of (A1-B1 ) in σ.
The same holds for (A2-B1 ). A slice of the corresponding modified compatibility graph GTT

d is shown in
Figure 6, where the duplicated nodes (trips) are highlighted in red; the superscript indicates the position
in the sequence.

Of course, this comes at a cost of a possibly considerable increase in the number of nodes of GTT
d ,

although the arcs do not grow quite as rapidly because the construction is precisely aimed at removing
those arcs that do not follow the right order. However, the length of σ, and therefore the size of GTT

d ,
may grow rather rapidly as |A| and |B|, and/or the complexity of σd and σa, increase. Yet, there are not
too many different complex line topologies that appear in practice (the “double Y” being almost, but not
quite, the most complex that can reasonably happen), nor there is usually reason to have particularly
complex schemes σd and σa.

In all this, the VS model is completely unaffected. We will next present an “orthogonal” modification
that rather involves GV S only, leaving the GTT

d unchanged.

5.2 Vehicle flow control

Public transport planners are often able to accurately estimate the number of vehicles required for different
periods of the planning horizon, which may or may not coincide with the time-windows defined in the
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A1-B1
(1)

A2-B1
(2)

A1-B2

A1-B1
(2)

A2-B2

A1-B1
(1)

A1-B2

A2-B1
(1)

A1-B1
(2)

A2-B1
(1)

A1-B1
(2)

A2-B2

A2-B1
(2)

A1-B2

A2-B1
(1)

A2-B2

A1-B1
(1)

A2-B1
(2)

7:03 7:057:04

Figure 6: A slice of the modified GTT
d graph for the scheme σ.

previous sections. These estimates can be so accurate that the planner may want to fix the number of
vehicles per period on input. This is relatively easy to do by modifying the graph GV S , in particular in its
compatibility/time-space variant (cf. Section 4.2); indeed, as we already observed, the capacity of specific
arcs in GV S can be used to set a limit on the number of vehicles, so it is not hard to bring this idea
further and actually fix the actual number of vehicles by, basically, fixing the flow on some arcs. More
specifically, for each of the periods h = 1, . . . , r, we define φ(h) to be the number of vehicles to be fixed,
and we add to NV S a local source node O−h and a local sink node O+

h . These nodes are given deficits that
depend on the number of vehicles estimated for the corresponding period and the following/preceding
period (with the right sign), as detailed below:

• for O−1 , −φ(1), i.e., (minus) the desired number of vehicles for the first period;

• for O−h , −max{ 0 , φ(h)−φ(h−1) }, for h = 2, . . . , r, i.e., (minus) the difference between the number
of vehicles circulating in period h and those circulating in period h− 1 if this is positive, i.e., new
vehicles have to enter in period h;

• for O+
h , max{ 0 , φ(h) − φ(h + 1) }, for h = 1, . . . , r − 1, i.e., the difference between the number of

vehicles circulating in period h+ 1 and those circulating in period h if this is negative, i.e., vehicles
have to leave after the end of period h;

• for O+
r , φ(r), i.e., the desired number of vehicles for the last period.

This means that the VS sub-problem is no longer a circulation one, since it has as many source/sink
pairs as there are periods (the deficit of all other nodes remains 0), and in fact the return time arc
is also removed. Finally, arcs (O−i , i

−) and (i+, O+
h ) (with 0 cost and unitary capacity) are added for

all trips i belonging to period h. This construction is illustrated in Figure 7 for the same fragment of
the (compatibility/time-space) graph GV S of Figure 4, assuming there are two periods 7:00–12:30 and
12:30–16:00 in input with 1 and 2 vehicles fixed, respectively.

A benefit of this construction is that the primary VS cost component (i.e., the number of vehicles) is
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1- 1+

2- 2+

3- 3+

4- 4+

5- 5+

O-1

O-2

O+1

O+2

Osd(1)

Oed(1)

Osd(2)

Oed(2)

Osd(3)

Oed(3)

Osd(4)

Oed(4)

Osd(5)

Oed(5)

-1 0

-1 +2

Figure 7: Modified GV S graph with vehicle flow control

now fixed, since the number of vehicles is so. Indeed, in GV S the cost was associated to the return time
arc, which has now disappeared. In practice, it has been observed that this may make it somewhat easier
to find good values for the weighting parameter α in the objective function.

6 Solution Approach

Real-life MILP instances of ITTVS as defined in the previous section are too hard to be solved di-
rectly using a general-purpose solver within the time constraints dictated by the planners’ operational
requirements. Therefore, a heuristic approach is needed. We now describe a matheuristic, called TTD

(TimeTabling Design), based on the solution of the continuous relaxation of (1)–(6) and on a classic
diving approach, that at each iteration fixes “some” trips and progressively constructs a feasible ITTVS
solution. The fixing is basically greedy, in that decisions taken at one iteration are usually not challenged
in subsequent ones, although a very limited amount of backtracking is allowed when infeasibility of the
choices is detected. The iterative process runs until a complete integer solution is obtained, which ba-
sically means that for all d ∈ D the corresponding πd forms a complete O−d -O+

d path, or infeasibility is
detected that the backtracking is not able to resolve.

The two relevant technical aspects of the approach are how fixing is performed, and how the solution
of the continuous relaxation is computed; these are basically orthogonal, and therefore are separately
discussed.

6.1 Fixing strategy

The fixing strategy is based on the value of a continuous solution ( x̃ , ỹ = [ ỹd ]d∈D ), irrespectively on
how this has been computed. Fixing is clearly the crucial aspect of a diving heuristic, and extensive
experiments were necessary to find a fixing strategy that is both robust and efficient in practice. The
best performing fixing strategy among the ones we tested turned out to be the so called V-fix one. On the
outset, the idea is simple: to fix the trips, we first sort them in descending order of the continuous solution
value ( x̃ , ỹ ). However, note that, in our model, each trip i ∈ T is associated to two continuous solution
values: ỹi in the corresponding TT, and x̃(i−,i+) in the VS. Which of the two is chosen depends on the
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particular stage the fixing rule is in, as detailed below. Indeed, a crucial component for the effectiveness
of the fixing rule is to carefully restrict the set of trips that we consider as candidates for being fixed
depending on the previous history, as we now detail. For simplicity, the description is limited to the
simple single line case, and we also assume to know that the very first trip has to start from terminal
A going towards B, rather than vice-versa, which is usually quite clear to planners. However, the fixing
rule can be extended to complex single lines and beyond.

At the first iteration, when no trips are fixed, we select the direction d = ~AB, and we restrict the
set of candidates to the trips in the forward star of the corresponding dummy source node O−d in the
corresponding TT subgraph GTT

d , ordering them in terms of the values of the corresponding ỹdi . At

the second iteration, with just one trip ī fixed, we rather select the opposite direction d = ~BA and we
restrict the set of candidates to the trips in the forward star of node ī+ in the VS graph, i.e., the node
representing the possible ways to chose an activity for the vehicle having just performed trip i (an in-line
compatible trip, an out-line compatible trip, or a return to the depot), ordered by the corresponding
x̃(i−,i+) variable instead. These two initial fixings form a “V” in the time-space graph used by transport
planners to represent a timetable, whence the name. In the subsequent iterations, we restrict the set of
candidates to the union of the trips in both the forward star and the backward star in the TT graphs of
the trips that have been fixed, sorted in descending order of the corresponding ỹi. We then proceed at
fixing the one with highest value, provided that a reasonable balance is kept between the number of trips
fixed for each direction. That is, if the difference is less than 20% we allow selecting the trip to be fixed
irrespectively of the direction d to which it belongs, otherwise we only select trips for the direction with
fewer fixings.

In order to further reduce the problem size, when we fix a trip i to one (as belonging to the solution),
we also fix to zero (as to not belonging to the solution) the trips belonging to the “neighborhood” of i
that would violate the TT headway if they were selected, because they are “too close” in time to i. After
all these fixings, the problem may have become unfeasible; before confirming the fixing we check that this
has not happened by solving the corresponding TT and VS subproblems, and in case we backtrack on
the decision and move to the next candidate in the list. If the list becomes empty, without any (locally)
feasible fixing having been identified, we accept failure and we exit from the heuristic (although this has
never happened in practice, after that the fixing rule has been properly tuned).

6.2 Continuous Solution

We consider two ways to find a continuous solution for (1)–(6): a general-purpose LP solver and a
Lagrangian relaxation. In the former case, we relax the integrality constraints (3) and solve the corre-
sponding LP using Clp (Coin-OR linear programming) [10], an open-source LP solver written in C++.
Implementing the fixing in this case is trivial by just changing the bounds on the affected variables.
Besides fixing to 1 the lower bound of variables corresponding to trips that are chosen to be a part of
the current partial solution, we also fix to 0 the upper bound of variables representing trips that cannot
possibly be chosen together with that, as discussed above.

The alternative is to use Lagrangian techniques. This corresponds to defining the vector of Lagrangian
multipliers λ = [λi ]i∈T associated to the linking constraints (6), and solve the corresponding Lagrangian
relaxation

P (λ) min
{
αcx+

∑
d∈D

cdyd +
∑
i∈T

λi

[ ∑
(n,m)∈B(i)

yd(i)n,m − xi−,i+

]
: (2)− (5)

}
.

Clearly, P (λ) actually consists of |D| + 1 independent sub-problems, a TTd(λ) for each d ∈ D and a
single V S(λ), that can be solved separately, respectively, as acyclic SPs and a MCF on the corresponding
graphs GTT

d and GV S , as discussed on the previous sections. Note that the integrality constraints (3)
are not an issue since all the individual sub-problems have the integrality property; thus, for any choice
of λ, the corresponding Lagrangian relaxation solution is integral. It is well-known that for each choice
of λ, P (λ) is a relaxation of ITTV S, i.e., ν(P (λ)) ≤ ν(ITTV S) (ν(·) denoting the optimal value of
an optimization problem). To find the best possible Lagrangian relaxation, one then has to solve the

Lagrangian Dual, i.e., maximize the Lagrangian function ν(P (λ)) over all λ ∈ R|T |. Even with the
best possible choice λ∗ of the Lagrangian multipliers, there is no guarantee that the penalty term in
the objective function will lead to a feasible integer solution in P (λ∗), i.e., one that satisfies the linking
constraints (6). However, it is well-known that the Lagrangian Dual is equivalent to the convexified
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relaxation of the original problem; since in our case all the subproblems have the integrality property,
this is actually the same as the continuous relaxation [17] of ITTVS, as solved by the previous approach.
Thus, the two approaches provide the same lower bound, and thereby arguably continuous solution of
“the same quality”. However, this does not mean that the time required to find the continuous solution
is the same, and that the solutions themselves are necessarily identical.

Both aspects (time and solution) obviously depend on the specific algorithm used to solve the La-
grangian dual; in our case we are using an implementation of the proximal Bundle approach already
used with success in other applications (e.g., [19, 18]). Besides finding the optimal Lagrangian mul-
tipliers vector λ∗, the Bundle method also allows to explicitly construct the optimal primal solution
( x̃ , ỹ ). Technically, this is done by collecting the (integer, unfeasible) primal solutions generated at
each iteration, out of which the (continuous, feasible) ( x̃ , ỹ ) is generated via convex multipliers that
are automatically produced by the master problem solved at each iteration [16, 17]. Although the exact
details are well-known and not worth reporting here, it can be useful to remark that while a feasible
( x̃ , ỹ ) is only produced at the last iteration, the algorithm produces an unfeasible primal solution at
each iteration, and (roughly speaking) the “degree of unfeasibility” quickly decreases as the algorithm
proceeds. Clearly, for the purpose of driving the fixing strategy, which is the only use of ( x̃ , ỹ ) in our
setting, there is no strong requirement that the solution be feasible. In this sense, our diving heuristic
can be considered as well a Lagrangian heuristic, where the solutions of the Lagrangian subproblems
are used to guide the construction of a feasible solution for the original problem; the use of the (not
necessarily feasible) “convexified” primal solution in this context has already been shown to be effective
in several applications [4]. All this allows us to explore the trade-off between terminating the algorithm
early, thereby settling for a less “exact” ( x̃ , ỹ ) and lower bound, but gaining in solution time, or letting
it run to termination, thereby obtaining a solution ( x̃ , ỹ ) with the same quality as that produced by
Clp (albeit not necessarily exactly the same one).

Besides the approach for (iteratively) generating the Lagrangian multipliers λ, it is of course relevant
how the subproblems are solved. For the TT subproblems, an hand-made implementation of the classical
acyclic Shortest Path algorithm on the TT graphs GTT

d is used. As for the VS subproblem, the general-
purpose MCF solver MCFSimplex from the MCFClass project [26] (based, as the name suggest, on the
network simplex algorithm) has been used.

A final, but important detail of the Lagrangian approach concerns how fixing is enforced in the
subproblems. This is nontrivial, as several problems for which polynomial algorithms exist, among which
notably shortest path ones, easily become NP-hard if specific features are required from the solution.
Fortunately, in our case this is not an issue. Indeed, for the TT subproblems we can easily fix a trip
(node) as necessarily belonging to the chosen O−d -O+

d path by exploiting the fact that GTT
d is acyclic: it

is sufficient to remove all the arcs in ATT
d overstepping it. Of course, fixing to zero (removing) a trip is

easily obtained by removing from ATT
d all arcs entering it. As for the VS subproblem, fixing to 1 a trip

arc (i−, i+) corresponds to setting a deficit of ±1 (with appropriately chosen signs) on its end-nodes and
removing it, while fixing it to 0 just amounts at removing it (or, equivalently, setting ui−,i+ = 0).

7 Testing

To illustrate the results of our approach we selected 12 real-world bus lines covering the city center
of 3 major Italian cities, among which Milan. This data has been provided by the corresponding bus
service providers, all MAIOR customers. All the tests are on single lines, albeit possibly “complex” ones
(cf. Section 5.1). Table 2 summarises the main characteristics of the instances, that are of three different
types: (i) simple (A-B) having |N | = 2 terminals, (ii) complex “Y” (A-B1B2) with |N | = 3 terminals,
and (iii) complex “double-Y” (A1A2-B1B2) with |N | = 4 terminals. All simple topologies and two of the
“Y” topologies have no frequency schemes, one of the “Y” topologies has |σ| = 4, and the “double-Y” one
has |σ| = 6. Time is discretized in minutes, and for each minute of the time horizon there is a possible
trip i in T for each pattern. A typical time-horizon ranges roughly from 5:00 to 24:00, for a total of 1140
possible trips for each pattern. There are usually around 9 time windows, or about one time window
each two hours. In Table 2 we report, for each line, the time horizon, the number of terminals, and the
average over the different time-windows of ideal headways, min/max dwell times, and pull-in/out times.
Recall that there is no maximum dwell time for the depot. The length of the lines, not reported in the
table as it is not part of the algorithm input, ranges from 4 to 16 Km, with an average of 11 Km.
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instance T (hh:mm) |N | Ih (mm:ss) δhn,min (m) δhn,max (m) thn± (m)

2Cap R1 05:30 24:00 2 11:00 3 10 20
2Cap R2 05:30 24:00 2 12:30 3 30 21
2Cap R3 05:00 24:00 2 12:00 3 10 20
2Cap F1 05:15 22:50 2 13:30 2 20 18
2Cap F2 05:50 20:40 2 23:00 2 10 10
2Cap F3 05:20 24:20 2 18:00 2 15 9
2Cap F4 07:00 20:25 2 09:00 2 10 17
3Cap F5 05:45 24:08 3 08:00 2 15 18
3Cap F6 06:34 20:53 3 07:30 2 10 18
3Cap F7 05:24 22:44 3 08:00 2 18 17
3Cap M1 05:57 20:31 3 11:00 2 13 13
4Cap F8 06:40 20:24 4 06:00 2 17 16

Table 2: Instance data.

7.1 First case study: simple and complex lines

We first report results for the unabridged version of our matheuristic, i.e., without vehicle flow control
(but, necessarily, with the handling of “complex” lines). We consider two versions of our heuristic
approach, as described in Section 6: “h-B” (approximately) solves the Lagrangian dual using the Bundle
method, “h-C” solves the continuous relaxation of (1)–(6) using the open-source LP solver Clp. All the
experiments have been performed on a PC with a 1.9 Ghz Intel Xeon (R) E5-2420 processor. The MILP
models were solved by the commercial solver Cplex 12.7. For the LP relaxations we used the Clp solver
included in Cbc-2.9.8, in particular we applied the barrier method at the first iteration, and the dual
simplex in the subsequent ones. Finally, the stopping criterion used for the Bundle method is a maximum
number of iterations, and for all our test instances it never reached the optimal value. All the solvers
were finely tuned by performing extensive experiments in order to find a good trade-off between solution
quality and running time.

In Table 3 we compare the performance of the two versions in terms of: (i) lower bounds obtained at
the very first iteration, before any fixing is done (Clp computes the exact optimal value of the continuous
relaxation of (1)–(6), whereas the Bundle only computes a lower approximation due to being stopped
early); upper bounds (value of the feasible ITTVS solution produced), and (iii) solution time (in minutes).
To improve readability, we often report the percentage difference between two values X vs Y , denoted
by φ%(X,Y ), computed as φ%(X,Y ) = (X − Y )/Y × 100.

h-C h-B h-B vs. h-C
instance time time time φ% LB φ% UB φ%
2Cap R1 6 28 393.82 -4.28 -3.53
2Cap R2 13 36 167.72 -2.64 -5.81
2Cap R3 8 28 249.04 -6.76 -0.93
2Cap F1 10 23 124.05 -5.07 -2.31
2Cap F2 3 6 86.14 -5.57 -0.41
2Cap F3 13 19 49.28 -9.75 -30.17
2Cap F4 2 16 842.01 -2.72 -4.64
3Cap F5 116 172 48.73 -18.32 -4.39
3Cap F6 47 101 114.57 -2.56 -3.58
3Cap F7 628 195 -68.89 -6.34 10.60
3Cap M1 66 53 -19.74 -4.01 0.46
4Cap F8 2410 438 -81.85 -7.96 4.37

Table 3: h-B vs h-C, without vehicle flow control.

Table 3 shows that h-C is generally faster than h-B, apart from the last three (larger, and more diffi-
cult) instances. The lower bounds computed by the Lagrangian approach are uniformly (and sometimes
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consistently) weaker, for two reasons: the maximum limit on the number of iterations of the Bundle
algorithm, and the fact that Clp generates cutting planes to strengthen the continuous relaxation of the
MILP (1)–(6). Finally, the quality of the feasible ITTVS solutions found by h-B is usually better, apart
from the last three instances, suggesting that the ( x̃ , ỹ ) solution computed by the Lagrangian approach,
although not feasible, is often more “informative” than the standard continuous relaxation solution. The
fact that this does not happen with the largest instances may be due to the iteration limit for the Bundle
algorithm being uniform: possibly, on larger instances more iterations are needed to compute primal solu-
tions of the appropriate quality. Indeed, h-B being faster than h-C precisely in these instances illustrates
the nontrivial trade-off between solution time and solution quality.

Next, in Table 4, we asses the performance of our (fastest) heuristic in terms of solution “quality”,
i.e., comparing the value of the feasible solution it finds against: (i) the solution constructed manually,
out of experience, by the expert bus planners at the service providers, and (ii) the best solution found
by Cplex directly ran on the full MILP formulation (1)–(6) in “comparable” time. More precisely, we
define the “BTS” (best time solver) for each instance as the fastest (hence, not necessarily more accurate)
between h-B and h-C. Then, with “BT” (best time) the corresponding total running time (ranging from
a few minutes to 6 hours), we set the time limit for Cplex to BT (“Cplex*1”), 2·BT (“Cplex*2”) and
4·BT (“Cplex*4”). An entry “–” means that Cplex was not able to find any feasible solution within the
time limit.

ITTVS sol. φ%: vs. BTS
instance BTS Manual Cplex*1 Cplex*2 Cplex*4

2Cap R1 h-C 117.93 – – 4.60
2Cap R2 h-C 28.84 1863.83 0.75 0.75
2Cap R3 h-C 35.35 1488.69 1488.69 0.71
2Cap F1 h-C 202.99 3050.46 2.06 -1.50
2Cap F2 h-C 51.78 1102.97 885.69 25.72
2Cap F3 h-C 158.86 5338.87 908.09 -16.23
2Cap F4 h-C 19.04 – -7.88 -7.88
3Cap F5 h-C 252.98 – 48.84 48.61
3Cap F6 h-C 81.38 – 19.61 19.61
3Cap F7 h-B 63.53 – – –
3Cap M1 h-B 16.32 – – 6.11
4Cap F8 h-B 61.55 – – –

Table 4: Manual and Cplex solutions vs. best performing heuristic.

The table shows that our heuristics find much better solutions than the manually obtained ones. The
actual value is influenced by the choice of the scaling constant α, and therefore it is not trivial to assess
how much better the solutions actually are. However, thanks to the valuable support from experts in
MAIOR, who regularly work with customers on these issues and therefore have a deep knowledge of the
planners’ preferences and objectives, it was possible to have it confirmed that the solutions produced by
TTD are indeed significantly better than the manual ones. We also analyzed how each component (VS and
TT) contributes to the improvement with respect to the manual solutions. In general, the VS cost (that
represent the service provider true monetary cost) was lower, from slightly to significantly so. This was
partly due to saving up to three vehicles, which already is quite significant since vehicles fixed costs are
“high” and the total number of required vehicles was between 4 and 24. However, somewhat surprisingly
this was not the main component in the savings; most of it was due to a reduction in the waiting times
at the terminals. This is actually partly a consequence of the reduction in vehicles (the less the vehicles
used, the less the waiting time), but in one case the number of vehicles actually increased (from 3 to 4),
and yet the VS cost significantly decreased. On 3 instances out of 12, more than 80% of the improvement
was due to the VS cost. On 4 other instances the two components were more balanced, with a VS
improvement ranging from 40% to 60%. On the remaining instances, the TT component contributed to
more than 70% of the total improvement.

For smaller instances, and allowing much longer times, CPLEX sometimes finds better solutions (high-
lighted in bold), but in general the heuristic approach is quite competitive, especially considering the
many cases in which Cplex could not find any feasible solution within the time limit. In particular, for
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complex lines, a direct solution of the MILP formulation, even with a state-of-the-art MILP solver like
Cplex, is never competitive.

7.2 Second case study: vehicle flow control

In a second case study, we analyze the performance of our TTD heuristic, when the number of vehicles for
each period is fixed on input, as described in Subsection 5.2. We consider the same set of instances used
for the first case study (Table 2), the only difference being the additional information on the number of
vehicles allowed to pull-in and pull-out in each time period.

h-C h-B h-B vs. h-C
instance time time time φ% LB φ% UB φ%
2Cap R1 3 18 505.60 -0.50 0.01
2Cap R2 6 38 485.59 -0.17 0.68
2Cap R3 2 32 1605.99 -0.12 0.06
2Cap F1 10 10 1.28 -0.52 -1.44
2Cap F2 2 1 -38.61 0.00 0.00
2Cap F3 8 10 29.78 -0.55 -0.25
2Cap F4 1 21 1943.34 -0.11 0.08
3Cap F5 239 305 27.44 -4.11 1.41
3Cap F6 92 153 66.49 -0.34 0.14
3Cap F7 2354 349 -85.18 -2.21 -1.18
3Cap M1 23 57 142.39 -0.27 0.05
4Cap F8 5592 1044 -81.33 -0.60 0.02

Table 5: h-B vs. h-C, with vehicle flow control

In Table 5 we compare the performance of the two heuristics in the same way as in Table 3. Roughly,
the same trends apparent in the previous results also show off here, i.e., h-B is generally slower except
on some complex lines, Lagrangian lower bounds are rather weaker, but h-B solutions are generally
better. Yet, the different performance is considerably less marked, perhaps indicating that vehicle flow
control constrains much more tightly the set of feasible solutions to the problem, preventing the heuristics
to construct much better (or much worse) solutions to one another. Then, in Table 6, we asses the
performance of our heuristic in terms of solution quality comparing with manual and Cplex solutions, as
in Table 4

ITTVS sol. φ%: vs. BTS
instance BTS Manual Cplex*1 Cplex*2 Cplex*4

2Cap R1 h-C 5.84 – 0.00 0.00
2Cap R2 h-C 5.63 – – -0.03
2Cap R3 h-C 2.40 – – –
2Cap F1 h-C 8.61 – -2.81 -2.83
2Cap F2 h-B 6.53 – – 0.00
2Cap F3 h-C 9.39 – -0.36 -0.36
2Cap F4 h-C 2.59 – -0.14 -0.14
3Cap F5 h-C 7.79 – – -2.13
3Cap F6 h-C 2.53 – – 50.34
3Cap F7 h-B 9.03 – – –
3Cap M1 h-C 4.92 – – –
4Cap F8 h-B 4.38 – – –

Table 6: Manual and Cplex solutions vs. best performing heuristic.

Again, with flow control the difference in solution quality is far less pronounced. The heuristics
provide better solutions than the manual approach, to the tune of 2-10%; the gain is not very large, but
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consistent throughout the test set, indicating that the approach can reliably relieve planners with tedious
and repetitive handwork. Even when, given much longer running time, Cplex can find better solutions
than the heuristics, the gain is rather small; again, Cplex often fails to find solutions at all, especially
for complex lines. Thus, these results confirm that whenever the complexity of the problem increases, a
heuristic approach is crucial as even state-of-the-art MILP solvers are not competitive.

8 Conclusions

We have presented a new model for integrated timetabling and vehicle scheduling which, given a set of
possible trips and the desired headways, produces a timetable and a set of vehicle schedules with the best
(user-defined) compromise between service quality (deviation from the ideal frequency of service) and
service cost (number and “cost” of vehicles used). This is a problem that service planners in real-world
public transportation companies face day-to-day, and that is usually manually solved through labor and
experience.

Our model is based on combining compatibility graphs representations of both the TT subproblems
(minimizing deviation from the ideal frequency of service) and the VS subproblem (finding a minimal-
cost vehicle schedule), although for the latter a hybrid compatibility/time-space graph formulation is
usually preferable. The model is quite flexible and can handle further requirements suggested by MAIOR
customers, namely complex lines and vehicle flow control. The corresponding MILP formulation is a
large-scale multicommodity-type integer program, which is hard to solve in short time with standard
techniques. We have therefore proposed a matheuristic approach, that at each iteration solves the con-
tinuous relaxation of the problem, either via a general-purpose LP solver or via Lagrangian techniques,
and uses the resulting information to drive a diving heuristic.

The approach was tested on real-world instances of the service providers for three major Italian cities;
the results show that the heuristic consistently and reliably improves on the solutions obtained manually
by experts, thereby indicating that the model can be used to aid even experienced planners in either
obtaining better solutions, or obtaining them faster and with less effort, or both. Also, the heuristic is
quite competitive w.r.t. the direct use of state-of-the-art, general-purpose solvers like Cplex.

The proposed approach lends itself to different uses in an actual operating environment. Most MAIOR
customers that have tested it use it in a single-line setting like the one envisioned in Section 7. This makes
sense in particular for high-intensity lines, possibly using dedicated vehicles (double-length buses, metros,
trams, . . . ), whereby interlining is necessarily either absent or very reduced. However, the approach can
also be used in the standard sequential planning process only to construct the timetables, with the
knowledge that a “good” underlining VS then exists for each single (direction of each) line, which can
then be improved by a global, inter-line VS step. Indeed, the vehicle schedules produced by the approach
can be passed in input to the inter-line VS solver (which is often based on column generation), ensuring
that the quality of the VS for the lines where the approach has been used can only improve, exploiting
interlining, w.r.t. what is possible considering each line separately.

Actually, it would conceivably be possible to run the model for the whole of a city planning, i.e.,
for all the lines at the same time: the corresponding problem would however be huge, and making this
feasible from the computational viewpoint requires further research.

Also, it could be possible to incorporate in the model other features suggested by MAIOR customers,
e.g. ones where specific constraints are imposed on the vehicle schedules to ease the construction of
feasible crew duties in the last planning phase. Of course, this is always possible by integrating a
full-blown constrained VS model in the ITTVS, but this comes at a potentially high computational cost.
Alternatives might be possible where the required structures are instead modeled by clever manipulations
of the graphs structure, akin to those already illustrated in the paper.
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