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CHAPTER 1

Introduction

This dissertation comprises two topics, which are treated individually and get a
separate introduction. The reader will be acquainted with Robust Optimization
(RO) in Section 1.1, while inverse treatment planning of high-dose-rate brachytherapy
(HDR-BT) for prostate cancer is introduced in Section 1.2.

While the topics seem unrelated, the majority of the chapters in this dissertation
stems from the initial goal to apply RO to inverse treatment planning of HDR-BT.
That goal turned out to be far-headed, since RO could not directly be applied to the
optimization models used in HDR-BT, while those optimization models needed to be
improved to relate more closely to the dosimetric goals of the treatment planner. The
work in this thesis is valuable for RO and for inverse treatment planning separately,
but will also make it easier to robustly optimize HDR-BT. Section 1.2.3 shows ideas
for this.

1.1 Robust Optimization
Optimization problems are often affected by uncertainty. There are two leading
generic methods that deal with this uncertainty. The first is Stochastic Programming
(SP, see Prékopa, 1995; Ruszczyński and Shapiro, 2003), the second is RO (Ben-Tal
et al., 2009a; Bertsimas et al., 2011). Section 1.1.2 highlights the differences between
the two.

1.1.1 Robust Optimization: the paradigm
Robust Optimization (RO) is a paradigm for dealing with uncertain data in an op-
timization problem. The basic parts of RO originate from the seventies and eighties
(Soyster, 1974; Thuente, 1980; Singh, 1982; Kaul et al., 1986), but most of the exist-
ing theory and applications followed after new results in the late nineties (Ben-Tal
and Nemirovski, 1998; El Ghaoui and Lebret, 1997). An extensive overview of RO is
given in (Ben-Tal et al., 2009a) and the survey (Bertsimas et al., 2011). The basic
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idea of RO is that constraints have to hold for all parameter realizations in some
given uncertainty region.

While RO can be applied to many optimization problems, let us demonstrate its
use on a linear optimization problem. The “general” formulation of an uncertain
linear optimization problem is as follows:

max
x≥0
{c>

x : Ax ≤ b}(c,A,b)∈U , (1.1)

where c ∈ Rn, A ∈ Rm×n and b ∈ Rm denote the uncertain coefficients, x ∈ Rn
is the optimization variable, and U denotes the user specified uncertainty set. The
“basic” RO paradigm is based on the following three assumptions (Ben-Tal et al.,
2009a, p. xii):

1. All decision variables x represent “here and now” decisions: they should get
specific numerical values as a result of solving the problem before the actual
data “reveals itself”.

2. The decision maker is fully responsible for consequences of the decisions to be
made when, and only when, the actual data is within the prespecified uncer-
tainty set U .

3. The constraints of the uncertain problem in question are “hard” - the deci-
sion maker cannot tolerate violations of constraints when the data is in the
prespecified uncertainty set U .

Without loss of generality, the objective coefficients (c) and the right-hand side values
(b) can be assumed to be certain, since an uncertain objective may be reformulated
as a constraint via an epigraph reformulation, and an uncertain right-hand side can
be modeled as a column of the coefficient matrix A where the corresponding entry
in x is −1. Often there is a small number of driving factors, called the primitive
uncertainties ζ ∈ RL, such that the uncertain parameter A is an affine function of ζ:

A(ζ) = A0 +
L∑
`=1

ζ`A
`,

where A0 is the nominal value matrix, A` are the shifting matrices, and Z is the
user specified primitive uncertainty set. The robust reformulation of (1.1) that is
generally referred to as the robust counterpart (RC), is then as follows:

max
x≥0

{
c

>
x : A(ζ)x ≤ b ∀ζ ∈ Z

}
.

This means that a solution x is robust feasible if it satisfies the uncertain constraints
[A(ζ)x ≤ b] for all realizations of ζ contained in the uncertainty set Z. It can be
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shown that the RC remains unchanged if the “for all” quantifier is applied per row
(Ben-Tal et al., 2009a, p. 11):

max
x≥0

{
c

>
x :

(
a0
i +Aiζ

)>
x ≤ bi ∀ζ ∈ Z ∀i ∈ I

}
,

where a0
i is the transpose of the ith row of A0, and the `th column of Ai is given by

the ith row of A` (` = 1, . . . , L).
Since the set Z may be uncountable, e.g. an ellipsoid or a polyhedron, the RC

seems hard to solve at first sight as it has an infinite number of constrains. The power
of RO is to reformulate the RC to an equivalent optimization problem with a finite
number of variables and constraints. Two generic methods can be distinguished,
while there are also specialized results based on the S-lemma, sums of squares or
enumeration of the vertices of Z. The first generic method uses conic duality (e.g.
used by Ben-Tal et al. (2009a)), while the second method uses Fenchel duality (Ben-
Tal et al., 2014). Let us demonstrate these approaches on a single constraint with
polyhedral uncertainty:(

a0
i +Aiζ

)>
x ≤ bi ∀i ∀ζ : Biζ ≤ di. (1.2)

The conic duality approach is based on the following reformulation:

(a0
i )
>
x+ max

ζ∈RL

{
(Aiζ)

>
x : Biζ ≤ di

}
≤ bi.

The left hand side contains a conic optimization problem (in fact, a linear program),
whose value is equal to its dual. After replacing the optimization problem in the left
hand side with its dual, the constraint becomes:

(a0
i )
>
x+ min

wi≥0

{
di
>
wi : Bi

>
wi = Ai

>
x
}
≤ bi. (1.3)

Note that if this constraint holds for some wi, then it definitely holds for the mini-
mum. The min operator may therefore be omitted. The final optimization problem
becomes:

max
x≥0,wi≥0

{
c

>
x : (a0

i )
>
x+ di

>
wi ≤ bi, Bi

>
wi = Ai

>
x ∀i

}
.

The second approach uses Fenchel duality. Constraint (1.2) can be written as:

max
ζ∈Rn
{f(ζ,x)− g(ζ)} ≤ bi,

with f(ζ,x) =
(
a0
i +Aiζ

)>
x, and g(ζ) = δ(ζ|Z), the indicator function on the

uncertainty region taking the value 0 if ζ is in Z and ∞ otherwise. By Fenchel’s
duality theorem, this constraint holds if and only if:

min
si∈Rn

{g∗(si)− f∗(si,x)} ≤ bi, (1.4)
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where the asterisk indicates the concave conjugate of f (with respect to the first
argument) and the convex conjugate of g. These are computed as:

f∗(si,x) = inf
ζ∈Rn

{
ζ
>
si −

(
a0
i +Aiζ

)>
x
}

=

−(a0
i )
>
x if si = Ai

>
x

−∞ otherwise

and g∗(si) = sup
ζ∈Rn

{
ζ
>
si − δ(ζ|Z)

}
= sup

ζ∈Rn

{
ζ
>
si : Biζ ≤ di

}
= min

wi≥0

{
di
>
wi : Bi

>
wi = si

}
.

Plugging these into (1.4) yields:

min
si∈Rn

{
min
wi≥0

{
di
>
wi : Bi

>
wi = si

}
+ (a0

i )
>
x : si = Ai

>
x
}
≤ bi,

where the second min operator may be omitted. This constraint is equivalent to
(1.3).

The second method captures all situations in which the first method can be
used. Moreover, it is applicable when the constraints are nonlinear in the uncertain
parameters or when the uncertainty set is not conic representable, as long as the
concave conjugate has a closed-form expression or can be expressed as the minimum
of a convex optimization problem.

Specific results exist for uncertain Conic Quadratic Programs or Semidefinite
Programs (Ben-Tal et al., 2009a, Part II). These problems are not concave in the
uncertain parameters, and can therefore not be solved with standard techniques.

There are extensions of RO that relax some of the three underlying assumptions
from page 4. Adjustable RO (ARO) does not require the first assumption, i.e., some
decisions may be taken after the uncertain data has revealed itself (Ben-Tal et al.,
2004; Chen et al., 2008). The ARO solution provides a decision rule that dictates
the value of the adjustable variables as a function of the uncertain parameters. For
example, x(ζ) = 1 − ζ (which is optimal for the example in Section 1.1.2). The
Globalized RC (GRC) allows constraint violations for some realizations of the un-
certain parameters, but the magnitude of the violation is still controlled (Ben-Tal
et al., 2006). This relaxes the third assumption that the constraints should always
be satisfied for the entire uncertainty set.

1.1.2 Numerical example and difference with Stochastic Pro-
gramming

This section explains the difference between RO and SP. Both methods are demon-
strated using a simple example of minimizing a convex real-valued function on the
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Optimization variable x
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Figure 1.1 – Graph of a univariate objective function

interval [0, 5]:

f(x) =

6− 5x if 0 ≤ x ≤ 1
0.9 + 0.1x if 1 < x ≤ 5.

This function has been depicted in Figure 1.1. Without uncertainty, the optimal
solution is x = 1, resulting in an objective value of 1. Now suppose there is an
implementation error. Instead of x, x + ζ is implemented, resulting in an objective
value of f(x + ζ), where ζ is a random perturbation taking values in [−1, 1]. By
selecting x = 1, the objective value could become as high as 6. SP and RO will
select a slightly larger x to avoid the possibility of implementing x + ζ = 0, but do
so in a very distinctive manner. To avoid infeasible solutions, x is restricted to the
subinterval [1, 4].

SP is founded on probability distributions. Given the probability distribution of
ζ, a typical objective function in SP is the expected value:

min
x∈[1,4]

Eζ [f(x+ ζ)] ,

i.e., determine x such that the expected objective value is minimized. For example,
if the probability density function of ζ on the interval [−1, 1] is given by 1 − ζ, the
problem becomes:

min
x∈[1,4]

∫ 1

−1
(1− ζ)f(x+ ζ)dζ = min

x∈[1,4]


17
20x

3 − 10x+ 46
3 if x ≤ 2

1
5x+ 26

15 if x > 2.

The optimal solution is x =
√

200/51.
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RO on the other hand is founded on uncertainty regions. Given the uncertainty
region U , basic versions of RO solve the problem:

min
x∈[1,4]

max
ζ∈Z

f(x+ ζ),

i.e., determine x such that the worst case objective value is minimized. For example,
if Z = [−1, 1], the problem becomes:

min
x∈[1,4]

max
ζ∈[−1,1]

f(x+ ζ) = min
x∈[1,4]

max{f(x− 1), f(x+ 1)},

where the equality follows from the fact that a convex function takes its maximum
over a closed set at the boundary of that set. It can be shown that the optimal
solution is x = 100/51.

This dissertation does not consider SP, even though it may be a better approach
for some problems. Nevertheless, RO has some clear advantages: it does not require
knowledge about the probability distribution of the uncertain parameters, it keeps
optimization problems computationally tractable, and it is the more intuitive choice
for problems where the law of large numbers does not apply. For example, the
expected outcome of a medical treatment is irrelevant if a patient undergoes the
treatment only once.

1.1.3 Contributions
Hints for RO practitioners. RO has mainly been developed in the last fifteen
years. The focus has been on the theoretical aspects, while applications are lagging.
The practitioner may be reluctant to use RO because the theory is overwhelming or
because the advantages are hard to measure. Chapter 3 treats many practical issues,
as: (i) How to choose the uncertainty set? (ii) Should the decision rule be a function
of the final or the primitive uncertain parameters? (iii) Should the objective be
optimized for the worst case? (iv) How to deal with integer adjustable variables? (v)
How to deal with equality constraints? (vi) What is the right interpretation of “RO
optimizes for the worst case”? (vii) How to compare the robustness characteristics of
two solutions? (viii) Is an uncertain objective different from an uncertain constraint?

Robust linear optimization can be solved for any convex uncertainty
set. For many convex uncertainty sets, a tractable formulation of the RC of a
linear program can not be obtained with the methods from Section 1.1 because the
uncertainty set is not conic representable, the concave conjugate of the constraint
w.r.t. the uncertain parameter does not have a closed-form expression and can not
be expressed as the minimum of a convex optimization problem. Chapter 2 shows
that the dual of the RC can be formulated as a convex problem with a finite number
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of variables and constraints, and that the KKT vector of this convex problem gives
the optimal solution of the original RC. The practical consequences are that robust
linear optimization problems can now be solved for any convex uncertainty set, that
the derivation of the RC becomes easier, and that the GRC - which is shown to be
a special case of a normal RC - becomes tractable for any convex distance function.

Deriving the RC for constraints involving the sum of maxima of linear
functions. Many optimization problems contain the sum of maxima of linear func-
tions. Example are the sum of absolute values or the sum of (·)+ functions (which
take the nonnegative part of their arguments). These are common in e.g. inventory
problems with holding and backlogging costs. In many applications, such constraints
are first reformulated as a set of linear constraints, and then the constraints are
made robust. The resulting constraints are often more conservative than the RC
of the original constraint. For solving the correct RC, approaches from literature
are categorized in exact approaches and approximations, several new approaches are
proposed, and their relations are explored. By testing all methods on three prob-
lems, general recommendations are given to reduce conservatism while keeping the
problems computationally tractable.

Deriving the RC for Fractional Programs and observing that their ben-
efit may be small. In a simulation study for three Fractional Programs (FPs), it
is shown that the solutions that are optimal for the nominal data can deteriorate
substantially due to uncertainty (Chapter 5). Standard RO techniques cannot be
applied to mitigate the impact of uncertainty, since the objective of an FP is not
concave in the uncertain parameters. RO is therefore extended to FPs. For some
problems, the RC can be solved in a single step whereas for general FPs an iterative
method should be deployed. For two problems, RO performs slightly better in the
worst case than the nominal formulation. However, the RO solutions also deteriorate
substantially due to uncertainty. Compared to this deterioration, the difference with
the nominal solution is negligible. This shows that some FPs may not benefit from
RO.

As a side result, two commonly used methods to solve deterministic FPs are
shown to be dual to each other.

Smooth Pareto surfaces can be generated by solving a single prob-
lem. Multiobjective optimization problems have conflicting objectives for which the
trade-off can be visualized with a Pareto surface. For generating this surface, previ-
ous methods compute one Pareto optimal solution per optimization run. The facets
of the convex hull of Pareto optimal objective vectors provide a piecewise linear
inner approximation of the Pareto surface. In Chapter 6, an alternative approach
for multi-objective LPs based on ARO is presented, where the optimal solution of
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minimizing one objective is a function of the bounds on the other objectives. The
solution of a single Semidefinite Program (SDP) provides a polynomial inner ap-
proximation, where the degree of the polynomial can be selected by the user. The
inner approximation thus has a simple functional description and is differentiable,
which has advantages in numerous applications. A potentially useful application
would be in treatment planning (see Section 1.2), where there is a trade-off between
tumor coverage and sparing of the surrounding organs. Unfortunately, the optimiza-
tion problems for generating a polynomial inner approximation are too large to be
practically solvable.

1.2 HDR brachytherapy for prostate cancer
HDR-BT is a form of radiation therapy in which a high-activity radioactive sealed
stepping source is brought inside or in close proximity to the tumor for a limited
amount of time. Amongst others, it is used to treat localized prostate cancer. HDR-
BT has shown to be effective for prostate cancer both as a boost to external beam
radiation therapy (EBRT) and as a monotherapy (Ghilezan, 2012). Normal tissue
gets less dose in comparison with EBRT (Georg et al., 2014). Yearly, thousands of
patients are treated for prostate cancer.1

Figure 1.2 depicts the treatment set-up for HDR-BT. A transrectal ultrasound
(TRUS) probe and a template are mounted on a stand. The TRUS probe is positioned
inside the rectum and provides real-time data about the anatomy and the positions
of the implanted source guides (i.e., catheters). Catheters have been inserted through
the template and reach the base of the prostate. The urethra runs from the bladder,
through the prostate, to the penis.

When a patient with prostate cancer is selected for HDR-BT, the treatment is
fully tailored to his anatomical features. For each patient, the gross tumor volume
(GTV) is defined as the entire prostate along with macroscopic spread of the tumor.
This volume is typically extended isotropically with a margin of 3 mm to include
microscopic spread. Some institutions add an extra margin to account for treatment
delivery errors. The resulting volume is called the planning target volume (PTV,
Hoskin et al., 2013).

A treatment plan tells how many catheters are used, how these are positioned
such that the entire prostate can be adequately irradiated, and for how long the
source should dwell at which positions inside the catheters. The goal of the treat-

1A precise estimate is not available, although some hospitals publish treatment statis-
tics. Memorial Sloan Kettering Cancer Center treats 3,700 prostate cancer patients per year
(http://www.mskcc.org/cancer-care/adult/prostate/diagnosis-and-treatment, May 2014).

http://www.mskcc.org/cancer-care/adult/prostate/diagnosis-and-treatment
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Figure 1.2 – The treatment set-up. A TRUS probe and a template are
mounted on a stand. The TRUS probe is positioned inside the rectum.
Catheters have been inserted through the template and reach the base of the
prostate. The urethra runs from the bladder, through the prostate, to the
penis.

ment planner is to design a treatment plan that delivers a certain dose level to the
PTV without simultaneously irradiating the surrounding organs at risk (OARs). Un-
fortunately, this is impossible since the dose range of the source extends beyond the
PTV, though dose levels decrease approximately quadratically in the distance from
the source. A treatment plan is therefore a trade-off between PTV coverage and
OAR sparing.

The parameter space of a treatment plan is too large to explore by hand, even
if the catheter positions and the dwell locations are given. Several mathematical
optimization models have therefore been proposed to assist the treatment planner,
some of which have found their way into commercial treatment planning software (De
Boeck et al., 2014). These models determine a treatment plan based on specifications
of the desired dose distribution, and are invaluable in the clinic.

1.2.1 Clinical workflow
To provide an impression of the actual treatment, the clinical workflow at a local
hospital is outlined. The HDR-BT dose is delivered in two fractions of 8.5 Gy each
within 24 hours as a boost to EBRT. A transperineal Martinez prostate template
(Nucletron, an Elekta Company, Veenendaal, the Netherlands) is used to help posi-
tioning the catheters (Figure 1.3). The workflow can be divided into three phases:
(a) in the pre-plan phase, an intended dose distribution is calculated based on vir-
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(a) (b)

Figure 1.3 – (a) The Martinez prostate template and (b) a virtual model of
the same template in the treatment planning system and a transverse view on
an ultrasound image showing the superimposed PTV (green), urethra (yellow)
and rectum (brown) contours.

tual catheter positons, after which (b) the catheters are implanted in the patient,
and (c) a live-plan is created taking the true geometry of the catheters in relation to
the patient’s anatomy into account, and the optimized intended dose distribution is
delivered to the patient. In more detail, the following steps can be distinguished:

1. The patient is positioned in dorsal lithotomy position and transveral images of
the volume of interest are acquired using TRUS imaging.

2. The contours of the relevant organs (i.e., prostate, rectum and urethra) are
delineated to turn real-life anatomy into digital data.

3. The treatment planning system (HDRplus, version 3.0, Eckert & Ziegler BEBIG
GmbH, Berlin, Germany) provides orthogonal, transveral and saggital views of
the delineated organs and a virtual model of the template.

4. The treatment planner decides through which template holes to insert catheters
such that the catheters get distributed in the prostate volume.

5. The planning system activates dwell positions 3 mm apart within each catheter
depending on whether they are inside the PTV or not.

6. A pre-plan is made by optimizing the dwell times at the activated dwell posi-
tions to ensure that the given catheter configuration produces a dose distribu-
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tion that conforms to the PTV. Changes to the virtual catheter configuration
are made if necessary.

7. Fixation catheters are implanted into the prostate under TRUS guidance to fix
the position of the prostate relative to the template.

8. Catheters are implanted into the prostate under TRUS guidance according to
the pre-plan.

9. After insertion, step 1 is repeated. Moreover, each catheter is reconstructed in
the treatment planning software based on its actual position in the longitudinal
live TRUS image.

10. Based on the actual catheter positions, the dwell times are re-optimized.

11. A Flexitron afterloader (Nucletron) delivers an iridium-192 radioactive source
at the dwell positions for the planned dwell times.

12. The catheters remain inside the patient for delivering the second fraction.

13. After 24 hours, steps 1, 8, 9 and 10 are repeated and the second fraction is
delivered.

14. The implant is removed.

This procedure differs between hospitals. Variations exist in the workflow, the treat-
ment planning system, the dose fractionation scheme, the time between fractions and
the use of fixation catheters and a template. Most of the results in this dissertation
are valid regardless of the exact procedure. The first exception is when no template
is used (i.e., for a free-hand implementation procedure), in which case the model
for determining the optimal catheter configuration (Chapter 7) becomes inapplica-
ble. The second exception is the simulation of the uncertainty (Chapter 9), which
depends on the use of a template and rigid catheters.

1.2.2 Inverse treatment planning
Mathematical optimization can be used in the fourth, sixth and tenth step of the
workflow outlined in the previous section. The optimization models described in
Sections 1.2.2.1 and 1.2.2.2 are based on dose calculation points, which are artificial
points inside the PTV and the OARs that are used to evaluate the dose distribution.
Let I be the set of dose calculation points and let J be the set of dwell positions.
The dose rate ḋij (with i in I and j in J) is a parameter indicating the dose per
unit time, received by dose calculation point i from a source at dwell position j. The



14 Introduction

αi βi

Li Ui
Dose (Gy)

Pe
na

lty

Figure 1.4 – Dose-based optimization oftenly uses a linear penalty function.

total dose received by dose calculation point i can be expressed as a linear function
of the dwell times tj:

di =
∑
j∈J

ḋijtj. (1.5)

There are several types of dwell time optimization models. Dose-based models
have been available for over a decade and have been implemented in commercial
treatment planning software (Alterovitz et al., 2006; Karabis et al., 2005; Lessard
and Pouliot, 2001). Recently, dose-volume based models have gained attention in
the literature (Beliën et al., 2009; Lahanas et al., 2003b; Panchal, 2008; Siauw et al.,
2011). These models are computationally more challenging than dose-based models,
but also more interesting since they are based on clinically relevant dosimetric evalua-
tion criteria. In this section, both types of models are explained. Other optimization
models, such as those based on CVaR (Holm et al., 2013a), fall outside the scope of
this introduction since they are not commonly used and not used in this dissertation.

1.2.2.1 Dose-based optimization

In dose-based optimization, the planner prescribes a dose interval [Li, Ui] for each
dose calculation point, along with penalty weights αi and βi for underdosage and
overdosage, respectively. So, if the dose in dose calculation point i fails to meet the
lower bound Li, the penalty contribution of that dose calculation point is αi(Li−di).
The penalty contribution of a dose calculation point as a function of the dose received
by that point is depicted in Figure 1.4. The objective is to minimize the total penalty,
which is the sum of the penalty of the individual dose calculation points. The penalty
for each voxel is multiplied with a weighting factor wi. Often wi = 1/{number of dose
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calculation points within the same structure}, to give each structure equal weight.
The full objective function is given by:

(LD) min
t≥0

∑
i∈I

wi max{0, αi(Li −
∑
j∈J

ḋijtj), βi(
∑
j∈J

ḋijtj − Ui)}.

Problem (LD) can be cast as a Linear Programming problem (LP, see Alterovitz
et al., 2006):

min
∑
i∈I

wixi

s.t. xi ≥ αi[Li −
∑
j∈J

ḋijtj] ∀i ∈ I (1.6)

xi ≥ βi[
∑
j∈J

ḋijtj − Ui] ∀i ∈ I (1.7)

xi ≥ 0 ∀i ∈ I
tj ≥ 0 ∀j ∈ J.

The penalty may also be quadratic in the deviation:

min
t≥0

∑
i∈I

wi max{0, αi(Li −
∑
j∈J

ḋijtj)2, βi(
∑
j∈J

ḋijtj − Ui)2}. (1.8)

Sometimes the quadratic penalty formulation is formulated with a single prescribed
dose:

(QD) min
t≥0

∑
i∈I

wi(
∑
j∈J

ḋijtj − pi)2),

where pi denotes the prescribed dose in dose calculation point i. This formulation
has the advantage that the optimization time is independent of the cardinality of I
(Lahanas et al., 2003a; Lahanas and Baltas, 2003).

1.2.2.2 Dose-volume based optimization

The (LD) model answers to the idea that a treatment plan is a trade-off between
PTV coverage and OAR sparing. A few years after the development of this model
in the early 2000s, the European Society for Radiotherapy & Oncology (ESTRO)
recommended to report cumulative dose-volume histogram (DVH) statistics (Kovács
et al., 2005). A cumulative DVH shows the fraction of the volume receiving at least
a certain dose level. Initially, it was not clear for which dose levels or for which
volumes these statistics were valuable. Nowadays, DVH statistics have become an
important tool to assess the dosimetric quality of treatment plans (Martinez et al.,
2001; D’Souza et al., 2004; Butler et al., 2009). The current ESTRO recommenda-
tions explicitly mention the constraints on the DVH statistics that should be satisfied
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for a particular dose prescription. The correlation between the (LD) objective value
and DVH statistics is weak (Holm (2011) and Chapter 7). Inverse treatment planning
is therefore a trial and error process where the parameters αi, βi, Li and Ui have to be
adjusted until the intended dose distribution is clinically acceptable. Unfortunately,
the effect of a change in these parameters on the DVH statistics is hardly predictable.
The tuning process would be more intuitive for a small number of weights. For ex-
ample, for an objective of the form γ1f(x) + γ2g(x), the weights γ1 and γ2 can be
interpreted as “f is improved by ∆f if and only if g deteriorates by not more than
γ2/γ1 · ∆f”. Since (LD) has many weights αi and βi in addition to the parameters
Li and Ui, the interpretation of these is more complicated. The shortcomings of the
dose-based optimization model have led to the development of dose-volume based
models. In the latter, DVH statistics are directly used in the formulation of the
optimization problem. In Chapter 7 the following stylistic formulation is used:

(LDV) max V100%

s.t. D10%(rectum) ≤ 7.2 Gy
D10%(urethra) ≤ 10 Gy,

where V100% denotes the relative volume of the PTV that receives at least the pre-
scribed dose, and D10% is the minimum dose in the hottest 10% of the OAR volume.
(LDV) can be solved using Mixed Integer Programming (MIP, see Chapter 7), Sim-
ulated Annealing (SA, see Chapter 8), a combination of LP and SA (Beliën et al.,
2009), or by a heuristic based on solving two LPs (Siauw et al., 2011).

Ultimately, a treatment plan should satisfy D90% ≥ 100% and V100% ≥ 95%
(Hoskin et al., 2013). One may wonder why V100% is maximized, instead of D90%.
While it is possible to optimize on D90% with similar techniques, the condition
V100% ≥ 95% implies D95% ≥ 100%, and is therefore a stronger condition than
D90% ≥ 100%.

1.2.3 Robust Optimization for inverse treatment planning
HDR-BT is affected by many uncertainties (Kirisits et al., 2014). Among all plans
that provide good tumor coverage and OAR sparing, an algorithm for automated
treatment planning should pick the treatment plan that is least affected by uncer-
tainty. In this section I outline my thoughts and expectations on how this can be
developed.

Some uncertainties exist for all radiation therapy treatments, such as delineation
errors or changes in the patient anatomy. I focus on uncertainty in the source position,
which are specific to HDR-BT. Due to uncertainty in the catheter reconstruction
and mechanical source positioning limitations of the afterloader (see Chapter 9), the
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radioactive source may dwell at different positions than expected, which affects the
delivered dose distribution. Although these errors only comprise a small part of the
total error (Kirisits et al., 2014), there are two reasons that justify the focus on
uncertainty in the source position. First, for a study on robustness, it is necessary
to simulate the errors in order to measure their impact. For simulating changes
in patient geometry, no quantitative data is currently available. Second, the error
needs to be suitable for Robust Optimization. There need to be multiple near-optimal
solutions, with varying sensitivity to uncertainty. For example, delineation errors do
not fit this criterion, since it is ultimately the responsibility of the physician what
volume to irradiate. The decision where to position the 100% isodose line should not
be hidden in a model.

The model (LD) has a sum of maxima of linear functions in the objective function.
Since this sum is not concave in the uncertain parameters (i.e., in the dose rates),
standard RO techniques cannot be applied. The specialized techniques described
in Chapter 4 can in theory be used to robustly optimize (LD). However, the exact
methods have prohibitively large solution times and exploratory results show that
the approximate methods yield solutions with insufficient target coverage.

Optimization methods that deal with uncertainty require a model that can be
used to optimize a given scenario without intervention from the user. So, it should
be able to automatically select reasonable treatment plans. This is another reason to
disregard the (LD) model, since (LD) indirectly and inaccurately models the planners’
preferences (Section 1.2.2.2). Instead, (LDV) is the model to consider. This model
makes a clear trade-off between two conflicting goals, namely to maximize the target
coverage as long as the OARs are not overly exposed. A clinical question is what
would be desired when uncertainty enters the picture. One could keep the OAR
sparing only for the nominal (expected) scenario while optimizing the coverage in
a range of scenarios. Similarly, one could seek a plan that spares the OARs in the
nominal scenario, or in each scenario. I think it is not necessary to have OAR sparing
in each scenario for two reaons. First, the limits on the dose in the OARs are based
on clinical experience. This experience is based on knowledge of the dose in the
nominal scenario and the observations of side effects. So, a plan that satisfies the
DVH criteria in the nominal scenario gives limited side effects. Secondly, sometimes
the physician accepts a small overdose the the OARs to achieve good tumor coverage.
This shows a preference for tumor control at the cost of a small extra risk on side
effects.

So, the (LDV) needs to be modified to “optimize the coverage in a range of
scenarios”. Since for a given treatment plan the coverage is different in each scenario,
optimizing a treatment plan is a multiobjective problem for which many methods
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exist such as Pareto optimization, maximin optimization, lexicographic ordering and
weighted sum optimization (Ehrgott, 2005). I will argue that maximin optimization
(i.e., RO) is the most sensible method. Essentially, the physician wants to avoid
scenarios in which the tumor survives. Suppose there are only two scenarios and the
coverage in scenario 1 is 80% and the coverage in scenario 2 is 92%. The treatment
is likely to fail in the first scenario, and unless that scenario is known to be unlikely,
it is desired to increase the coverage even if that would reduce the coverage in the
second scenario. RO answers to this desire by improving the worst scenario. Let S
denote the set of scenarios under consideration and let s0 be the nominal scenario.
A stylistic formulation of the robust (LDV) model is given by:

(R-LDV) max y

s.t. y ≤ V s
100% ∀s ∈ S

Ds0

10%(rectum) ≤ 7.2 Gy
Ds0

10%(urethra) ≤ 10 Gy,

where the superscript of a DVH statistic indicates the scenario. The challenge in
solving this problem is that the constraint V100% has to be replicated for each scenario.
Since the modelling of this constraint involves many dose rate matrices and many
binary variables, the number of scenarios has to be low. However, neglecting the
afterloader inaccuracy and considering only fifteen catheters and two scenarios per
catheter, the number of scenarios is already 215 = 32, 768. Iterative methods can
be used to solve (R-LDV) while keeping the problem size limited (see Chapter 4).
An example of such a method is Algorithm 1. Basically, it starts with a smaller
set S̃, which initially only includes s0. Then in each iteration it solves (R-LDV),
fixes the dwell times and determines the scenario with lowest V100%, and adds that
scenario to S̃. The seventh step in Algorithm 1 can be solved as a MIP. Alternatively,
if the number of scenarios is small, the scenario with lowest V100% can be found
by explicitly computing V100% for each scenario. During execution, the algorithm
provides lower and upper bounds on the optimal value. These bounds are valid
only if the subproblems are solved to mathematical optimality, which is unlikely to
happen. Nevertheless, the iterative method also works if the subproblems are not
optimized to optimality, as long as the value of (R-LDV) is at least the value of LB
in the previous iteration, and a scenario is found for which V100% > UB.

An idea to improve the performance of the method is by varying the density of the
dose calculation points. The dose is likely to be high around a catheter, so there need
to be less dose calculation points in this volume. This reduces the overall memory
requirements and improves the solution time of the optimization models at the cost
of more preprocessing.
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Algorithm 1 Iterative method to solve (R-LDV)
1: k := 0
2: S̃ := {s0} (the nominal value)
3: repeat
4: k := k + 1
5: Solve (R-LDV) for S := S̃

6: Let tk be the mathematically optimal dwell times and let UB be the value of
(R-LDV)

7: Determine the scenario with lowest V100% for tk
8: Let sk denote this scenario and let LB = V sk

100%
9: S̃ := S̃ ∪ {sk}

10: until UB − LB < ε

1.2.4 Contributions
Simultaneous optimization of catheter positions and dwell times. Deciding
which template holes to use for the catheters is considered computationally difficult
due to the combinatorial structure of the problem. Karabis et al. (2009) have tried
to solve this problem with a MIP solver and binary variables bk indicating whether
a catheter is inserted through template hole k. This approach was unsuccessful due
to large computation times. In Chapter 7 this formulation is improved in two ways.
First, constraints are added that forbid using neighboring catheter positions. This
does not only speed up the optimization, but also avoids high-dose volumes around
catheters to become connected, which is considered clinically desirable. Second,
specific solver settings are used. With these changes, (LD) and (QD) can be solved
to proven mathematical optimality and good solutions for (LDV) can be obtained.

This approach differs from the one in literature. Holm (2011) proposes a con-
straint that avoids using more than two catheters in any 2 × 2 subgrid of the tem-
plate. This constraint is weaker than the aforementioned one, i.e., is less restrictive
and therefore does not provide the same speedup. Holm (2013) proposes a custom
branch & bound scheme to deal with problems that contain the binary variables bk.
She shows that for some patients this is better than standard branch & bound in
CPLEX, whereas for other patients it is worse. In her comparison, exclusion con-
straints as proposed by me and by Holm (2011) were not used. Hence, it is not known
how the custom branch & bound compares to the method in Section 7. Poulin et al.
(2013) and Siauw et al. (2012) optimize catheter positions without simultaneously
determining dwell times. Therefore, these algorithms may not choose the catheter po-
sitions that allow the lowest objective value for the dwell time optimization problem.
Holm et al. (2013b) and Karabis et al. (2005) optimize the cathether positions and



20 Introduction

dwell times heuristically, which may not result in a mathematically optimal solution.
Weak relation between (LD) objective and DVH criteria. Holm (2011)

has shown that the (LD) objective correlates weakly with DVH statistics. This is
confirmed in Chapter 7, where two treatment plans with similar DVH statistics have
a factor 12 difference in (LD) objective value. The (LD) objective may therefore
be unsuitable for determining reasonable treatment plans that satisfy a given list of
constraints on DVH statistics. Further analysis shows that more than 90% of the
factor 12 difference is explained by penalizing PTV overdosage, and that half the
difference comes from less than 1% of the dose calculation points. These insights
may lead to improvements of the (LD) objective.

Direct optimization on DVH criteria. The (LD) objective has two major
disadvantages that make it hard to generate treatment plans that satisfy a given list
of DVH criteria. First, plans that are mathematically optimal for (LD) may have
suboptimal DVH statistics. Second, obtaining better plans by tuning the weights is
not intuitive. To overcome these, several heuristics have been proposed to optimize
dwell times that directly incorporate DVH statistics. The heuristics by Lahanas et al.
(2003b) and Panchal (2008) use DVH statistics in the objective, while the heuristics
by Beliën et al. (2009) and Siauw et al. (2011) can have constraints on DVH statistics.
In Chapter 7 it is proposed to use a MIP solver with specific settings to directly
optimize a model in which the objective and constraints are directly formulated in
terms of DVH criteria. Similar to the heuristics, the solver comes up with a good
solution in reasonable time but cannot prove that the solution is mathematically
optimal (in reasonable time). An advantage of my method compared to all other
heuristics is that it can also optimize catheter positions.

In Chapter 8, a new heuristic is presented based on Simulated Annealing as an
alternative to existing heuristics for optimizing dwell times. It does not require an
expensive solver, and is shown to have advantages in terms of speed and objective
value.

Comparison between different optimization models. Previous papers on
inverse treatment planning focus on solving a single optimization model (Alterovitz
et al., 2006; Holm, 2013; Holm et al., 2013a,b; Karabis et al., 2005; Lessard and
Pouliot, 2001; Karabis et al., 2009; Milickovic et al., 2002; Panchal, 2008; Ren et al.,
2013; Siauw et al., 2011). The comparison between models is hindered because each
paper uses a different data set and many papers employ heuristics whose subopti-
mality has not been quantified. In Chapter 7 the difference in dose statistics for
treatment plans obtained with a commercially available treatment planning system
that employs (LD) and good solutions of (LDV) for dwell time optimization are com-
pared. This is also done for combined dwell time and catheter optimization, based
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on the mathematically optimal solutions of (LD) and (QD), good solutions of (LDV),
and heuristically obtained solutions of (1.8). The comparison shows large differences
between optimization models, which induces the risk of treating a patient with a
suboptimal plan. Since the live-plan is created intraoperatively, there is little time
for Quality Assurance (QA). Recently, a fast QA procedure for optimization was pro-
posed, based on the (QD) model using dose calculation points on the surface of each
organ (Deufel and Furutani, 2014). Since the (QD) model has user-tunable weights
and since cold spots in the PTV cannot be detected without dose calculation points
inside the PTV, the (LDV) model would be better suitable for automated QA.

Heuristicical fast optimization of asymmetric quadratic penalty. The
(QD) model has the advantage that the optimization time is independent of the
number of dose calculation points, but forces the treatment planner to prescribe a
single dose level for each voxel. In contrast, the model (1.8) allows the treatment
planner to prescribe a lower and an upper bound on the dose for each voxel. This
extra flexibility avoids that a penalty is incurred for reasonable dose levels, i.e., for
dose levels between the lower and upper bound. Unfortunately, the solution time
of (1.8) depends on the number of dose calculation points. Chapter 7 contains a
heuristic that optimizes (1.8) by sequentially solving (QD) to combine the flexibility
of (1.8) and the speed of (QD). While the heuristic does not always find the global
optimum of (1.8), it generates treatment plans that are considered adequate by an
expert treatment planner.

DTMR may not improve treatment plan quality and robustness. A
dwell time modulation restriction (DTMR) limits the variation of the dwell times
within a catheter, and was postulated to improve plan quality (Baltas et al., 2009).
In Chapter 9 the effects of a DTMR on the reduction of selective intratumoral high-
dose volumes and increase in robustness are quantified. For robustness, catheter
reconstruction errors and treatment delivery uncertainties induced by the afterloader
have been simulated. Neither was shown to improve by a DMTR. Moreover, a DTMR
is a potential cause for underdosage for the (LD) model.



22 Introduction

1.3 Overview of research papers
This thesis contains the following eight research papers.

Chapter 2 B. L. Gorissen, A. Ben-Tal, J. P. C. Blanc and D. den Hertog.
Deriving robust and globalized robust solutions of uncertain linear
programs with general convex uncertainty sets. Operations Re-
search, 62(3), 672-679, 2014.

Chapter 3 B. L. Gorissen, İ. Yanıkoğlu and D. den Hertog. Hints for practical
robust optimization. CentER Discussion Paper, 2013(065), 1–36,
2013.

Chapter 4 B. L. Gorissen and D. den Hertog. Robust counterparts of in-
equalities containing sums of maxima of linear functions. European
Journal of Operational Research, 227(1), 30–43, 2013.

Chapter 5 B. L. Gorissen. Robust Fractional Programming. Journal of Opti-
mization Theory and Applications, doi:10.1007/s10957-014-0633-4.

Chapter 6 B. L. Gorissen and D. den Hertog. Approximating the Pareto set of
multiobjective linear programs via robust optimization. Operations
Research Letters, 40(5), 319–324, 2012.

Chapter 7 B. L. Gorissen, D. den Hertog and A. L. Hoffmann. Mixed inte-
ger programming improves comprehensibility and plan quality in
inverse optimization of prostate HDR brachytherapy. Physics in
Medicine and Biology, 58(4), 1041–1058, 2013.

Chapter 8 T. M. Deist and B. L. Gorissen. HDR prostate brachytherapy
inverse planning on dose-volume criteria by simulated annealing.
Submitted.

Chapter 9 M. Balvert, B. L. Gorissen, D. den Hertog and A. L. Hoffmann.
Dwell time modulation restrictions do not necessarily improve
treatment plan quality for prostate HDR brachytherapy implants.
Submitted.

1.4 Disclosure
Each paper contains ideas and contributions from all its respective authors. Chapter
1 has been written by me, except Section 1.1.1 and the contribution of the second
research paper, which are based on Sections 3.2 and 3.1, respectively. Chapters 2, 4,
5, 6 and 7 have been written by me, except the introductions of Chapters 6 and 7. In
Chapter 3, Sections 3.3, 3.4, 3.10 and 3.11 have been written by me. All calculations
and simulations were done by me, except in Sections 3.5 and 3.6 and in Chapter 8.



CHAPTER 2

Deriving robust and globalized robust solutions of
uncertain linear programs with general convex

uncertainty sets

Abstract We propose a new way to derive tractable robust coun-
terparts of a linear program by using the theory of Beck and Ben-Tal
(2009) on the duality between the robust (“pessimistic”) primal prob-
lem and its “optimistic” dual. First, we obtain a new convex refor-
mulation of the dual problem of a robust linear program, and then
show how to construct the primal robust solution from the dual opti-
mal solution. Our result allows many new uncertainty regions to be
considered. We give examples of tractable uncertainty regions that
were previously intractable. The results are illustrated by solving a
multi-item newsvendor problem. We also apply the new method to the
globalized robust counterpart scheme and show its tractability.

2.1 Introduction
Robust Optimization (RO) is a paradigm for dealing with uncertain data in an op-
timization problem. Parts of RO originate from the seventies and eighties (Soyster,
1974; Thuente, 1980; Singh, 1982; Kaul et al., 1986), but most of the existing theory
and applications followed after new results in the late nineties (Ben-Tal and Ne-
mirovski, 1998; El Ghaoui and Lebret, 1997). An extensive overview of RO is given
in (Ben-Tal et al., 2009a) and the survey (Bertsimas et al., 2011). The basic idea
of RO is that constraints have to hold for all parameter realizations in some given
uncertainty region.

Currently, two tractable methods to solve an RO problem can be distinguished.
Both methods are applied constraint-wise, i.e. they reformulate individual con-
straints. The first method uses conic duality (e.g. used by Ben-Tal et al. (2009a)),
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while the second method uses Fenchel duality (Ben-Tal et al., 2014). However, there
are still some uncertainty sets for which both methods may not produce explicit
tractable robust counterparts (RCs).

The purpose of this chapter is to present a new method for robust linear pro-
grams, based on the result “primal worst equals dual best” (Ben-Tal et al., 2009a),
which gives tractable optimization problems for general convex uncertainty regions.
In Section 2.3, we give examples of uncertainty sets where the new method gener-
ates explicit tractable robust counterparts, whereas the classical methods result in
intractable RCs.

We also apply the new method to the globalized robust counterpart (GRC) model.
In this model, there are two convex uncertainty regions, where the constraint must
hold for uncertain events in the smaller uncertainty region, while the violation of
the constraint for the events in the larger region is controlled via a convex distance
function. We show that the GRC can be formulated as well as an ordinary robust
linear program with a (different) convex uncertainty region, which implies that it can
be solved efficiently with the method presented in this chapter.

2.2 A method for deriving a tractable dual of the
Robust Counterpart

Consider the following Linear Conic Program (LCP):

(LCP) max
x∈K
{c>x : a>i x ≤ bi ∀i ∈ I},

where K is a closed convex cone and I is a finite index set. If K is the nonnegative
orthant Rn+, (LCP) is an LP in canonical form. Other common choices for K are
the second-order cone and the semidefinite cone. This setting is more general than
the title of this chapter indicates, but we will only allow uncertainty in the linear
constraints and want to avoid confusion with robust conic optimization. We will use
the prefix D for the dual, O for the optimistic counterpart, and R for the robust
counterpart. The dual of (LCP) is given by:

(D-LCP) min
y≥0
{b>y :

∑
i∈I

yiai − c ∈ K∗},

where K∗ is the dual cone of K and I is a finite index set. Assume that ai are
uncertain, but known to reside in some convex compact uncertainty region Ui =
{ai : fik(ai) ≤ 0 ∀k ∈ K}, where fik are given closed proper convex functions and
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K is a finite index set. The robust counterpart of (LCP) is given by:

(R-LCP) max
x∈K

c
>
x

s.t. a
>

i x ≤ bi ∀ai : fik(ai) ≤ 0 ∀i ∈ I ∀k ∈ K, (2.1)

(R-LCP) is a semi-infinite convex optimization problem since it has a linear objec-
tive, x is finite dimensional, and the feasible region is the intersection of infinitely
many half spaces. Since (R-LCP) is convex, a local optimum is also a global opti-
mum. Numerical methods that find this optimum cannot be applied because of the
semi-infinite representation. Current RO rewrites constraint (2.1) to a finite set of
constraints, which works for a limited set of functions fik. The optimistic counterpart
of (D-LCP) is given by:

(OD-LCP) min
y≥0
{b>y : ∀i ∈ I ∃ai, fik(ai) ≤ 0 , ∀k ∈ K,

∑
i∈I

yiai − c ∈ K∗}.

A result by Beck and Ben-Tal (2009) is that (OD-LCP), which is optimistic since it
has to hold for a single ai, is a dual problem of (R-LCP), which has to hold for all ai.
Moreover, the values of (R-LCP) and (OD-LCP) are equal if (OD-LCP) is bounded
and satisfies the Slater condition. Less general but similar results can be found in
(Falk, 1976; Römer, 2010; Soyster, 1974; Thuente, 1980). For K = Rn+, (OD-LCP) is
called a Generalized LP (GLP) (Dantzig, 1963, p. 434). It contains the product of
variables yiai and is in general nonconvex. However, it will be shown that (OD-LCP)
can be converted to a convex program.

Dantzig mentions substituting vi = yiai and multiplying the constraints con-
taining fik with yi as a solution approach to GLPs (Dantzig, 1963, p. 434), which
has already been applied to the dual of LPs with polyhedral uncertainty by Römer
(2010). When we apply this to (OD-LCP), we get the following convex optimization
problem:

(COD-LCP) min
y≥0,vi

b
>
y

s.t.
∑
i∈I
vi − c ∈ K∗ (2.2)

yifik

(
vi
yi

)
≤ 0 , ∀i ∈ I ∀k ∈ K, (2.3)

where 0fik (vi/0) = limyi↓0 yifik (vi/yi) is the recession function of f . (COD-LCP)
is indeed a convex problem, since the perspective function gik(vi, yi) := yifik (vi/yi)
is convex on Rn × R+. Here is a short proof of the convexity of yifik(vi/yi) on
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Rn × R+\{0} that uses convex analysis:

gik(vi, yi) = yifik

(
vi
yi

)
= yif

∗∗
ik

(
vi
yi

)
= yi sup

x

{
v
>
i

yi
x− f ∗ik(x)

}
= sup

x

{
v
>

i x− yif ∗ik(x)
}
,

from which it follows that gik is jointly convex since it is the pointwise supremum of
functions which are linear in vi and yi.

While (R-LCP) is difficult to solve because it has an infinite number of constraints,
(COD-LCP) does not have “for all” constraints. For some popular choices of fik
for which an exact reformulation of (R-LCP) is known, (COD-LCP) is at most as
difficult to solve as (R-LCP). For instance, when the uncertainty region is polyhedral,
(R-LCP) can be reformulated as an LP, and (COD-LCP) is also an LP. When the
uncertainty region is an ellipsoid, (R-LCP) can be reformulated as a conic quadratic
program, and (COD-LCP) is also a conic quadratic program.

Dantzig notes that (OD-LCP) and (COD-LCP) are equivalent only when vi 6= 0
is not possible if yi = 0, since otherwise vi = yiai does not hold. We call this the
substitution equivalence condition. The following lemma shows that this condition is
automatically satisfied:

Lemma 1 Assume that the uncertainty region is bounded. Then (2.3) enforces the
substitution equivalence condition.

Proof. Let i ∈ I and let yi = 0. From the definition of 0fik (vi/0), it is clear
that vi = 0 is feasible for (2.3). It remains to show that a nonzero v∗i is infeasible.
Assume to the contrary that v∗i 6= 0 is feasible. Let us first construct two points
where gik(vi, yi) ≤ 0.

The first point is (cv∗i , 0), c > 0, and the second is (2ai, 2) where ai ∈ Ui. In-
deed, for k ∈ K, gik(cv∗i , 0) = limyi↓0 yifik (cv∗i /yi) = c limyi↓0(yi/c)fik (v∗i /(yi/c)) =
cgik(v∗i , 0) ≤ 0 and clearly also gik (2ai, 2) ≤ 0 for an arbitrary ai ∈ Ui.

By convexity, we have gik (λv1
i + (1− λ)v2

i , λy
1
i + (1− λ)y2

i ) ≤ λgik (v1
i , y

1
i )+(1−

λ)gik (v2
i , y

2
i ). In particular, for λ = 0.5 and the above two points, we get gik((cv∗i +

2ai)/2, 1) ≤ 0 for all k ∈ K. This implies that (c/2)v∗i +ai is in Ui for all c > 0. So,
the uncertainty region recedes in the direction of v∗i , contradicting boundedness.

In practice it is often necessary to have the primal robust solution x of (R-LCP),
instead of the solution of (COD-LCP). The following theorem shows how x can be
recovered from an optimal solution of (COD-LCP).

Theorem 1 Assume that (COD-LCP) is bounded and satisfies the Slater condition.
A KKT vector of constraint (2.2) corresponds to an optimal solution x of (R-LCP).
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Proof. First, we show that the dual variables associated with constraint (2.2) are
the optimization variables of (R-LCP). The Lagrangian of (COD-LCP) is given by:

L(y, v,x) =

b
>
y + x> (c−∑i∈I vi) if yifik

(
vi
yi

)
≤ 0 , ∀i ∈ I ∀k ∈ K

∞ otherwise,

and hence, (R-LCP) is given by:

max
x∈K

min
y≥0,v

L(y, v,x)

= max
x∈K

{
c
>
x+ min

y≥0,v

{
b
>
y −

∑
i∈I
v
>

i x : yifik
(
vi
yi

)
≤ 0 , ∀i ∈ I ∀k ∈ K

}}

= max
x∈K

{
c
>
x+ min

y≥0,a

{∑
i∈I

yi
(
bi − a

>

i x
)

: fik (ai) ≤ 0 ∀i ∈ I ∀k ∈ K
}}

= max
x∈K

{
c
>
x : a>i x ≤ bi ∀ai : fik(ai) ≤ 0 , ∀i ∈ I ∀k ∈ K

}
,

where in the second equality the substitution ai = vi/yi is made. If an optimal value
is attained at yi = 0 (and consequently at vi = 0) before the substitution, then
any feasible ai is optimal after the substitution. The problem in the last equality is
indeed (R-LCP).

Since (COD-LCP) is bounded and satisfies the Slater condition, a KKT vector
exists (Rockafellar, 1970, Theorem 28.2). An optimal x of (R-LCP) is equal to a
KKT vector (Rockafellar, 1970, Corollary 28.4.1).

This theorem is useful in practice because many solvers can output a KKT vector.
There is also another way to obtain a solution of (R-LCP), similar to the method
mentioned used by Soyster (1974). The idea is to use the “dual best ai” as the
“primal worst ai”: translate a solution of (COD-LCP) to a solution of (OD-LCP),
then fix the variables ai, remove the constraints on ai, and dualize that problem
with respect to yi. The result is a problem similar to (LCP), where the vectors
ai have been replaced with “worst case” ai. We call this problem (M-LCP). This
method only works if (COD-LCP) has a unique optimal ai, and if (M-LCP) has a
unique optimal x (Soyster, 1974). Then, the value of (M-LCP) equals the value of
(OD-LCP), and x is both feasible and optimal for (R-LCP).

The main advantage of our method is the fact that we use the perspectives of
the original functions that define the uncertainty region, while existing methods
in RO use the perspective of the conjugate functions to reformulate the “for all”
constraints in (R-LCP) (Ben-Tal et al., 2014); the latter may not result in closed-
form formulations for many uncertainty regions. We give examples of the above in
Section 2.3.
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There may be an additional computational advantage as the number of variables
and constraints in (COD-LCP) can be smaller, compared to results obtained with
existing RO techniques. For example, the latter may require an explicit conic rep-
resentation (e.g. see (Ben-Tal et al., 2009a, Theorem 1.3.4)) which can significantly
increase the number of variables and constraints.

Our method also has two disadvantages that is inherent to solving the dual prob-
lem. First, it cannot directly be applied to problems with integer variables (however,
it can be used to solve LP relaxations such as those needed in cutting plane and
branch & bound methods). Second, the primal solution has to be recovered from the
KKT vector. This means that the dual problem has to be solved to high accuracy
for otherwise the accuracy of the primal solution may suffer. However, the actual
effect on the optimal primal objective function can be assessed by the duality gap.
We show this in our numerical example in Section 2.5.

2.3 New tractable uncertainty regions
In this section we present three examples of uncertainty regions for which the robust
counterpart cannot be obtained using the traditional approach:

1. The first example is given by problems in which several scenarios for the pa-
rameters can be distinguished, but the probabilities on these scenarios are not
known. Suppose these unknown probabilities can be estimated based on his-
torical data, and an optimization problem has a constraint involving these
probabilities. An example of this is a constraint on expected value. For such
problems, a wide class of uncertainty regions is given in terms of the distance
between the real probability vector p and a historical estimate p̂, both indexed
by the scenario s from a finite scenario set S:

Ui =
{
p : p ≥ 0,

∑
s∈S

p(s) = 1, d(p, p̂) ≤ ρ

}
, (2.4)

where d is the distance measure and ρ is the level of uncertainty. Note that
the constraint ∑s∈S p

(s) = 1 is not necessary for the following results to hold,
so p does not need to be a probability vector. We consider several classes of
distance measures:

(a) The first class of distance measures that contains previously intractable
cases is φ–divergence, which for a convex function φ that satisfies φ(1) = 0
is defined by d(p, p̂) = ∑

s∈S p̂
(s)φ

(
p(s)/p̂(s)

)
. Ben-Tal et al. (2013) show

how to choose ρ in (2.4) based on historical observations, and give tractable
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robust counterparts for several choices of φ. One example for which their
method does not give a tractable reformulation is the Matusita distance
(Matusita, 1967), where φ(t) = |1− tα|1/α for given α ∈ (0, 1).

(b) The second class of distance measures is based on the Bregman distance,
which is given by (Bregman, 1967):

d(p, p̂) = g(p)− g(p̂)− (∇g(p̂))
>

(p− p̂) ,

where g is real-valued, continuously-differentiable and strictly convex on
the set of probability vectors. The Bregman distance is convex in its
first argument. Previously, uncertainty regions were intractable for many
choices of g, while with our results any g gives a tractable optimistic
counterpart.

(c) The third class of distance measures is the Rényi divergence (Rényi, 1961):

d(p, p̂) = 1
α− 1 log

∑
i∈I

(
p̂

(s)
i

)α (
p

(s)
i

)1−α
,

where α > 0 and α 6= 1. After some rewriting, an uncertainty region based
on this distance measure can also be reformulated using Fenchel duality
(Ben-Tal et al., 2014). However, the rewriting is not always possible, e.g.
when this divergence measure is clustered with other distance measures
(Banerjee et al., 2005), while our result can then still be applied.

2. The second example of new tractable uncertainty regions is when the uncer-
tainty region contains an uncertain parameter Bij:

Ui =
{

(ai, ζi) : ∃Bij, ζi ≥ 0, ai = a0
i +

∑
j

ζijBij, gijk(Bij) ≤ 0,

hik(ζi) ≤ 0 , ∀j ∈ J, k ∈ K
}
,

where gijk and hik are convex functions and Bij,a
0
i are vectors. The same

substitution we applied to (OD-CLP), can also be applied to this uncertainty
region. Let vij = ζijBij. The uncertainty region Ui can be rewritten as:

Ui =
{

(ai, ζi) : ∃vij, ζi > 0, ai = a0
i +

∑
j

vij,

ζijgijk(vij/ζij) ≤ 0, hik(ζi) ≤ 0 , ∀j ∈ J, k ∈ K
}
,

which is convex, and hence, leads to a tractable optimistic counterpart. We
mention three cases where this uncertainty region appears:
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(a) First, it appears in factor models where the parameter ai is estimated as
a0
i +∑

j ζijBij with uncertainty in both the factors ζi and the coefficients
Bij. For example in finance, the return of an asset can be approximated
by µ+V

>
f , where f are the factors that drive the market (Goldfarb and

Iyengar, 2003).
(b) Second, it appears in a constraint containing the steady-state distributions

of a Markov chain, where the transition probabilities are uncertain. The
uncertainty region then looks as follows:

Ui =

π ∈ Rn+ : e> π = 1,
∑
j∈J

πjBj = π, gjk(Bj) ≤ 0 , ∀j ∈ J, k ∈ K

 ,
where Bj are the columns of the matrix with transition probabilities.
Markov chains with column-wise uncertainty in the transition matrix were
also considered by Blanc and den Hertog (2008).

(c) Third, it appears in a constraint on the next time period probability vector
pi of a Markov chain when there is uncertainty both in the transition
matrix and in the current state:

Ui =

pi ∈ Rn+ : pi =
∑
j∈J

(p0
i )jBj, gjk(Bj) ≤ 0, hk(p0

i ) ≤ 0 , ∀j ∈ J, k ∈ K

 ,
where Bj are the columns of the transition matrix and p0

i is the current
probability vector.

3. The third example of new tractable uncertainty regions is illustrated by the
following robust constraint:

a
>

i x+
∑
j∈J

hij(aij)xj ≤ bi ∀ai : ||ai||∞ ≤ 1,

where the functions hij are convex. For many choices of hij this constraint is
not tractable. To show that it can be solved with our method, we first move
the nonlinearity to the uncertainty region:

a
>

i x+
∑
j∈J

dijxj ≤ bi ∀(ai,di) : ||ai||∞ ≤ 1, hij(aij) = dij ∀j ∈ J,

and then obtain an equivalent constraint by taking the convex hull of the un-
certainty region:

a
>

i x+
∑
j∈J

dijxj ≤ bi ∀(ai,di) : ||ai||∞ ≤ 1, hij(aij) ≤ dij,

2dij ≤ hij(1)(aij + 1)− hij(−1)(aij − 1) ∀j ∈ J.
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This transformation has also been applied by Ben-Tal et al. (2014, p. 20), but
they require a closed form for the convex conjugate of hij to reformulate this
constraint. With our method, this linear constraint with a convex uncertainty
region is tractable for any convex hij.

2.4 Globalized Robust Counterpart
A robust constraint holds for all realizations of the uncertain parameters in the
uncertainty region. If this region contains all “physically possible” events, the RC
may result in a very pessimistic solution. Ben-Tal et al. (2006) proposes the globalized
robust counterpart (GRC) model, which may be used to reduce the conservatism of
the RC (also see (Ben-Tal et al., 2009a, Chapter 3)). Here we use a slightly modified
version. Let Ui = {ai : fik(ai) ≤ 0 , ∀k ∈ K} be the set of “physically possible”
realizations, and let a smaller set U ′i = {ai : gik(ai) ≤ 0 , ∀k ∈ K} ⊂ Ui contain
the “normal range” of realizations. We define the GRC as:

a
>

i x ≤ bi + min
a′i∈U

′
i

{hi(ai,a′i)} ∀ai ∈ Ui, (2.5)

where hi is a nonnegative jointly convex distance-like function for which hi(a′i,a′i) = 0
for all a′i in U ′i . Examples are norms and φ–divergence measures. The second term
on the right-hand side of (2.5) expresses the allowable violation of the constraint and
is equal to 0 if ai is in the smaller set U ′i .

We now show that (2.5) can be reformulated as a linear constraint with a convex
uncertainty region. Constraint (2.5) is equivalent to:

a
>

i x ≤ bi + di ∀(ai, di) : fik(ai) ≤ 0 ∀k ∈ K, di = min
a′i∈U

′
i

{hi(ai,a′i)},

which in turn is equivalent to:

a
>

i x ≤ bi + di ∀(ai,a′i, di) : fik(ai) ≤ 0 gik(a′i) ≤ 0 ∀k ∈ K, di ≥ hi(ai,a′i).

This is indeed a linear constraint with a convex uncertainty region. We will now
show how the GRC can be formulated. Consider the following Globalized Robust
program:

(R-GRC) max
x∈K

c
>
x

s.t. a
>

i x ≤ bi + di ∀(ai,a′i, di) : fik(ai) ≤ 0 , ∀k ∈ K,
gik(a′i) ≤ 0 , ∀k ∈ K di ≥ hi(ai,a′i) ∀i ∈ I,
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whose optimistic dual is:

(OD-GRC) min
y≥0,ai,a′i,d

b
>
y + d>y

s.t.
∑
i∈I

yiai − c ∈ K∗

fik(ai) ≤ 0 ∀i ∈ I ∀k ∈ K (2.6)
gik(a′i) ≤ 0 ∀i ∈ I ∀k ∈ K (2.7)
hi(ai,a′i) ≤ di ∀i ∈ I. (2.8)

We substitute vi = yiai, v′i = yia
′
i and wi = yidi and multiply constraints (2.6)–(2.8)

with yi:

(COD-GRC) min
y≥0,vi,v′i,w

b
>
y +

∑
i∈I

wi

s.t.
∑
i∈I
vi − c ∈ K∗

yifik

(
vi
yi

)
≤ 0 ∀i ∈ I ∀k ∈ K

yigik

(
v′i
yi

)
≤ 0 ∀i ∈ I ∀k ∈ K

yihi

(
vi
yi
,
vi
yi

′
)
≤ wi ∀i ∈ I. (2.9)

Note that the product yia′i does not appear in (OD-GRC), but that the substitution
v′i = yia

′
i is still necessary to make (COD-GRC) convex. From the objective and

(2.9) it is clear that the substitution equivalence condition holds for wi even though
the uncertainty region is not bounded in d. For the tractability of (COD-GRC), all
results regarding the functions that define the uncertainty region Ui also apply to the
functions that define U ′i . For example, when hi is a φ–divergence measure, constraint
(2.8) is given by:∑

j∈J
aijφ

(
a′ij/aij

)
≤ di.

Constraint (2.9) then contains the perspective of φ, which is just:∑
j∈J

vijφ
(
v′ij/vij

)
≤ wi.

When in (2.8), hi is a norm, i.e., ||ai − a′i||, constraint (2.9) contains the same norm:
||vi − v′i|| ≤ wi.
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2.5 Multi-item newsvendor example

We demonstrate our new method on a robust LP with a convex uncertainty region
that currently cannot be solved with other methods. To obtain this problem, we
take a slightly modified version of the multi-item newsvendor problem described by
Ben-Tal et al. (2013). There are 12 items indexed by i, and each has its own ordering
cost ci, selling price vi, salvage price ri, and unsatisfied demand loss li. So, when the
order quantity Qi is less than the demand di, the profit equals viQi+li(Qi−di)−ciQi,
and vidi + ri(Qi− di)− ciQi otherwise. If ri ≤ vi + li, this profit is concave piecewise
linear in the decision variable Qi. In practice the demand is not known, but for every
item i we can define scenarios s in a scenario set S which occur with probability
p

(s)
i , independently of other items, resulting in a demand of d(s)

i . The goal is to
determine Qi such that the total ordering cost is minimized under the constraint
that the expected profit is at least γ. This can be formulated as a robust LP as
follows:

(R-NV) min
Q≥0,u

∑
i∈I

ciQi

s.t.
∑
i∈I

∑
s∈S

p
(s)
i u

(s)
i ≥ γ

∀pi ≥ 0 :
∑
s∈S

p
(s)
i = 1,

∑
s∈S

∣∣∣(p̂(s)
i

)α
−
(
p

(s)
i

)α∣∣∣1/α ≤ ρ, ∀i ∈ I

(2.10)
u

(s)
i + (ci − ri)Qi ≤ d

(s)
i (vi − ri) ∀i ∈ I ∀s ∈ S

u
(s)
i + (ci − vi − li)Qi ≤ −d(s)

i li ∀i ∈ I ∀s ∈ S,

where u(s)
i denotes the profit for item i in scenario s, and the uncertainty region is

based on the Matusita distance with α in (0, 1). (R-NV) cannot be solved with current
methods, because the uncertainty region in (2.10) does not have a conic quadratic
representation and (2.10) cannot be reformulated to finitely many constraints with
closed form functions using Fenchel duality to the best of our knowledge (Ben-Tal
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et al., 2014, Table 1). The optimistic dual of (R-NV) is given by:

(OD-NV) max
x≥0,y≤0,z≤0,p≥0

γx+
∑

i∈I,s∈S
d

(s)
i ((vi − ri) yis − lizis)

s.t. p
(s)
i x+ yis + zis = 0 ∀i ∈ I ∀s ∈ S∑
s∈S
{(ci − ri) yis + (ci − vi − li) zis} ≤ ci ∀i ∈ I

∑
s∈S

p
(s)
i = 1 ∀i ∈ I (2.11)

∑
s∈S

∣∣∣(p̂(s)
i

)α
−
(
p

(s)
i

)α∣∣∣1/α ≤ ρ ∀i ∈ I. (2.12)

After substituting wis = p
(s)
i x and multiplying (2.11) and (2.12) with x, the convex

reformulation becomes:

(COD-NV) max
x≥0,y≤0,z≤0,w≥0

γx+
∑

i∈I,s∈S
d

(s)
i ((vi − ri) yis − lizis)

s.t. wis + yis + zis = 0 ∀i ∈ I ∀s ∈ S (2.13)∑
s∈S
{(ci − ri) yis + (ci − vi − li) zis} ≤ ci ∀i ∈ I

(2.14)∑
s∈S

wis = x ∀i ∈ I

∑
s∈S

∣∣∣(p̂(s)
i x

)α
− wαis

∣∣∣1/α ≤ ρx ∀i ∈ I. (2.15)

We take α = 0.5, γ = 100 and for all other parameters we take the same values
as reported by Ben-Tal et al. (2013). This means that there are three scenarios
per item, corresponding to low (d(s)

i = 4), medium (d(s)
i = 8) and high (d(s)

i = 10)
demand. The other parameters are listed in Table 2.1. We solve the problem for
different values of ρ, varying between 0.000 and 0.030 in steps of 0.0001, where ρ = 0
corresponds to the nonrobust formulation where the estimates p̂(s)

i are assumed to
be exact, with AIMMS 3.11 and KNITRO 7.0. First, we check the conditions of
Theorem 1. (COD-NV) is feasible for ρ = 0, and the solution is a Slater point of
(COD-NV) for larger ρ. By (2.15) all wis are forced to 0 if x = 0. Lastly, we have
observed numerically that (COD-NV) is unbounded for ρ larger than 0.0306. This
means that the primal problem is infeasible for ρ larger than 0.0306. The robust
optimal Q and u are the elements of a KKT vector corresponding to constraints
(2.13) and (2.14), respectively. As mentioned, we may have to verify the quality of
the KKT vector. First, we check whether it is feasible to (R-NV). The constraint
violation of (2.10) can be computed by maximizing a linear function over a convex
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set, and was found to be at most 1.5 · 10−5 among all solutions. Second, we need
to verify optimality by comparing the objective values of (R-NV) and (COD-NV).
We observe both positive and negative relative differences of at most 2.0 · 10−4. So,
the quality of the KKT vector reported by the solver is accurate for this particular
problem. The optimal order quantities and corresponding ordering costs are listed
in Table 2.2 for different values of ρ.

For every solution we have uniformly sampled 10,000 p matrices from the un-
certainty region, and computed the corresponding expected profit. Because imple-
menting the robust solution requires a larger investment, the following comparison
is based on the expected return, which is obtained by dividing the expected profit
by the total ordering costs. The mean value and the range of these expected returns
are listed in Table 2.3. As can be seen from this picture, the mean value for the
nonrobust solution is often worse than the worst case for the robust solution. We
will explain why the robust solution performs much better using the expected return
of a single item. In the same way as for all items together, we have computed the
expected return for item 3 (Figure 2.1). The peak at ρ = 0.022 is not a simulation
inaccuracy, but it is caused by buying a larger number of items than for slightly
larger or smaller ρ. The largest increase in expected return is between ρ = 0 and
ρ = 0.005, for which the order quantity increases from 4.00 to 5.87 (Table 2.2).
The profits for item 3 in the three scenarios are (12,−8,−18) for Q3 = 4.00, and
(3.6, 7.0,−3.0) for Q3 = 5.87. So, with a slightly larger investment, the variation of
the profit becomes much smaller, and hence, deviations in the probabilities on the
scenarios have a smaller impact on the expected profit. This reduces the range of
the expected return of the the robust solution, which can be seen in Figure 2.1. In
total, six items show this behaviour. One of these (item 10) is more robust only for
ρ between 0.003 and 0.012. For five items the robust order quantity is the same as
the nonrobust order quantity and hence they do not have better robust performance.
One item (item 2) has slightly worse robust performance.
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Table 2.1 – Parameter values for the multi-item newsvendor example

i 1 2 3 4 5 6 7 8 9 10 11 12

ci 4 5 6 4 5 6 4 5 6 4 5 6
vi 6 8 9 5 9 8 6 8 9 6.5 7 8
ri 2 2.5 1.5 1.5 2.5 2 2.5 1.5 2 2 1.5 1
li 4 3 5 4 3.5 4.5 3.5 3 5 3.5 3 5
p̂

(1)
i 0.375 0.250 0.375 0.127 0.958 0.158 0.485 0.142 0.679 0.392 0.171 0.046
p̂

(2)
i 0.375 0.250 0.250 0.786 0.007 0.813 0.472 0.658 0.079 0.351 0.484 0.231
p̂

(3)
i 0.250 0.500 0.375 0.087 0.035 0.029 0.043 0.200 0.242 0.257 0.345 0.723

Table 2.2 – Optimal ordering cost and quantities for the multi-item newsven-
dor problem

ρ cost Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

0.000 391 8.00 8.00 4.00 8.00 4.00 8.00 4.00 8.00 4.00 8.00 7.03 8.00
0.005 412 8.00 8.00 5.87 8.00 4.00 8.00 5.69 8.00 4.00 7.01 8.00 8.34
0.010 421 8.00 8.00 6.20 8.00 4.00 8.00 6.12 8.00 4.00 7.55 8.00 8.85
0.015 430 8.00 8.00 6.39 8.00 4.00 8.00 6.36 8.00 4.00 8.00 8.00 9.62
0.020 440 8.00 8.00 7.10 8.00 4.00 8.00 7.31 8.00 4.00 8.00 8.00 10.00
0.025 453 8.00 8.00 7.36 8.00 4.00 8.00 8.00 8.00 5.51 8.00 8.00 10.00
0.030 469 8.00 9.49 8.00 8.00 4.00 8.00 8.00 8.00 6.26 8.00 8.00 10.00

Table 2.3 – Simulation results of the expected return for the robust and
nonrobust solutions for the multi-item newsvendor problem.

ρ Robust solution Nonrobust solution

min mean max min mean max

0.000 0.2557 0.2557 0.2557 0.2557 0.2557 0.2557
0.005 0.2538 0.2695 0.2842 0.2369 0.2542 0.2737
0.010 0.2545 0.2753 0.2987 0.2269 0.2529 0.2795
0.015 0.2560 0.2806 0.3076 0.2169 0.2515 0.2855
0.020 0.2502 0.2855 0.3215 0.2121 0.2501 0.2903
0.025 0.2497 0.2815 0.3125 0.2088 0.2490 0.2955
0.030 0.2425 0.2809 0.3140 0.2026 0.2476 0.2900
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Figure 2.1 – Simulation results of the expected return for item 3 in the robust
and nonrobust solutions for the multi-item newsvendor problem.
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CHAPTER 3

Hints for practical Robust Optimization

Abstract Robust optimization (RO) is a young and active research
field that has been mainly developed in the last 15 years. RO tech-
niques are very useful for practice and not difficult to understand for
practitioners. It is therefore remarkable that real-life applications of
RO are still lagging behind; there is much more potential for real-life
applications than has been exploited hitherto. The aim of this chap-
ter is to help practitioners to successfully apply RO in practice. We
pinpoint several important items that may be helpful for successfully
applying RO. We use many small examples to illustrate our discussions.

3.1 Introduction
Real-life optimization problems often contain uncertain data. The reasons for data
uncertainty could be measurement/estimation errors that come from the lack of
knowledge of the parameters of the mathematical model (e.g., the uncertain de-
mand in an inventory model) or could be implementation errors that come from the
physical impossibility to exactly implement a computed solution in a real-life setting.
There are two complementary approaches to deal with data uncertainty in optimiza-
tion, namely robust and stochastic optimization. Stochastic optimization (SO) has
an important assumption, i.e., the true probability distribution of uncertain data has
to be known or estimated. If this condition is met and the deterministic counter-
part of the uncertain optimization problem is computationally tractable, then SO is
the methodology to solve the uncertain optimization problem at hand. For details
on SO, we refer to Prékopa (1995); Birge and Louveaux (2011); Ruszczyński and
Shapiro (2003), but the list of references can be easily extended. Robust optimization
(RO), on the other hand, does not assume that probability distributions are known,
but instead it assumes that the uncertain data resides in a so-called uncertainty set.
Additionally, basic versions of RO assume “hard” constraints, i.e., constraint viola-
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tion cannot be allowed for any realization of the data in the uncertainty set. RO
is popular because of its computational tractability for many classes of uncertainty
sets and problem types. For a detailed overview of the RO framework, we refer to
Ben-Tal et al. (2009a); Ben-Tal and Nemirovski (2008), and Bertsimas et al. (2011).

RO is a relatively young and active research field, and has been mainly developed
in the last 15 years. Especially in the most recent 5 years there have been many
publications that show the value of RO in applications in many fields including
finance (Lobo, 2000), management science (Ben-Tal and Nemirovski, 1998), supply
chain (Bertsimas and Thiele, 2004), healthcare (Fredriksson et al., 2011), engineering
(Ben-Tal and Nemirovski, 2002), etc. Indeed, the RO concepts and techniques are
very useful for practice and not difficult to understand for practitioners. It is therefore
remarkable that real-life applications are still lagging behind; there is much more
potential for real-life applications than has been exploited hitherto. In this chapter
we pinpoint several items that are important when applying RO and that are often
not well understood or incorrectly applied by practitioners.

The aim of this chapter is to help practitioners to successfully apply RO in prac-
tice. Many practical issues are treated, as: (i) how to choose the uncertainty set?
(ii) Should the decision rule be a function of the final or the primitive uncertain pa-
rameters? (iii) Should the objective also be optimized for the worst case? (iv) How
to deal with integer adjustable variables? (v) How to deal with equality constraints?
(vi) What is the right interpretation of “RO optimizes for the worst case”? (vii) How
to compare the robustness characteristics of two solutions?

We also discuss several important insights and their consequences in applying RO.
Examples are: (i) sometimes an uncertainty set is constructed such that it contains
the true parameter with a prescribed probability. However, the actual constraint
satisfaction probability is generally much larger than the prescribed value, since the
constraint also holds for other uncertain parameters that are outside the uncertainty
set. (ii) The robust reformulations of two equivalent deterministic optimization prob-
lems may not be equivalent. (iii) Comparing the robust objective value of the robust
solution with the nominal objective value of the nominal solution is incorrect when
the objective is uncertain. (iv) For several multi-stage problems the normal robust
solution, or even the nominal solution, may outperform the adjustable solution both
in the worst case and in the average performance when the solution is re-optimized
in each stage.

The remainder of the chapter is organized as follows. Section 3.2 gives a recipe
for applying RO. This recipe contains the important items in this chapter. Section
3.3 presents alternative ways of constructing uncertainty sets. Section 3.4 discusses
how to model uncertainties in linear (or affine) decision rules. Section 3.5 proposes
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a RO method to model adjustable integer variables. Section 3.6 shows that binary
variables in big-M type constraints are automatically adjustable. Section 3.7 shows
that robust counterparts of equivalent deterministic problems are not necessarily
equivalent. Section 3.8 presents some ways to deal with equality constraints. Section
3.9 gives insights about maximin and minimax formulations in RO. Section 3.10
shows two tests to quantify the quality of a robust solution. Section 3.11 shows that
static RO with folding horizon can take better decisions than linearly adjustable
RO in multi-stage problems. Section 3.12 summarizes our conclusions, and indicates
future research topics.

3.2 Recipe for robust optimization in practice
In this section we first give a brief introduction on RO, and then we give a recipe for
applying RO in practice. Important items at each step of the recipe and the scopes
of other sections that are related to these items are presented in this section.

For the sake of exposition, we use an uncertain linear optimization problem, but
we point out that most of our discussions in this chapter can be generalized for
other classes of uncertain optimization problems. The “general” formulation of the
uncertain linear optimization problem is as follows:

max
x≥0
{c>x : Ax ≤ d}(c,A,d)∈U , (3.1)

where c, A and d denote the uncertain coefficients, and U denotes the user specified
uncertainty set. The “basic” RO paradigm is based on the following three assump-
tions (Ben-Tal et al., 2009a, p. xii):

1. All decision variables x represent “here and now” decisions: they should get
specific numerical values as a result of solving the problem before the actual
data “reveals itself”.

2. The decision maker is fully responsible for consequences of the decisions to be
made when, and only when, the actual data is within the prespecified uncer-
tainty set U .

3. The constraints of the uncertain problem in question are “hard” - the deci-
sion maker cannot tolerate violations of constraints when the data is in the
prespecified uncertainty set U .

Without loss of generality, the objective coefficients (c) and the right-hand side values
(d) can be assumed certain (see Section 1.1.1). Often there is a vector of primitive



42 Hints for practical Robust Optimization

uncertainties ζ such that the uncertain parameter A is a linear function of ζ:

A(ζ) = A0 +
L∑
`=1

ζ`A`,

where A0 is the nominal value matrix, A` are the shifting matrices, and Z is the
user specified primitive uncertainty set. The robust reformulation of (3.1) that is
generally referred to as the robust counterpart (RC) problem, is then as follows:

min
x≥0
{c>x : A(ζ)x ≤ d ∀ζ ∈ Z

}
.

A solution x is called robust feasible if it satisfies the uncertain constraints [A(ζ)x ≤
d] for all realizations of ζ in the uncertainty set Z.

In multistage optimization, the first assumption of the RO paradigm can be re-
laxed. For example, the amount a factory will produce next month is not a “here and
now” decision, but a “wait and see” decision that will be taken based on the amount
sold in the current month. Some decision variables can therefore be adjusted at a
later moment in time according to a decision rule, which is a function of (some or all
part of) the uncertain data. The adjustable RC (ARC) is given as follows:

min
x≥0
{c>x : A(ζ)x + By(ζ) ≤ d ∀ζ ∈ Z},

where B denotes a certain coefficient matrix (i.e., fixed recourse), x is a vector of
non-adjustable variables, and y(ζ) is a vector of adjustable variables. Linear decision
rules are commonly used in practice:

y(ζ) := y0 +
L∑
`=1

y`ζ`,

where y0 and y` are the coefficients in the decision rule, which are to be optimized.
Notice that we assume a fixed recourse situation for tractability. Another factor that
affects the computational tractability of ARC is the type of the decision rule, but
we shall focus on this issue later in Section 3.4. Now having introduced the general
notation in RO and adjustable RO (ARO), we can give a recipe for applying RO in
practice.
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Practical RO Recipe

Step 0: Solve the nominal problem.

Step 1: a) Determine the uncertain parameters.
b) Determine the uncertainty set.

Step 2: Check robustness of the nominal solution.
IF the nominal solution is robust “enough” THEN stop.

Step 3: a) Determine the adjustable variables.
b) Determine the type of decision rules for the adjustable variables.

Step 4: Formulate the robust counterpart.

Step 5: IF an exact or approximate tractable reformulation of the (adjustable)
robust counterpart can be derived THEN solve it.

ELSE use the adversarial approach.

Step 6: Check quality of the robust solution. IF the solution is too conservative
THEN go to Step 1b or Step 3.

In the remainder of this section, we describe the most important items at each step
of this algorithm. Several items need a more detailed description, and this is done in
Sections 3–11.

Step 0 (Solve the nominal problem). First, we solve the problem with no uncertainty,
i.e., the nominal problem.

Step 1a (Determine uncertain parameters). As already described above, in many
cases the uncertain parameter is in fact a (linear) function of the primitive uncertain
parameter ζ. Note that even though there could be many uncertain parameters
in the problem at hand, the number of real or primitive sources of uncertainties is
“generally” limited. An important example are the so-called factor models in finance,
where the uncertain returns of different types of assets are linear functions of a limited
number of economic factors. These economic factors are considered as the primitive
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uncertain parameters. One of the most famous examples of that is the 3-factor model
of Fama and French (1993).

Step 1b (Determine uncertainty set). We refer to Section 3.3 for a treatment on
natural choices of uncertainty sets.

Step 2 (Check robustness of nominal solution). For several applications the nominal
optimal solution may already be robust. However, in general using the nominal
optimal solution often leads to “severe” infeasibilities. In this step we advocate
to do a simulation study to analyze the quality of the nominal solution. Section
3.10 extensively describes how to do that. If the nominal solution is already robust
“enough”, then there is of course no need to apply RO.

In some applications the constraints are not that strict, and one is more interested
in a good “average behavior”. Note however that the RO methodology is primarily
meant for protecting against the worst case scenario in an uncertainty set. However,
often, as a byproduct, the robust solution shows good average behavior, but that is
certainly not guaranteed.

If one is interested in a good average behavior, then one may try to use smaller
uncertainty sets or use globalized robust optimization (GRO); for details on GRO we
refer to Ben-Tal et al. (2009a, Chapters 3&11).

Step 3a & 3b (Determine adjustable variables and decision rules). We discuss
several important issues with respect to Step 3, these are listed below.

Reducing extra number of variables. To obtain computationally tractable robust
counterpart problems, one often has to use linear decision rules. However, when the
number of uncertain parameters is high, the use of linear decision rules may lead to
a big increase of the number of variables. Note that these extra variables are added
to all constraints that contain adjustable variables. Moreover, when a constraint
or the objective in the original problem does not contain uncertain parameters, but
does contain adjustable variables, then after substituting the decision rule it will
have uncertain parameters, and this will also lead to extra variables in the robust
counterpart.

Sometimes, one can choose between a decision rule that is linear in the primitive
uncertain parameter ζ ∈ Z or linear in the “general” uncertain parameter A ∈ U .
Often the number of primitive uncertain parameters is much smaller, and using them
for the decision rule will lead to less variables. In Section 3.4 the advantages and
disadvantages of both choices are treated. In many cases we have to restrict the
linear decision rule to a subset of the uncertain vector ζ. This is especially the case
in multi-period situations. In a production-inventory situation, for example, a linear
decision rule in period t can only depend on the known demand of period 1 to t− 1,
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since the demand in periods t, t + 1 and so on is not known yet. This also reduces
the number of extra variables.

To further avoid a big increase in the number of variables because of the linear
decision rule, one can try to use a subset of the uncertain vector ζ that is called the
“information base”. In a production-inventory situation, for example, we may choose
a linear decision rule in period t that depends on the known demand of, example
given, the last two periods t − 1 and t − 2. This reduces the number of variables a
lot, and numerical experiments have shown that often the resulting decision rule is
almost as good as the full linear one; e.g., see Ben-Tal et al. (2009a). By comparing
different information bases one could calculate the value of information.

Often an optimization problem contains analysis variables. As an example we give the
inventory at time t in a production-inventory problem. For such analysis variables we
can use a decision rule that depends on all the uncertain parameters, since we do not
have to know the value of these analysis variables “here-and-now”. The advantage of
making analysis variables adjustable is that this may lead to better objective values.
The disadvantage of this, however, is the increase of the number of extra variables.

Integer adjustable variables. A parametric decision rule, like the linear one, cannot be
used for integer adjustable variables, since we have then to enforce that the decision
rule is integer for all ζ ∈ Z. In Section 3.5 we propose a new general way for dealing
with adjustable integer variables. However, much more research is needed. In Section
3.6 we show that in some cases the integer variables are automatically adjustable.

Quadratic uncertainty. Suppose that we use a quadratic decision rule instead of
a linear one. Then, the corresponding robust counterpart is still linear in all the
optimization variables, but quadratic in the uncertain parameters. Hence, if the
uncertainty set is ellipsoidal, we can use the results from Ben-Tal et al. (2009a) to
obtain a tractable reformulation. In fact, the final constraint is then a semidefinite
programming (SDP) constraint.

Suppose that the situation is not fixed recourse as assumed above, but that B is
also uncertain and linear in ζ. Then using a linear decision rule for y results into
quadratic uncertainties. Hence, if the uncertainty set is ellipsoidal, we can use the
results from Ben-Tal et al. (2009a) to obtain a tractable reformulation. The resulting
constraint is again an SDP.

Constraint-wise uncertainty in ARO. We emphasize that if an adjustable variable is
used in multiple constraints, those constraints then contain the same set of uncer-
tain parameters, since the adjustable variable is usually a function of all uncertain
parameters; see Section 3.2. We have seen that, in RO, without loss of generality we
can reformulate the robust problem such that we have constraint-wise uncertainty.
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However, in ARO, we should first substitute the decision rules for adjustable vari-
ables, and then make the uncertainty constraint-wise; but not the other way around,
since this may result in incorrect reformulations.

It can be shown that when the uncertainty in the original robust optimization
problem is constraint-wise, then the objective values of ARC and RC are the same
Ben-Tal et al. (2009a). Hence, in such cases using decision rules for adjustable
variables does not lead to better objective values. However, there may still be value
in using ARC since this may lead to (much) better average behavior; see the numerical
example in Section 3.5.

Folding horizon. If one is allowed to reoptimize after each stage in a multi-stage
problem, one can of course use adjustable robust optimization in each stage, using
that part of the uncertain data that has been revealed. This is called a folding
horizon (FH) strategy. To compare the ARC FH strategy with the nominal solution,
one should also apply an FH strategy to the nominal optimization problem. One
could also apply the RC approach in an FH. In many cases this is a good alternative
for the ARC approach, e.g., when the ARC approach leads to too large problems. It
even appeared that RC FH may lead to better solutions than ARC FH; see Section
3.11.

Step 4 (Formulate robust counterpart). RO has also to do with modeling. The mod-
eling part is often overlooked in RO applications. An error often made in practice
is that the robustness is added to the model after reformulation of the deterministic
model. This often leads to solutions that are too conservative. Hence, an impor-
tant warning is that the robust versions of two equivalent deterministic optimization
problems may not be equivalent. We refer to Section 3.7 for a detailed treatment on
these modeling issues.

We also observed that in several applications there are only one or a few uncertain
parameters in each constraint, but the uncertainty set is a “joint” region (e.g., ellip-
soidal region). Using the constraint-wise interpretation of the RO methodology may
be too conservative for such problems, especially in the case where the constraint are
not that strict.

It is very important to understand the basic RO concept. What does it mean that
RO protects against the worst case scenario? Section 3.9 explains this in more detail.

Step 5 (Solve RC via tractable reformulation). If the constraints are linear in the
uncertain parameters and in the optimization variables, then there are two ways to
derive a tractable reformulation. The first way is the constraint-wise approach by
Ben-Tal et al. (2014) that uses Fenchel duality; see Table 3.1 for a summary. The
second way is to solve the dual problem of the robust counterpart problem. This
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approach can handle all compact and convex uncertainty sets; see Chapter 2. If
the constraints are nonlinear in the uncertain parameter and/or the variables, we
refer to Ben-Tal et al. (2014) for deriving tractable robust counterparts. However,
we emphasize that for many of such problems it might be not possible to derive
tractable robust counterparts.

In Iancu and Trichakis (2014) it is observed that (A)RCs may have multiple optimal
solutions. We advice to check whether this is the case, and to use a two-step procedure
to find Pareto optimal solutions and to improve on the average behavior; for details
see Section 3.5, Iancu and Trichakis (2014), and de Ruiter (2013).

Table 3.1 – Tractable reformulations for the uncertain constraint
[(a0 + Pζ)>x ≤ d ∀ζ ∈ Z],
and h∗k is the convex conjugate of hk

Uncertainty Z Robust Counterpart Tractability

Box ‖ζ‖∞ ≤ ρ (a0)>x + ρ‖P>x‖1 ≤ d LP
Ellipsoidal ‖ζ‖2 ≤ ρ (a0)>x + ρ‖P>x‖2 ≤ d CQP

Polyhedral Dζ + d ≥ 0


(a0)>x + d>y ≤ d

D>y = −P>x
y ≥ 0

LP

Convex cons. hk(ζ) ≤ 0 ∀k


(a0)>x +∑

k ukh
∗
k

(
wk

uk

)
≤ d∑

k wk = P>x
u ≥ 0

Convex Opt.

Step 5 (Solve RC via adversarial approach). If the robust counterpart cannot be
written as or approximated by a tractable reformulation, we advocate to perform
the so-called adversarial approach. The adversarial approach starts with a finite set
of scenarios Si ⊂ Zi for the uncertain parameter in constraint i. E.g., at the start,
Si only contains the nominal scenario. Then, the robust optimization problem, in
which Zi is replaced by Si is solved. If the resulting solution is robust feasible, we
have found the robust optimal solution. If that is not the case, we can find a scenario
for the uncertain parameter that makes the last found solution infeasible. E.g., we
can search for the scenario that maximizes the infeasibility. We add this scenario
to Si, and solve the resulting robust optimization problem, and so on. For a more
detailed description, we refer to Bienstock and Özbay (2008). It appeared that this
simple approach often converges to optimality in a few number of iterations. The
advantage of this approach is that solving the robust optimization problem with Si
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instead of Zi in each iteration, preserves the structure of the original optimization
problem. Only constraints of the same type are added, since constraint i should hold
for all scenarios in Si.

We also note that in some cases it may happen that although a tractable refor-
mulation of the robust counterpart can be derived, the size of the resulting problem
becomes too big. For such cases the adversarial approach can also be used.

Step 6 (Check quality of solution). Since a robustness analysis is extremely impor-
tant, and in practice one can easily draw wrong conclusions, we extensively describe
in Section 3.10 how to perform such an analysis. Frequently stated criticism on RO
is that it yields overly pessimistic solutions. Besides performing a wrong robustness
analysis, there are several other possible reasons for such criticism. The first is that
in the modeling phase one could easily introduce unnecessary pessimism when one
does not realize that the robust counterpart of equivalent deterministic problems are
not necessarily equivalent. For a detailed explanation on this issue, see Section 3.7.
A second reason may be that the constraints that contain uncertain parameters are
not that strict as e.g. safety restrictions for the design of a bridge or an airplane.
In such cases violating the constraint for some scenarios of the uncertain parameters
is not that serious. As it is explained in Step 2, for those cases one could use the
GRO methodology or, alternatively, reduce the size of the uncertainty region. These
alternatives can also be used when one is more interested in the average than the
worst case behavior. Finally, there are also cases where indeed the nominal solution
is already robust “enough”, and where RO does not yield better and more robust
solutions. We argue that in practice such a conclusion is already extremely valuable.

3.3 Choosing uncertainty set
In this section we describe different possible uncertainty sets and their advantages
and disadvantages. Often one wants to make a trade-off between “full” robustness
and the size of the uncertainty set: a box uncertainty set that contains the full range
of realizations for each component of ζ is the most robust choice and guarantees
that the constraint is never violated, but on the other hand there is only a small
chance that all uncertain parameters take their worst case values. This has led to
the development of smaller uncertainty sets that still guarantee that the constraint is
“almost never” violated. Such guarantees are inspired by chance constraints, which
are constraints that have to hold with at least a certain probability. Often the
underlying probability distribution is not known, and one seeks a distributionally
robust solution. One application of RO is to provide a tractable safe approximation
of the chance constraint in such cases, i.e. a tractable formulation that guarantees
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that the chance constraint holds:

if x satisfies a(ζ)>x ≤ d ∀ζ ∈ Uε, then x also satisfies Pζ(a(ζ)>x ≤ d) ≥ 1− ε.

For ε = 0, a chance constraint is a traditional robust constraint. The challenge is to
determine the set Uε for other values of ε. We distinguish between uncertainty sets
for uncertain parameters and for uncertain probability vectors.

For uncertain parameters, many results are given in (Ben-Tal et al., 2009a, Chap-
ter 2). The simplest case is when the only knowledge about ζ is that ||ζ||∞ ≤ 1.
For this case, the box uncertainty set is the only set that can provide a probability
guarantee (of ε = 0). When more information becomes available, such as bounds on
the mean or variance, or knowledge that the probability distribution is symmetric
or unimodal, smaller uncertainty sets become available. Ben-Tal et al. (2009a, Table
2.3) list seven of these cases. Probability guarantees are only given when ||ζ||∞ ≤ 1,
E(ζ) = 0 and the components of ζ are independent. We mention the uncertainty
sets that are used in practice when box uncertainty is found to be too pessimistic.
The first is an ellipsoid (Ben-Tal et al., 2009a, Proposition 2.3.1), possibly intersected
with a box (Ben-Tal et al., 2009a, Proposition 2.3.3):

Uε = {ζ : ||ζ||2 ≤ Ω ||ζ||∞ ≤ 1}, (3.2)

where ε = exp(−Ω2/2). The second is a polyhedral set (Ben-Tal et al., 2009a, Propo-
sition 2.3.4), called budgeted uncertainty set or the “Bertsimas and Sim” uncertainty
set (Bertsimas and Sim, 2004):

Uε = {ζ : ||ζ||1 ≤ Γ ||ζ||∞ ≤ 1}, (3.3)

where ε = exp(−Γ2/(2L)). A stronger bound is provided in (Bertsimas and Sim,
2004). This set has the interpretation that (integer) Γ controls the number of elements
of ζ that may deviate from their nominal values. (3.2) leads to better objective values
for a fixed ε compared to (3.3), but gives rise to a CQP for an uncertain LP while
(3.3) results in an LP and is therefore from a computational point of view more
tractable.

Bandi and Bertsimas (2012) propose uncertainty sets based on the central limit
theorem. When the components of ζ are independent and identically distributed
with mean µ and variance σ2, the uncertainty set is given by:

Uε =
{
ζ : |

L∑
i=1

ζi − Lµ| ≤ ρ
√
nσ

}
,

where ρ controls the probability of constraint violation 1 − ε. Bandi and Bertsimas
also show variations on Uε that incorporate correlations, heavy tails, or other distri-
butional information. The advantage of this uncertainty set is its tractability, since
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the robust counterpart of an LP with this uncertainty set is also LP. A disadvantage
of this uncertainty set is that it is unbounded for L > 1, since one component of
ζ can be increased to an arbitrarily large number (while simultaneously decreasing
a different component). This may lead to intractability of the robust counterpart
or to trivial solutions. In order to avoid infeasibility, it is necessary to define sep-
arate uncertainty sets for each constraint, where the summation runs only over the
elements of ζ that appear in that constraint. Alternatively, it may help to take the
intersection of Uε with a box.

We now focus on uncertain probability vectors. These appear e.g. in a constraint
on a risk measure expected value or variance. Ben-Tal et al. (2013) construct un-
certainty sets based on φ-divergence. The φ-divergence between the vectors p and q
is:

Iφ(p,q) =
m∑
i=1

qiφ

(
pi
qi

)
,

where φ is the (convex) φ-divergence function. Let p denote a probability vector and
let q be the vector with observed frequencies when N items are sampled according
to p. Under certain regularity conditions,

2N
φ′′(1)Iφ(p,q) d→ χ2

m−1 as N →∞.

This motivates the use of the following uncertainty set:

Uε = {p : p ≥ 0, e>p = 1, 2N
φ′′(1)Iφ(p, p̂) ≤ χ2

m−1;1−ε},

where p̂ is an estimate of p based on N observations, and χ2
m−1;1−ε is the 1 − ε

percentile of the χ2 distribution with m− 1 degrees of freedom. The uncertainty set
contains the true p with (approximate) probability 1− ε. Ben-Tal et al. (2013) give
many examples of φ-divergence functions that lead to tractable robust counterparts.

An alternative to φ-divergence is using the Anderson-Darling test to construct
the uncertainty set (Ben-Tal et al., 2014, Ex. 15).

We conclude this section by pointing out a mistake that is sometimes made re-
garding the probability of violation. Sometimes an uncertainty set is constructed
such that it contains the true parameter with high probability. Consequently, the
constraint holds with the same high probability. However, the probability of con-
straint satisfaction is much larger than one expects, since the constraint also holds
for the “good” realizations of the uncertain parameter outside the uncertainty set. We
demonstrate this with a normally distributed ζ of dimension L = 10, where the com-
ponents are independent, and have mean 0 and variance 1. The singleton Zε = {0}
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already guarantees that the uncertain constraint holds with probability 0.5. Let us
now construct a set Zε that contains ζ with probability 0.5. Since ζ>ζ ∼ χ2

L, the set
Zε = {ζ : ||ζ||2 ≤

√
χ2
L;1−ε} contains ζ with probability 1 − ε. For ε = 0.5, Zε is a

ball with radius 9.3 which is indeed much larger than the singleton. Consequently, it
provides a much stronger probability guarantee. In order to compute this probability,
we first write the explicit chance constraint. Since (a0 + Pζ)>x ≤ d is equivalent to
(a0)>x + (P>x)>ζ ≤ d, and since the term (P>x)>ζ follows a normal distribution
with mean 0 and standard deviation

∣∣∣∣∣∣P>x
∣∣∣∣∣∣

2
, the chance constraint can explicitly

be formulated as (a0)>x + z1−ε

∣∣∣∣∣∣P>x
∣∣∣∣∣∣

2
≤ d, where z1−ε is the 1− ε percentile of the

normal distribution. This is the robust counterpart of the original linear constraint
with ellipsoidal uncertainty and a radius of z1−ε. The value z1−ε = 9.3 coincides with
ε ≈ 7.0 · 10−21. So, while one thinks to construct a set that makes the constraint
hold in 50% of the cases, the set actually makes the constraint hold in almost all
cases. To make the chance constraint hold with probability 1 − ε, the radius of the
ellipsoidal uncertainty set is z1−ε instead of

√
χ2
L;1−ε. These only coincide for L = 1.

3.4 Linearly adjustable robust counterpart: linear
in what?

Tractable examples of decision rules used in ARO are linear (or affine) decision rules
(AARC) (Ben-Tal et al., 2009a, Chapter 14) or piecewise linear decision rules (Chen
et al., 2008); see also Section 3.2. The AARC was introduced by Ben-Tal et al.
(2004) as a computationally tractable method to handle adjustable variables. In the
following constraint:

(a0 + Pζ)>x + b>y ≤ d ∀ζ ∈ Z,

y is an adjustable variable whose value may depend on the realization of the uncertain
ζ, while b does not depend on ζ (fixed recourse). There are two different AARCs for
this constraint:

AARC 1. y is linear in ζ (e.g. see Ben-Tal et al. (2004) and Ben-Tal et al.
(2009a, Chapter 14)), or

AARC 2. y is linear in a0 + Pζ (e.g. see Roelofs and Bisschop (2012, Chapter
20.4)).
Note that AARC 2 is as least as conservative as AARC 1, since the linear transforma-
tion of ζ 7→ a0 + Pζ can only lead to loss of information, and that both methods are
equivalent if the linear transformation is injective on Z. The choice for a particular
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method may be influenced by four factors: (i) the availability of information. An
actual decision cannot depend on ζ if ζ has not been observed. (ii) The number of
variables in the final problem. AARC 1 leads to |ζ| extra variables compared to the
RC, whereas AARC 2 leads to |a0| extra variables. (iii) Simplicity for the user. Often
the user observes model parameters instead of the primitive uncertainty vector. (iv)
For analysis variables one should always use the least conservative method.

The practical issue raised in the first factor (availability of information) has been
addressed with a information base matrix P. Instead of being linear in ζ, y can
be made linear in Pζ. We give one example where uncertain demand is observed.
Suppose there are two time periods and three possible scenarios for demand time
period one and two, namely (10, 10)> , (10, 11)> and (11, 11)> . So, the uncertainty
set of the demand vector is the convex hull of these scenarios: {Pζ : ζ ∈ Z} where
P is the matrix with the scenarios as columns and Z = ∆2 = {ζ ∈ R3 : ∑3

`=1 ζ` =
1, ζ ≥ 0} is the standard simplex in R3. If the observed demand for time period one
is 10, it is not possible to distinguish between ζ = (1, 0, 0)> and ζ = (0, 1, 0)> . So,
a decision for time period two can be modeled either as AARC 1 with P = (1, 1, 0)
or as AARC 2. The latter leads to a decision rule that is easier to interpret, since it
directly relates to previously observed demand.

3.5 Adjustable integer variables
Ben-Tal et al. (2009a, Chapter 14) use parametric decision rules for adjustable con-
tinuous variables. However, their novel techniques “generally” cannot be applied for
adjustable integer variables. In the literature two alternative approaches have been
proposed. Bertsimas and Georghiou (2013) introduced an iterative method to treat
adjustable binary variables as piecewise constant functions. The approach by Bertsi-
mas and Caramanis (2010) is different and is based on splitting the uncertainty region
into smaller subsets, where each subset has its own binary decision variable (see also
Vayanos et al. (2011)). In this section, we briefly show this last method to treat
adjustable integer variables, and show how the average behavior can be improved.
We use the following notation for the general RC problem:

(RC1) max
x,y,z

c(x,y, z)

s.t. A(ζ) x + B(ζ) y + C(ζ) z ≤ d, ∀ζ ∈ Z,

where x ∈ Rn1 and y ∈ Zn2 are “here and now” variables, i.e., decisions on them are
made before the uncertain parameter ζ, contained in the uncertainty set Z ⊆ RL ,
is revealed; z ∈ Zn3 is a “wait and see” variable, i.e., the decision on z is made
after observing (part of) the value of the uncertain parameter. A(ζ) ∈ Rm1×n1 and
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B(ζ) ∈ Rm2×n2 are the uncertain coefficient matrices of the “here and now” variables.
Notice that the integer “wait and see” variable z has an uncertain coefficient matrix
C(ζ) ∈ Rm3×n3 . So, unlike the “classic” parametric method, this approach can handle
uncertainties in the coefficients of the integer “wait and see” variables. For the sake
of simplicity, we assume that the uncertain coefficient matrices to be linear in ζ and,
without loss of generality, c(x,y, z) is the certain linear objective function.

To model the adjustable RC (ARC) with integer variables, we first divide the
given uncertainty set Z into m disjoint, excluding the boundaries, subsets (Zi, i =
1, . . . ,m):

Z =
⋃

i∈{1,...,m}
Zi,

and we introduce additional integer variables zi ∈ Z
n3 (i = 1, . . . ,m) that model the

decision in Zi. Then, we replicate the uncertain constraint and the objective function
in (RC1) for each zi and the uncertainty set Zi as follows:

(ARC1) max
x,y,Z,t

t

s.t. c(x,y, zi) ≥ t ∀i ∈ {1, . . . ,m} (3.4)
A(ζ) x + B(ζ) y + C(ζ) zi ≤ d ∀ζ ∈ Zi,∀i ∈ {1, . . . ,m}.

Note that (ARC1) is more flexible than the non-adjustable RC (RC1) in selecting
the values of integer variables, since it has a specific decision zi for each subset Zi.
Therefore, (ARC1) yields a robust optimal objective that is at least as good as (RC1).

Pareto efficiency. Iancu and Trichakis (2014) discovered that “the inherent
focus of RO on optimizing performance only under worst case outcomes might leave
decisions un-optimized in case a non worst case scenario materialized”. Therefore,
the “classical” RO framework might lead to Pareto inefficiencies; i.e., an alternative
robust optimal solution may guarantee an improvement in the objective for (at least)
a scenario without deteriorating it in other scenarios.

Pareto efficiency is also an issue in (ARC1) that coincides with the worst case
objective value among m objective functions associated with the subsets. Henceforth,
we must take into account the individual performance of the m subsets to have a
better understanding of the general performance of (ARC1). To find Pareto efficient
robust solutions, Iancu and Trichakis propose reoptimizing the slacks of “important”
constraints, i.e., defined by a value vector, by fixing the robust optimal objective value
of the classical RO problem that is initially optimized; for details on pareto efficiency
in robust linear optimization we refer to Iancu and Trichakis (2014). Following
a similar approach, we apply a reoptimization procedure to improve the average
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performance of (ARC1). More precisely, we first solve (ARC1) and find the optimal
objective t∗. Then, we solve the following problem:

(re-opt) max
x,y,Z,t

∑
i∈{1,...,m}

ti

s.t. ti ≥ t∗ ∀i ∈ {1, . . . ,m}
c(x,y, zi) ≥ ti ∀i ∈ {1, . . . ,m}
A(ζ) x + B(ζ) y + C(ζ) zi ≤ d ∀ζ ∈ Zi,∀i ∈ {1, . . . ,m},

that optimizes (i.e., maximizing) the slacks in (3.4), while the worst case objective
value t∗ remains the same. Note that ti’s are the additional variables associated with
the objectives values of the subsets; (re-opt) mimics a multi-objective optimization
problem that assigns equal weights to each objective, and finds Pareto efficient robust
solutions.

Example

Here we compare the optimal objective values of (RC1), (ARC1), and (ARC1) with
(re-opt) via a toy example. For the sake of exposition, we exclude continuous variables
in this example. The non-adjustable RC is given as follows:

max
(w,z)∈Z3

+

5w + 3z1 + 4z2

s.t. (1 + ζ1 + 2ζ2)w + (1− 2ζ1 + ζ2)z1 + (2 + 2ζ1)z2 ≤ 18 ∀ζ ∈ Box
(ζ1 + ζ2)w + (1− 2ζ1)z1 + (1− 2ζ1 − ζ1)z2 ≤ 16 ∀ζ ∈ Box,

(3.5)

where Box = {ζ : −1 ≤ ζ1 ≤ 1,−1 ≤ ζ2 ≤ 1} is the given uncertainty set, and w,
z1, and z2 are nonnegative integer variables. In addition, we assume that z1 and z2

are adjustable on ζ1; i.e., the decision on these variables is made after ζ1 is being
observed. Next, we divide the uncertainty set into two subsets:

Z1 = {(ζ1, ζ2) : −1 ≤ ζ1 ≤ 0,−1 ≤ ζ2 ≤ 1}
Z2 = {(ζ1, ζ2) : 0 ≤ ζ1 ≤ 1,−1 ≤ ζ2 ≤ 1}.
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Then ARC of (3.5) is:

(Ex:ARC) max
t,w,Z

t

s.t. 5w + 3zi1 + 4zi2 ≥ t ∀i ∈ {1, . . . ,m}
(1 + ζ1 + 2ζ2)w + (1− 2ζ1 + ζ2)zi1 + (2 + 2ζ1)zi2 ≤ 18

∀ζ ∈ Zi, ∀i ∈ {1, . . . ,m}
(ζ1 + ζ2)w + (1− 2ζ1)zi1 + (1− 2ζ1 − ζ1)zi2 ≤ 16

∀ζ ∈ Zi,∀i ∈ {1, . . . ,m},

where t ∈ R, w ∈ Z+, Z ∈ Z2×m
+ , and m = 2 since we have two subsets. Table 3.2

presents the optimal solutions of RC and ARC problems.

Table 3.2 – RC vs ARC

Method Obj. w z

RC 29 1 (z1, z2) = (4, 3)
ARC 31 0 (z1

1 , z
1
2 , z

2
1 , z

2
2) = (0, 8, 5, 4)

The numerical results show that using the adjustable reformulation we improve
the objective value of the non-adjustable problem by 7%. On the other hand, if
we assume that z1 and z2 are adjustable on ζ2 (but not on ζ1), and we modify
the uncertainty subsets Z1 and Z2 accordingly, then RC and ARC yield the same
objective 29. This shows that the value of information of ζ1 is higher than that of ζ2.

Next we compare the average performance of ARC and the second stage opti-
mization problem (re-opt) that is given by:

max
t,w,Z

∑
i∈{1,...,m}

ti

s.t. 5w + 3zi1 + 4zi2 ≥ ti, ti ≥ t∗ ∀i ∈ {1, . . . ,m}
(1 + ζ1 + 2ζ2)w + (1− 2ζ1 + ζ2)zi1 + (2 + 2ζ1)zi2 ≤ 18

∀ζ ∈ Zi,∀i ∈ {1, . . . ,m}
(ζ1 + ζ2)w + (1− 2ζ1)zi1 + (1− 2ζ1 − ζ2)zi2 ≤ 16

∀ζ ∈ Zi,∀i ∈ {1, . . . ,m},

where t ∈ Rm . For changing the number of subsets, we again split the uncertainty
sets (Zi, i = 1, . . . ,m) on ζ1 but not on ζ2. The numerical results are presented in
Table 3.3.

The first column of the table presents the number of subsets used in ARC, and we
assume that the domain of ζ1 is divided into equally sized intervals (e.g., if the number
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Table 3.3 – ARC vs re-opt for varying number of subsets

Worst Case Obj. Values per Subset W.-C. Average

# Subsets ARC re-opt ARC re-opt

1 29 29 29 29.0
2 (32, 31*) (34, 31*) 31.5 32.5
3 (33, 30*, 32) (49, 30*, 35) 31.6 38.0
4 (33, 31*, 32, 32) (64, 34, 31*, 54) 32 45.7
5 (33, 30*, 30*, 32, 32) (80, 40, 30*, 33, 66) 31.4 49.8

8 (32, 32, 32, 34, 31*, (128, 64, 40, 34, 31* 32.5 61.833, 33, 33) 36, 54, 108)

10 (32, 32, 32, 32, 34, (160, 80, 52, 40, 34, 32.5 64.331*, 33, 33, 33, 33) 31*, 33, 45, 66, 135)
(∗) denotes the worst case (w.-c.) objective value over all subsets

of subsets is three, then the intervals are −1 ≤ ζ1 ≤ −0.33,−0.33 ≤ ζ1 ≤ 0.33, and
0.33 ≤ ζ1 ≤ 1). The second column reports objective values of the subproblems
associated with the subsets in ARC. The third column presents the objective values
of the subproblems when we apply (re-opt). The fourth and fifth columns show
the averages of the results in columns two and three. As anticipated, intra row
comparisons show that ARC and (re-opt) yield the same worst case performance for a
fixed number of subsets, and (re-opt) yields significantly better average performances
than ARC. Moreover, the average performance improves with the number of subsets.
Notice that the average performance of the RC solution is not reported in Table 3.3
because it has the same average performance, that is 29, for any given number of
subsets. Nevertheless, it is important to see the significant average objective value
improvement made by ARC with (re-opt) for the “fixed” performance of the RC. Last
but not least, the optimal objective value 31, which is obtained when the number of
subsets is two, four, eight and ten in Table 3.3, is the global optimal of the ARC; for
details on optimality see the following section where this example will be revisited.

Optimality
To quantify how far is the optimal objective value (t∗) of (ARC1) from that of the best
possible solution, we need to define an efficient lower bound (or an upper bound for
a maximization problem) for the best objective. One way of finding such a bound is
solving (ARC1) by defining an adjustable variable for each scenario, and scenarios are
associated with a finite subset (denoted by Ẑ) of the uncertainty set Z (Hadjiyiannis
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et al., 2011; Bertsimas and Georghiou, 2013; Postek, 2013). The optimal objective
value of such a formulation is always a lower bound for the best possible objective
value, since we optimize adjustable variables for each unique scenario separately and
use a finite subset Ẑ that is less conservative (or performs the same in the worst
case) than the original uncertainty set Z. More precisely, the lower bound problem
is given as follows:

(BRC) min
x,y,z(ζ),tlb

tlb

s.t. c(x,y, z(ζ)) ≤ tlb ∀ζ ∈ Ẑ
A(ζ) x + B(ζ) y + C(ζ) z(ζ) ≤ d ∀ζ ∈ Ẑ

where Ẑ is a finite subset of Z, as explained above. Now the question that has to be
answered is: how to construct Ẑ efficiently? Postek (2013) proposes to first find the
optimal solution of (ARC1) for a given number of subsets, and then formulating the
set of worst case uncertain parameters for the left-hand sides in active constraints to
construct Ẑ. For additional details on improving the lower bound we refer to Postek
(2013, Chapter 4.2).

Example (Ex:ARC) revisited. The solution of (Ex:ARC) for two subsets (i.e.,
m = 2) is given in the second row of Table 3.2. The associated finite “worst case”
subset for this solution is Ẑ = {(0, 1), (0,−1)}, and the upper bound for the best
possible worst case objective is tub = 31 (this is obtained by solving the upper bound
reformulation of (BRC) for Ẑ). Therefore, the optimal objective value of (Ex:ARC)
is bounded above by 31 for any given number of subsets; but since we find the same
objective value for m = 2 we can conclude that 31 is the global optimal value.

Tractability

It is important to point out that our adjustable reformulation and the “non-adjustable”
RC have the same “general” mathematical complexity, but the adjustable reformu-
lation increases the number of variables and constraints by a factor m (the number
of subsets), so that if the number of integer variables is high (say a few hundreds)
then the resulting adjustable RC may be intractable. Dividing the main uncertainty
set Z into more subsets Zi may improve the objective value by giving more freedom
in making adjustable decisions, but the decision maker should make the tradeoff
between optimality and computational complexity.
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3.6 Binary variables in big-M-constraints are au-
tomatically adjustable

Often integer variables correspond to strategic here-and-now decisions, and then
there is no need to make them adjustable. In this section we show that for an
important class of 0, 1 variables that are wait-and-see there is also no need to make
them adjustable.

Suppose y is a 0, 1 variable that is associated to a continuous variable x in such a
way that:

y =
{

1 if x > 0
0 if x = 0.

Such 0, 1 variables are often used, e.g., in supply chain models to model whether a
facility is opened or not. Now suppose that both y and the continuous variable x are
adjustable with respect to the uncertain parameter ζ. Let us use a linear decision
rule for x:

x = u+ v>ζ,

where u ∈ R, and v ∈ RL are the coefficients of the linear decision rule, and we
do not use a linear decision rule for y, although y is adjustable. For the optimal
solution of the corresponding robust optimization problem, we either have (i) u = 0
and v = 0 (i.e. x = 0), or (ii) u 6= 0 or v 6= 0. In case (i) we get y = 0, and in
case (ii) we get y = 1. Hence, the only problematic situation is when u + v>ζ = 0
in case (ii), since then the optimal y should be 0 and not 1. Note however that the
probability that ζ ∈ U is such that u + v>ζ = 0 is zero, unless ζ follows a discrete
distribution or u∗ + (v∗)>ζ = 0, with u∗ and v∗ the optimal values for u and v,
is part of the description of Z. Also observe that when u = 0 and v = 0, we will
automatically get y = 0, since the constraint x ≤ My, with M a big number, is one
of the constraints of the original problem and the objective is to minimize costs. A
more efficient formulation would be:

u ≤My, u ≥ −My, v ≤My1, v ≥ −My1,

where 1 is the all one vector. We conclude that there is no need to make y adjustable,
i.e. the final optimal linear decision rule,

y =
{

1 if u+ v>ζ > 0
0 if u+ v>ζ = 0,
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can be obtained by only using linear decision rules for x (and not for y). Note that
this conclusion depends on the chosen class of decision rules. Suppose that we would
have used piecewise linear decision rules, then we should also make y adjustable. One
way to do that is to define a different y value for each interval of the piecewise linear
decision rule.
Example. Let us consider the following problem. There are two possible production
centers and together they have to produce at least ζ. Production costs per unit are 1
and 3, respectively for production center 1 and 2. Fixed costs for opening the centers
are 40 and 10, respectively for center 1 and 2. The mathematical formulation is:

min
x,y

40y1 + 10y2 + x1 + 3x2

s.t. x1 + x2 ≥ ζ

x1 ≤My1

x2 ≤My2

x1, x2 ≥ 0
y1, y2 ∈ {0, 1},

in which M > 0 is a big number. Now suppose that ζ is uncertain, with uncertainty
interval [10, 30], and both x and y are wait-and-see variables. Although y is adjustable
we only use linear decision rules for x, and solve the following adjustable robust
optimization problem:

min
x,y

max
ζ∈[10,30]

40y1 + 10y2 + u1 + v1ζ + 3(u2 + v2ζ)

s.t. u1 + v1ζ + u2 + v2ζ ≥ ζ ∀ζ ∈ [10, 30]
u1 + v1ζ ≤My1 ∀ζ ∈ [10, 30]
u2 + v2ζ ≤My2 ∀ζ ∈ [10, 30]
u1 + v1ζ ≥ 0 ∀ζ ∈ [10, 30]
u2 + v2ζ ≥ 0 ∀ζ ∈ [10, 30]
y1, y2 ∈ {0, 1}.

The optimal solution of this problem is:

x1 = ζ (u1 = 0, v1 = 1)
x2 = 0 (u2 = 0, v2 = 0)
y1 = 1
y2 = 0,

which indeed can not be improved by using decision rules for y. Hence, indeed there
is no need to make y adjustable. Now suppose the uncertainty interval is [0, 30], then
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the optimal linear decision rule is as above. However, now it can happen that ζ = 0,
in which case y1 should be 0 instead of 1. Hence the final optimal decision rule is:

x1 = ζ

x2 = 0

y1 =
{

1 if ζ > 0
0 if ζ = 0

y2 = 0.

3.7 Robust counterparts of equivalent determinis-
tic problems are not necessarily equivalent

In this section we show that the robust counterparts of equivalent deterministic
problems are not always equivalent. The message in this section is thus that one
has to be careful with reformulating optimization problems, since the corresponding
robust counterparts may not be the same.

Let us start with a few simple examples. The first one is similar to the example in
Ben-Tal et al. (2009a, p. 13). Consider the following constraint:

(2 + ζ)x1 ≤ 1,

where ζ is an (uncertain) parameter. This constraint is equivalent to:(2 + ζ)x1 + s = 1
s ≥ 0.

However, the robust counterparts of these two constraint formulations, i.e.

(2 + ζ)x1 ≤ 1 ∀ζ : |ζ| ≤ 1, (3.8)

and (2 + ζ)x1 + s = 1 ∀ζ : |ζ| ≤ 1
s ≥ 0,

(3.9)

in which the uncertainty set for ζ is the set {ζ : |ζ| ≤ 1}, are not equivalent. It
can easily be verified that the feasible set for robust constraint (3.8) is: x1 ≤ 1/3,
while for the robust constraint (3.9) this is x1 = 0. The reason why (3.8) and (3.9)
are not equivalent is that by adding the slack variable, the inequality becomes an
equality that has to be satisfied for all values of the uncertain parameter, which is
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very restrictive. The general message is therefore: do not introduce slack variables
in uncertain constraints, unless they are adjustable like in Kuhn et al. (2011), and
avoid uncertain equalities.

Another example is the following constraint:

|x1 − ζ|+ |x2 − ζ| ≤ 2,

which is equivalent to:

y1 + y2 ≤ 2
y1 ≥ x1 − ζ
y1 ≥ ζ − x1

y2 ≥ x2 − ζ
y2 ≥ ζ − x2.

However, the robust versions of these two formulations, namely:

|x1 − ζ|+ |x2 − ζ| ≤ 2 ∀ ζ : |ζ| ≤ 1, (3.10)

and: 

y1 + y2 ≤ 2
y1 ≥ x1 − ζ ∀ζ : |ζ| ≤ 1
y1 ≥ ζ − x1 ∀ζ : |ζ| ≤ 1
y2 ≥ x2 − ζ ∀ζ : |ζ| ≤ 1
y2 ≥ ζ − x2 ∀ζ : |ζ| ≤ 1,

(3.11)

are not equivalent. Indeed, it can easily be checked that the set of feasible solutions
for (3.10) is (θ,−θ), −1 ≤ θ ≤ 1, but the only feasible solution for (3.11) is x = (0, 0).
The reason for this is that in (3.11) the uncertainty is split over several constraints,
and since the concept of RO is constraint-wise, this leads to different problems, and
thus different solutions. The following linear optimization reformulation, however, is
equivalent to (3.10):



x1 − ζ + x2 − ζ ≤ 2 ∀ ζ : |ζ| ≤ 1
x1 − ζ + ζ − x2 ≤ 2 ∀ ζ : |ζ| ≤ 1
ζ − x1 + x2 − ζ ≤ 2 ∀ ζ : |ζ| ≤ 1
ζ − x1 + ζ − x2 ≤ 2 ∀ ζ : |ζ| ≤ 1.

(3.12)
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The general rule therefore is: do not split the uncertainty in one constraint over
more constraints, unless the uncertainty is disjoint. In particular do not use “defini-
tion variables” if this leads to such a splitting of the uncertainty.

In the remainder we give a general treatment of some often used reformulation tricks
to reformulate nonlinear problems into linear ones, and discuss whether the robust
counterparts are equivalent or not.

• Maximum function. Consider the following constraint:

a(ζ)>x + max
k

bk(ζ)>x ≤ d(ζ) ∀ζ ∈ Z,

where ζ ∈ Z is the uncertain parameter, and a(ζ), bk(ζ), and d(ζ) are param-
eters that depend linearly on ζ. The incorrect reformulation for this constraint
is: {

a(ζ)>x + z ≤ d(ζ) ∀ζ ∈ Z
z ≥ bk(ζ)>x ∀k,∀ζ ∈ Z,

since the uncertainty is split over more constraints. The correct reformulation
is:

a(ζ)>x + bk(ζ)>x ≤ d(ζ) ∀k,∀ζ ∈ Z.

Note that in many cases we have “a sum of max”:

a(ζ)>x +
∑
i

max
k

bik(ζ)>x ≤ d(ζ) ∀ζ ∈ Z.

Important examples that contain such constraints are production-inventory
problems. We refer to Chapter 4 for an elaborate treatment on exact and
approximate reformulations of such constraints.

• Absolute value function. Note that |x| = max{x,−x}, and hence this is a
special case of the max function, treated above.

• Linear fractional program. Consider the following robust linear fractional
problem:

min
x

maxζ∈Z
α(ζ)+c(ζ)>x
β(ζ)+d(ζ)>x

s.t.
∑
j

aijxj ≥ bi ∀i

x ≥ 0,

(3.13)
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where α(ζ), c(ζ), β(ζ), and d(ζ) are parameters that depend linearly on ζ.
Moreover, we assume that β(ζ)+d(ζ)>x > 0, for all feasible x and for all ζ ∈ Z.
For the non-robust version one can use the Charnes-Cooper transformation
that is proposed by Charnes and Cooper (1962) to obtain an equivalent linear
optimization problem. However, if we apply this transformation to the robust
version, we obtain:

min
y,t

max
ζ∈Z

α(ζ)t+ c(ζ)>y

s.t. β(ζ)t+ d(ζ)>y = 1 ∀ζ ∈ Z∑
j

aijyj ≥ bit ∀i

y ≥ 0, t ≥ 0,

which is not equivalent to (3.13) since the uncertainty in the original objective
is now split over the objective and a constraint. A better way to deal with such
problems is to solve the robust linear problem

min
x

max
ζ∈Z

[
α(ζ) + c(ζ)>x− λ

(
β(ζ) + d(ζ)>x

)]
s.t.

∑
j

aijxj ≥ bi

x ≥ 0,

for a fixed value of λ, and then find the minimal value of λ for which this
optimization problem still has a non positive optimal value. One can use for
example binary search on λ to do this. For a more detailed treatment of robust
fractional problems we refer to Chapter 5.

• Product of binary variables. Suppose that a robust constraint contains a
product of binary variables, say xy, with x, y ∈ {0, 1}. Then one can use the
standard way to linearize this:

z ≤ x

z ≤ y

z ≥ x+ y − 1
z ≥ 0,

and replace xy with z. One can use this reformulation since the added con-
straints do not contain uncertain parameters.

• Product of binary and continuous variable. A product of a binary and a
continuous variable that occurs in a robust constraint can also be reformulated



64 Hints for practical Robust Optimization

in linear constraints, in a similar way as above. However, note that in the
following robust constraint:

a(ζ)>x + zb(ζ)>x ≤ d(ζ) ∀ζ ∈ Z,

where z ∈ {0, 1}, one cannot use the standard trick:{
a(ζ)>x + zy ≤ d(ζ) ∀ζ ∈ Z
y ≥ b(ζ)>x ∀ζ ∈ Z,

(3.14)

and then linearize zy. This is not possible since in (3.14) the uncertainty is
split over different constraints. A correct reformulation is:{

a(ζ)>x + b(ζ)>x ≤ d(ζ) +M(1− z) ζ ∈ Z
a(ζ)>x ≤ d(ζ) +Mz ζ ∈ Z.

(3.15)

• K out of N constraints should be satisfied. Suppose the restriction is
that at least K out of the N robust constraints

ai(ζ)>x ≤ di(ζ) ∀ζ ∈ Z (3.16)

should be satisfied, where i ∈ {1, . . . , N}. Then one can use the standard way
ai(ζ)>x ≤ di(ζ) +M(1− zi) ∀ζ ∈ Z,∀i∑
i

zi ≥ K

zi ∈ {0, 1} ∀i,

where M is a sufficiently big number. However, if the restriction is that ∀ζ ∈ Z
at least K out of the N constraints should be satisfied (notice the difference
with (3.16)), then the above constraint-wise formulation is not equivalent and
is overly conservative. We do not see how to model such a constraint correctly.
Maybe an adversarial approach could be used for such constraints.

• If-then constraint. Since an “if-then constraint” can be modeled as an at
least 1 out of 2 constraints, the above remarks hold.

Up to now we only described linear optimization examples. Similar examples can
be given for conic and nonlinear optimization. In Lobo et al. (1998) for example,
many optimization problems are given that can be modeled as conic quadratic pro-
gramming problems. However, for many of them it holds that the corresponding
robust counterparts are not the same. This means that if an optimization problem
is conic quadratic representable, then the robust counterparts are not automatically
the same, and hence in such cases the robust optimization techniques for CQP cannot
be used.
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3.8 How to deal with equality constraints?
Equality constraints containing uncertain parameters should be avoided as much
as possible, since often such constraints restrict the feasibility region drastically or
even lead to infeasibility. Therefore, the advice is: do not use slack variables unless
they are adjustable, since using slack variables leads to equality constraints; see Ben-
Tal et al. (2009a, Chapter 2). However, equality constraints containing uncertain
parameters cannot always be avoided. There are several ways to deal with such
uncertain equality constraints:

• In some cases it might be possible to convert the equality constraints into
inequality constraints. An illustrating example is the transportation problem:
the demand constraints can either be formulated as equality constraints or as
inequality constraints. The structure of the problem is such that at optimality
these inequalities are tight.

• The equality constraints can be used to eliminate variables. This idea is men-
tioned in Ben-Tal et al. (2009a). However, several questions arise. First of all,
after elimination of variables and after the resulting problem has been solved,
it is unclear which values to take for the eliminated variables, since they also
depend on the uncertain parameters. This is no problem if the eliminated
variables are adjustable variables or analysis variables, since there is no need
to know their optimal values. A good example is the production-inventory
problem for which one can easily eliminate the analysis variables indicating the
inventory in different time periods. See e.g. Ben-Tal et al. (2009a). Secondly,
suppose the coefficients with respect to the variables that will be eliminated
contain uncertain parameters. Eliminating such variables leads to problems
that contain non-linear uncertainty, which are much more difficult to solve. To
illustrate this, let us consider the following two constraints of an optimization
problem:

ζ1x1 + x2 + x3 = 1, x1 + x2 + ζ2x3 ≤ 5,

in which ζ1 and ζ2 are uncertain parameters. Suppose that x1, x2 and x3 are
all adjustable in ζ1. Then there are three options for elimination:

1. Elimination of x1. Let us assume that ζ1 = 0 is not in the uncertainty
set. By substituting x1 = (1− x2 − x3)/ζ1 the inequality becomes:(

1− 1
ζ1

)
x2 +

(
ζ2 −

1
ζ1

)
x3 ≤ 5− 1

ζ1
.
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The disadvantage of eliminating x1 is thus that the uncertainty in the
inequality becomes nonlinear.

2. Elimination of x2. By substituting x2 = 1 − ζ1x1 − x3 the inequality
becomes:

(1− ζ1)x1 + (ζ2 − 1)x3 ≤ 4,

which is linear in the uncertain parameters.
3. Elimination of x3. By substituting x3 = 1 − ζ1x1 − x2 the inequality

becomes:

(1− ζ1ζ2)x1 + (1− ζ2)x2 ≤ 5− ζ2,

which is nonlinear in the uncertain parameters. We conclude that from a
computational point of view it is more attractive to eliminate x2.

It is important to note that different choices of variables to eliminate may lead
to different optimization problems.

• If the constraint contains analysis variables one could make these variables ad-
justable and use decision rules, thereby introducing much more flexibility. One
can easily prove that when the coefficients for such variables in the equality
constraint do not contain uncertain parameters and the equality constraint is
linear in the uncertain parameters, then using linear decision rules for such vari-
ables is equivalent to eliminating these variables. To be more precise: suppose
the linear equality constraint is

q(ζ)>x + y = r,

where q(ζ) is linear in ζ, and y is an analysis variable (without loss of gener-
ality we assume the coefficient for y is 1). Then it can easily be proven that
substituting y = r − q(ζ)>x everywhere in the problem is equivalent to us-
ing a linear decision rule for y. To reduce the number of extra variables, it is
therefore better to eliminate such variables.

• Consider the following robust constraint:

(a + Pζ)>x = d ∀ζ ∈ Z. (3.17)

The equality constraint is satisfied for all ζ in Z if P>x = 0. Hence, we could
replace (3.17) by the stricter set of equations

a>x = d, P>x = 0.

However, especially when L is large, this is much too restrictive.
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• One could also drop the requirement that the constraints are hard, and make
such constraints “soft”, by adding, e.g., a quadratic penalty for the violations
to the objective.

3.9 On maximin and minimax formulations of RC
In this section, we consider an uncertain LP of the following general form:

max
x≥0
{c>x : Ax ≤ d},

where without loss of generality A is the uncertain coefficient matrix that resides in
the uncertainty set U . So the general RC is given by

(R-LP) max
x≥0
{c>x : Ax ≤ d ∀A ∈ U}.

Here we show that (R-LP) can be reformulated as:

(RF) min
A∈U

max
x≥0
{c>x : Ax ≤ d},

if the uncertainty is constraint-wise; however if this condition is not met, then (RF)
may not be equivalent to (R-LP).
Remark 1 This shows that the statement “RO optimizes for the worst case A” is
too vague. Also the maximin reformulation:

max
x≥0

min
A∈U
{c>x : Ax ≤ d},

is usually not equivalent to (R-LP). This is because we can almost always find an
x ≥ 0 such that no A ∈ U exists for which Ax ≤ d; therefore, we minimize over
an empty set, and have +∞ for the maximin objective. Also when x is selected such
that at least one feasible A exists (e.g., see Falk (1973)), it is easy to find examples
where both formulations are not equivalent.
To show (R-LP)=(RF) when the uncertainty is constraint-wise, we first take the
dual of the (inside) maximization problem of (RF) [maxx≥0 c>x : Ax ≤ d]. Then,
substituting the dual with the primal (maximization) problem in (RF) gives:

(OC-LP) min
A∈U ,y≥0

{d>y : ATy ≥ c},

where val(RF)=val(OC-LP) at optimality. Note that the constraints of (RF) can
be formulated as [aT

i x ≤ di,∀ai ∈ Ui, i = 1, . . . ,m], if the uncertainty is constraint-
wise. Beck and Ben-Tal (2009) show that (OC-LP)—which is the optimistic counter-
part of the dual problem—is equivalent to the general robust counterpart (R-LP) for
constraint-wise uncertainty and disjoint Ui’s. However, if (some of) the constraints
are dependent in (R-LP), then we may not sustain the associated equivalence. The
following example shows such a situation.



68 Hints for practical Robust Optimization

Example
Consider the following toy RC example in which the uncertainty is not constraint-
wise:

(RC-Toy) max
y

y1 + y2

s.t. a1y1 ≤ 1, a2y2 ≤ 1 ∀a ∈ R2 : ||a||2 ≤ 1,

where two constraints of the problem are dependent on each other via the ellipsoidal
uncertainty set [a ∈ R2 : ||a||2 ≤ 1]. The robust reformulation of the (RC-Toy) is as
follows:

(RF-Toy) min
a:||a||2≤1

max
y

y1 + y2

s.t. a1y1 ≤ 1, a2y2 ≤ 1,

and the optimistic counterpart (OC) of the problem is

(OC-Toy) min
x≥0, a:||a||2≤1

x1 + x2

s.t. a1x1 = 1, a2x2 = 1.

(RC-Toy) attains an optimal objective value of 2, whereas the (RF-Toy)’s opti-
mal objective value is 2

√
2. Therefore, the robust reformulation (RF-Toy) is not

equivalent to the general RC problem (RC-Toy) in this situation. However, val(RF-
Toy)=val(OC-Toy) from duality.

3.10 Quality of robust solution
In this section we describe how to assess the quality with respect to robustness of a
solution based on a simulation study. We first identify four focus points for perform-
ing a Monte Carlo experiment, and conclude with two statistical tests that can be
used to compare two solutions.

Choice of the uncertainty set. For a comparison between different solutions,
it is necessary to define an uncertainty set U that is used for evaluation. This set
should reflect the real-life situation. The uncertainty set that is used for optimization
may be different than the set for evaluation. For example, an ellipsoidal set may be
used to reduce the conservatism when the real-life uncertainty is a box, while still
maintaining a large probability of constraint satisfaction (Ben-Tal et al., 2009a, p. 34).
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Choice of the probability distribution. A simulation requires knowledge of
the probability distribution on the uncertainty set. If this knowledge is ambiguous,
it may be necessary to verify whether the simulation results are sensitive with respect
to changes in this distribution. For example, Rozenblit (2010) performs different sim-
ulations, each based on a probability distribution with a different skewness level.

Choice of the sampling method. For univariate random variables it is computa-
tionally easy to draw a random sample from any given distribution. For multivariate
random variables rejection sampling can be used, but it may be inefficient depending
on the shape of the uncertainty set, e.g. for an uncertainty set with no volume. A
more efficient method for sampling from an arbitrary continuous probability distri-
bution is “hit and run” sampling (Bélisle et al., 1993). An R package for uniform hit
and run sampling from a convex body is also available.

Choice of the performance characteristics. From a mathematical point of
view there is no difference between uncertainty in the objective and uncertainty in
the constraints since an uncertain objective can always be reformulated as a certain
objective and an uncertain constraint. However, the distinction between an uncer-
tain objective and an uncertain constraint is important for the interpretation of a
solution. First, we look at the effects of adjustable RO and reformulations, then we
present the performance characteristics.

Effect of adjustable RO. When one or more “wait and see” variables are modeled
as adjustable variables, uncertain parameters may enter the objective function. In
that case the performance characteristics for uncertainty in the objective become
applicable.

Effect of reformulations. Reformulations are sometimes necessary to end up with
a tractable model. The evaluation should be based on the original model, since
reformulations introduce additional constraints whose violation is not necessarily a
problem. Take for example an inventory model that has constraints on variables that
indicate the cost at a certain time period (e.g. constraints (3.18) and (3.19)). These
constraints have been introduced to model the costs in the objective function. A
violation of these constraints does not render the solution infeasible but does affect
the objective value (i.e. the costs of carrying out the solution).

Performance characteristics for uncertainty in the constraints. For an uncertain
constraint f(a, ζ) ≤ 0 for all ζ in Z, the violation is max{0, f(a, ζ)}. Meaningful

http://cran.r-project.org/web/packages/hitandrun/
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statistics are the probability on positive violation and the distribution of the viola-
tion (average, worst case, standard deviation) under the condition that the violation
is positive. When multiple constraints are uncertain, these statistics can be com-
puted per constraint. Additionally, the average number of violated constraints can
be reported.

There is a clear trade-off between the objective value and constraint violations.
The difference between the worst case objective value of the robust solution and the
nominal objective value of the nominal solution is called the price of robustness (PoR)
(Bertsimas and Sim, 2004). It is useful if the objective is certain, since in that case
PoR is the amount that has to be paid for being robust against constraint violations.
We observe that PoR is also used when the objective is uncertain. We discourage
this, since it compares the nominal solution in case there is no uncertainty with the
robust solution where the worst case occurs, so it compares two different scenarios.

Performance characteristics for uncertainty in the objective. Uncertainty in the ob-
jective affects the performance of a solution. For every simulated uncertainty vector,
the actual objective value can be computed. One may be interested in the worst
case, but also in the average value or the standard deviation. For a solution that
is carried out many times, reporting the average performance is justified by the law
of large numbers. The worst case may be more relevant when a solution is carried
out only once or a few times, e.g. when optimizing a medical treatment plan for
a single patient. These numbers show what objective value to expect, but they do
not provide enough information about the quality of a solution since a high standard
deviation is not necessarily undesirable. A robust solution is good when it is close to
the perfect hindsight (PH) solution. The PH solution is the solution that is obtained
by optimizing the decision variables for a specific uncertainty vector as if it is fully
known beforehand. This has to be done for every simulated uncertainty vector, and
yields an utopia solution. The PH solution may have a large variation, causing a
high variation of good solutions as well.

Performance characteristics for any problem. Regardless of whether the uncertainty
is in the objective or in the constraints, the mean and associated standard deviation
of the difference between the actual performance of a solution and the PH solution
are useful for quantifying the quality of a solution. The mean difference between the
PH solution and a fully robust solution is defined as the price of uncertainty (PoU)
by Ben-Tal et al. (2005). It is the maximum amount that a company should invest for
reducing the level of uncertainty, e.g. by using more accurate forecasting techniques.
It can also be interpreted as the regret of choosing a certain solution rather than the
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PH solution. Alternative names for PoU are “cost of robustness” (Gregory et al.,
2011) or “price of robustness” (Ben-Tal et al., 2004), which are less descriptive than
“price of uncertainty” and may cause confusion with price of robustness from (Bert-
simas and Sim, 2004). A low mean PoU and a low standard deviation characterize a
good solution.

Subtracting the mean objective value of the nominal solution from the mean value
of a robust solution yields the actual price of robustness (APoR) (Rozenblit, 2010).
APoR can be interpreted as the expected price that has to be paid for using the
robust solution rather than the nominal solution, which is negative if RO offers a
solution that is better on average. PoR equals APoR when uncertainty only occurs
in the constraints.

For multistage problems one may also follow a folding horizon (FH) approach.
With FH in each stage where a part of the uncertain parameter is observed, that in-
formation is used to optimize for the remaining time periods. This is done by taking
the original optimization problem, fixing the decision variables for previous stages,
and fixing the elements of the uncertain parameter that have been observed. This
allows a fair comparison between a dynamic solution (e.g. created by the AARC)
and a static solution (e.g. the nominal solution) when in real-life the static solution
is reoptimized in every stage.

Comparing two solutions. We provide several comparison criteria and provide
the corresponding statistical test to verify whether one solution is better than an-
other solution. The tests will be demonstrated in Section 3.11. We will assume that
the data for the statistics test is available as n pairs (Xi, Yi) (i = 1, 2, . . . , n), where
Xi and Yi are performance characteristics in the i’th simulation. For uncertainty in
the objective, they can be objective values whereas for uncertainty in the constraints
they can be the numbers of constraint violations or the sizes of the constraint vi-
olations. We assume that (Xi, Yi) and (Xj, Yj) are independent if i 6= j, and that
smaller values are better. When a conjecture for a test is based on the outcome of a
simulation study, the statistical test must be performed with newly generated data
to avoid statistical bias. While for the statistical tests it is not necessary that Xi

and Yi are based on the same simulated uncertainty vector ζ, it increases the power
of the test since Xi and Yi will be positively correlated. This reduces the variance
of the difference: Var(Xi− Yi) = Var(Xi) + Var(Yi)− 2 Cov(Xi, Yi), which is used in
the following tests:

• The sign test for the median validates H0: mx = my against H1: mx < my

with confidence level α, where mx and my are the medians of the distributions
of Xi and Yi, respectively. This tests the conjecture that the probability that
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solution X outperforms solution Y is larger than 0.5. Let n= be the number
of observations for which Xi = Yi and let Z be the number of negative signs
of Xi − Yi. Under the null hypothesis, Z follows a binomial distribution with
parameters n− n= and 0.5. That means that the null hypothesis gets rejected
if Z is larger than the (1− α) percentile of the binomial distribution.

• The t-test for the mean validates H0: µx = µy against H1: µx < µy with
confidence level α, where µx and µy are the means of the distributions of Xi and
Yi, respectively. This tests the conjecture that solution X outperforms solution
Y in long run average behavior. This test assumes that Xi−Yi follows a normal
distribution. Let Zi = Xi−Yi, Z̄ = ∑n

i=1 Zi/n and s2 = ∑n
i=1(Zi− Z̄)2/(n−1),

then T =
√
n
∑n
i=1(Zi − Z̄)/s follows a t-distribution with n − 1 degrees of

freedom under the null hypothesis. This means that H0 gets rejected if T is
smaller than the α percentile of the t-distribution with n−1 degrees of freedom.

3.11 RC may take better “here and now” decisions
than AARC

A linear decision rule is a linear approximation of a more complicated decision rule.
It dictates what to do at each stage as a linear function of observed uncertain pa-
rameters, but it is not guaranteed to be the optimal strategy. Every time a decision
has to be made it is possible to either follow the linear decision rule, or to reoptimize
the AARC for the remaining time periods based on everything that is observed up
till then. We will refer to the latter as the AARC-FH, where FH stands for folding
horizon. Ben-Tal et al. (2005) compare the AARC with the AARC-FH, and show
that the latter produces better solutions on average. A comparison that involves
AARC-FH assumes that there is time to reoptimize. It is therefore natural to also
make a comparison with the RC-FH, where the RC is solved for the full time horizon
and re-optimized for the remaining time period every time a part of the uncertain
parameters is unveiled. On average, the RC-FH may outperform the AARC (Cohen
et al., 2007; Rozenblit, 2010).

In the remainder of this section we will evaluate both the average and the worst
case performance of the nominal solution with FH, the RC-FH and the AARC-FH.
A comparison between RC-FH and AARC-FH is new, and shows which model takes
the best “here and now” decisions.

We first give an example for the worst case performance. Consider a warehouse
that transfers one good. The current inventory is x0 = 5, the holding costs per time
period are h = 1, the backlogging costs per time period are b = 2. In the first period,
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any nonnegative (not necessarily integer) amount can be ordered while in the second
period the maximum order quantity is qmax2 = 3. Let T = {1, 2}, let qt be the order
quantity in time period t, and let ct denote the costs associated with time period t.
The ending inventory can be returned to the supplier without penalty fee at time
period three. The optimization problem can be formulated as:

min
∑
t∈T

ct

s.t. ct ≥ (x0 +
T∑
i=1

qi − di)h ∀t ∈ T (3.18)

ct ≥ −(x0 +
T∑
i=1

qi − di)b ∀t ∈ T (3.19)

q2 ≤ qmax2

qt ∈ R+ ∀t ∈ T.

Suppose the demand vector d is uncertain but is known to reside in a ball around
5 with radius 5. We will use this uncertainty set both for optimization and for
evaluation.

For this small example, it is possible to approximate the worst case costs for an
FH approach as a function of the “here and now” decision q1 as follows. For each q1

in a range of values, we have randomly drawn 100 uncertain demand vectors from
the boundary of the uncertainty set. For each demand vector we have computed the
inventory level at the beginning of the second time period (= x0 + q1−d1). Based on
this inventory level, we reoptimized the order quantity for the second time period,
where d2 was assumed to reside in the interval [5− r, 5 + r] with r =

√
25− (d1 − 5)2

(so that the full d vector is in a ball around 5 with radius 5). Then we computed the
total costs over both time periods. The maximum total costs over all 100 demand
vectors approximates the worst case costs with the FH approach, and is depicted in
Figure 3.1. From this picture it becomes clear that the optimal order quantity for
the first time period is approximately 2.3, which has a worst case performance of
10.8.

We have solved the model for the full time horizon with the RC, with the AARC
(where c1 and c2 are adjustable on the full d, and q2 is adjustable on d1), and as
a certain problem with d = 5. The nominal solution gives q1 = 0, the RC gives
q1 ≈ 4.4, while the AARC yields q1 ≈ 5.3, leading to worst case costs of the FH
approach of 17.8, 14.9 and 16.8, respectively. So, the RC takes the best “here and
now” decision with respect to the worst case performance. It may be paradoxical
that the AARC yields a worse solution than the RC, since the feasible region of the
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Figure 3.1 – Approximation of the total worst case costs for an FH strategy
as a function of the initial order quantity q1.
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AARC includes the RC solution. However, neither of the two optimize the right
objective function. Both approximate the objective value using (static or adjustable)
auxiliary variables ct. While AARC indeed has a better objective value than RC, the
solution is not better for the original objective function.

We also perform a comparison on a more realistic problem, which is the retailer-
supplier flexible commitment problem by Ben-Tal et al. (2005). At the starting
time, the retailer commits himself to ordering certain quantities in later months.
These commitments are flexible, i.e. deviations are allowed at a penalty cost. The
objective is to minimize the total costs for the retailer, consisting of ordering costs
(minus the salvage value), holding costs, backlogging costs, penalty costs associated
with deviating from the commitments, and costs for variability in the commitments.
The article provides two data sets for twelve time periods, A12 and D12, which we
also use in our optimization and comparison.

In this problem the retailer faces an uncertain demand. Following Ben-Tal et al.
(2005) we consider box uncertainty where the demand may deviate up to ρ% around
the nominal value. For the simulation we draw demand vectors uniformly from this
box region. For these demand vectors the nominal solution, RC and AARC are
carried out completely. For the FH approach, the reoptimization is performed after
each time period based on previously observed demand. 500 demand vectors were
generated for each data set and each uncertainty level ρ, and the same demand
vectors were used for all models. In addition, the PH solution was computed for each
of these demand vectors.

The simulation results are listed in Tables 3.4 and 3.5. For data set A12, the
nominal solution with FH results in the lowest average costs. This means that the
nominal solution takes better “here and now” decisions than RC and AARC. More-
over, the RC-FH has lower average costs than the AARC-FH, so also the RC takes
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better “here and now” decisions than AARC. The advantage of the nominal FH solu-
tion compared to RC-FH and AARC-FH increases when the uncertainty set becomes
larger. For data set W12 the nominal solution is the best solution and FH leads
to higher mean costs. For this data set, AARC takes significantly better “here and
now” decisions than RC. When comparing Nominal-FH with AARC-FH in Table 3.4
it is not immediately clear which solution is better, since the lower mean value of
Nominal-FH comes with a larger standard deviation. The Nominal-FH in Table 3.4
is an example of the statement in Section 3.10 that a high standard deviation is not
necessarily bad. Its standard deviation is higher than that of AARC-FH but this is
due to the high standard deviation of PH, as can be seen from Table 3.5. From this
last table, it can be seen that Nominal-FH is strictly better than AARC-FH. For
data set A12 and ρ = 10%, it is not clear whether RC-FH outperforms AARC-FH.
We now demonstrate the two statistical tests from Section 3.10 on this data set,
each based on 100 newly generated uncertainty vectors, to test whether the RC-FH
outperforms the AARC-FH. The null hypothesis that both solutions perform equal
on average is rejected (p = 6.1 · 10−6), and also the null hypothesis that the medians
of RC-FH and AARC-FH are equal is rejected (p = 1.4 · 10−10). These results show
that the AARC is not necessarily better than the RC and support the statement in
Section 3.10 that a simulation is required for comparing solutions. As mentioned in
Section 3.5, RO may provide solutions that are not Pareto efficient when multiple
optimal solutions exist. A different optimal solution to the RC or AARC may yield
completely different simulation results, rendering our conclusions useless. This is not
the case. We have verified this by solving the problem in two stages. In the first
stage we solve the robust counterpart (RC or AARC). For the second stage we take
the same problem as in the first stage, but we add the constraint that the robust ob-
jective value is not worse than the optimal value from the first stage, and we change
the objective in minimizing the costs for the nominal demand trajectory. Thus, we
find a solution that is robust optimal and that cannot be improved with respect to
the nominal demand trajectory. Moreover, the resulting solution is Pareto optimal;
see Iancu and Trichakis (2014). The second stage problem returns the same solution
as the first stage problem, so our conclusions are unaffected.



76 Hints for practical Robust Optimization

Table 3.4 – Simulated mean (std) costs for the retailer-supplier flexible com-
mitment problem.

A12 W12

ρ = 10% ρ = 50% ρ = 10% ρ = 50%

Nominal 688 (35) 848 (211) 12775 (708) 16163 (3899)
RC 731 (14) 1140 (70) 13656 (169) 20046 (1251)
AARC 702 (5) 1071 (53) 13314 (35) 18575 (192)

Nominal-FH 674 (14) 774 (87) 12869 (296) 16280 (1251)
RC-FH 699 (5) 979 (19) 13615 (125) 19260 (585)
AARC-FH 700 (5) 1027 (21) 13314 (35) 18572 (192)

PH 658 (11) 699 (50) 12194 (204) 12911 (1144)

Table 3.5 – Simulated mean (std) PoU for the retailer-supplier flexible com-
mitment problem.

A12 W12

ρ = 10% ρ = 50% ρ = 10% ρ = 50%

Nominal 30 (29) 149 (178) 581 (575) 3252 (3186)
RC 73 (19) 441 (89) 1463 (308) 7135 (2266)
AARC 44 (9) 372 (74) 1120 (230) 5664 (1298)

Nominal-FH 16 (6) 75 (44) 675 (144) 3369 (717)
RC-FH 41 (9) 280 (49) 1421 (253) 6349 (1550)
AARC-FH 42 (9) 328 (51) 1120 (230) 5661 (1301)
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3.12 Conclusion
In this chapter, we have presented a general recipe that shall be helpful for using RO
in practice. Additionally, we give several practical insights and hints in applying RO.
Examples of such practical insights are: the robust reformulations of equivalent de-
terministic optimization problems may not be equivalent; in multi-stage optimization
problems, re-optimizing the given problem at each stage using static RO or nominal
data may outperform solutions provided by ARO; and the actual probability guar-
antee of an uncertainty set is often higher than the probabilistic guarantee that is
approximated by using a safe approximation technique. We also discuss many prac-
tical issues to apply RO in a successful and convincing way. Examples are: how to
choose the uncertainty set; what is the right interpretation of “RO optimizes for the
worst case”; and should the decision rule used in ARO be a function of the final or
the primitive uncertainty? Moreover, we propose ideas on how to deal with equality
constraints and integer adjustable variables, and on how to compare the robustness
characteristics of two solutions. We have provided many numerical examples to il-
lustrate our insights and discussions, and to demonstrate the effectiveness of the
usefulness of our hints.
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CHAPTER 4

Robust counterparts of inequalities containing
sums of maxima of linear functions

Abstract This chapter addresses the robust counterparts of optimiza-
tion problems containing sums of maxima of linear functions. These
problems include many practical problems, e.g. problems with sums
of absolute values, and arise when taking the robust counterpart of a
linear inequality that is affine in the decision variables, affine in a pa-
rameter with box uncertainty, and affine in a parameter with general
uncertainty.
In the literature, often the reformulation is used that is exact when
there is no uncertainty. However, in robust optimization this refor-
mulation gives an inferior solution and provides a pessimistic view.
We observe that in many papers this conservatism is not mentioned.
Some papers have recognized this problem, but existing solutions are
either conservative or their performance for different uncertainty re-
gions is not known, a comparison between them is not available, and
they are restricted to specific problems. We describe techniques for
general problems and compare them with numerical examples in in-
ventory management, regression and brachytherapy. Based on these
examples, we give recommendations for reducing the conservatism.

4.1 Introduction
Robust Optimization (RO) first appeared in Soyster (1973), and after receiving very
little attention in the subsequent decades it has been an active research area since
Ben-Tal and Nemirovski (1999) and El Ghaoui and Lebret (1997) started publishing
new results in the late nineties. In its basic form, it requires a solution of an op-
timization problem to be feasible for any realization of the uncertain parameters in
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a given uncertainty set. For several choices of the uncertainty region this leads to
tractable problems; for instance the robust counterpart (RC) of an LP with polyhe-
dral uncertainty can be reformulated as an LP and the RC of an LP with ellipsoidal
uncertainty is a conic quadratic program (CQP) (Ben-Tal et al., 2009a, p. 21).

In RO two distinct formulations that are equivalent in the nonrobust case may
have different RCs. This is the case for optimization problems containing the sum
of maxima of linear functions, of which the sum of absolute values is a special case
(|x| = max{x,−x}). These problems arise in inventory management, supply chain
management, regression models, tumor treatment, and many other practical situa-
tions.

Because RO is applied constraint-wise w.l.o.g. and the objective function can
always be formulated as a constraint (Ben-Tal et al., 2009a, p. 11), we focus on the
following robust constraint:

`(ζ, x) +
∑
i∈I

max
j∈J
{`ij(ζ, x)} ≤ d ∀ζ ∈ Z, (4.1)

where ` and `ij are biaffine functions in the uncertain parameter ζ ∈ RL and the
decision variable x ∈ Rn, d ∈ R is the right hand side, and Z ⊂ RL is a user-specified
uncertainty region, e.g. a box or an ellipsoid. We can assume this uncertainty region
to be closed and convex w.l.o.g., as the left hand side is convex in ζ and consequently
the worst case is always located at an extreme point of the uncertainty region. In
the remainder of this chapter our objective is always to minimize d, but all methods
can still be applied when a different objective is used.

In the literature, often the following RC is used, obtained from a reformulation
with analysis variables yi that is exact when there is no uncertainty:

(RC-R) `(ζ, x) +
∑
i∈I

yi ≤ d ∀ζ ∈ Z (4.2)

yi ≥ `ij(ζ, x) ∀ζ ∈ Z ∀i ∈ I ∀j ∈ J. (4.3)

In this formulation, to which we refer as the RC-R (RC of the reformulation), yi ∈ R is
a fixed variable, taking the worst case value of the ith term of the sum. In many cases
the terms of the sum do not all reach their worst case value in the same realization
of the uncertain parameter ζ, and therefore the RC-R is a conservative reformulation
of constraint (4.1), i.e. a solution (x, d) that is feasible for RC-R is also feasible
for constraint (4.1), but not necessarily vice versa. However, this reformulation is
frequently used without mentioning its conservatism. It has the advantage that the
constraints are linear, so that tractable reformulations exist for many uncertainty
regions.
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Bertsimas and Thiele (2006) use the RC-R for a robust inventory problem which
includes the sum of holding and backlogging costs: ∑n

i=1 max{chxi,−cbxi}, where xi
is the inventory level at time period i and ch and cb are the holding and backlogging
costs per time period respectively. Their uncertainty region is the intersection of
{ζ : ||ζ1:i||1 ≤ Γi} ∀i and {ζ : ||ζ||∞ ≤ 1}, where ζ1:i is the vector consisting of the
first i elements of ζ, and Γi is not necessarily integer (budgeted uncertainty). Their
formulation allows that the values of different analysis variables take values based
on different realizations of the uncertain parameter. The same uncertainty region
is also used by Bertsimas and Thiele (2004) for a supply chain model, by Thiele
(2004) for supply chains and revenue management, by Alem and Morabito (2012) for
a production planning problem under uncertain demand, and by Wei et al. (2009)
for a slightly more complicated inventory model in which items can be returned and
remanufactured or disposed. With the exception of (Thiele, 2004, p.37), none of
these papers mentions the conservatism of the formulation.

Ng et al. (2010) treat a lot allocation problem where each order is assigned to one
or more production locations before the production capacity of each location is fully
known. Every production location is assigned to at most one order. Their uncertainty
region is an ellipsoid over all production locations, while an analysis variable is used
for every order, so their formulation is conservative.

Kropat and Weber (2008) consider a robust linear cluster regression model using
the sum of absolute values with polyhedral and ellipsoidal uncertainty regions. They
introduce an analysis variable for every absolute value, which is conservative because
every uncertain parameter affects two absolute values.

Ben-Tal et al. (2005) solve a multi-period inventory problem and use affine deci-
sion rules for the actual decisions (AARC). For every time period there are analysis
variables indicating the costs in that time period. These costs are given by the max-
imum of holding costs and shortage costs, which both are linear functions of past
demand. They note that an analysis variable should therefore be replaced with a
function being the maximum of the two linear functions. Because that would lead to
a very complicated robust counterpart, they replace the analysis variables with linear
decision rules instead, which is conservative. Replacing analysis variables with linear
decision rules was also done by Ben-Tal et al. (2009b) and Ben-Tal et al. (2011).

Bienstock and Özbay (2008) were the first to identify and eliminate the con-
servatism of the RC-R. The idea behind their solution is that it suffices to make
constraint (4.1) hold for just the vertices of the uncertainty region. The constraint
then also holds for all other elements in the (convex) uncertainty region, because the
constraint is convex in ζ. They generalize it to a cutting plane method that only
adds a subset of the vertices, which they successfully tested for computing basestock
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levels under budgeted uncertainty. It is not yet known how well this cutting plane
method performs on other problems or different uncertainty regions.

In this chapter, we make the following contributions. First, we identify that
a conservative reformulation is often used in the literature without mentioning its
conservatism. Second, we make a classification of solution approaches. Third, we
present a new cutting plane method (Algorithm 3). Fourth, we show that a linear
constraint with biaffine uncertainty is a special case. This provides a method to solve
or approximate a conic quadratic constraint with box uncertainty, for which currently
no efficient methods are available. Fifth, we demonstrate all approaches on several
numerical examples. Such a comparison is currently not available. Sixth, based
on our numerical examples, we give recommendations for reformulating inequalities
containing sums of maxima of linear functions.

The structure of this chapter is as follows. Since it is not possible to compare
the objective value of different formulations in RO, we introduce a new performance
number which is independent of the reformulation in Section 4.2. In the examples
we consider, this performance number is the slack in constraint (4.1). We provide
an overview of exact (non-conservative) formulations, approximations, and cutting
plane methods in Section 4.3. In that section we show similarities between different
methods, and also show how several approaches can be combined. The application
scope of this chapter is extended in Section 4.4, where we show that our methods
can be applied to an uncertain conic quadratic constraint with box uncertainty. We
evaluate the methods in Section 4.5 on some small toy problems and three larger
problems. We give conclusions in Section 4.6, and show how the robust counterparts
in the aforementioned papers could be improved.

4.2 The true robust value
This section explains how two solutions from different reformulations can be com-
pared. For a minimization problem containing sums of maxima of linear functions,
we define the true robust value of a solution to be the maximum over ζ in Z of the
unreformulated problem with all decision variables fixed. We have assumed that in
this chapter our objective is always to minimize d, an analysis variable at the right
hand side of (4.1), so in our case the true robust value of a solution x is:

vtrue(x) = max
ζ∈Z

{
`(ζ, x) +

∑
i∈I

max
j∈J
{`ij(ζ, x)}

}
. (4.4)

Determining this value is a difficult problem, because it requires the maximization of
a convex function over a convex set. The global maximum over ζ ∈ Z of the sum of
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maxima of linear functions does not necessarily coincide with a maximum over ζ ∈ Z
of one of those linear functions. One way to obtain the exact value is by solving the
following optimization problem with integer variables for fixed x:

max `(ζ, x) +
∑
i∈I

yi (4.5)

s.t. yi ≤ `ij(ζ, x) +M(1− zij) ∀i ∈ I ∀j ∈ J∑
j∈J

zij = 1 ∀i ∈ I

ζ ∈ Z, y ∈ R|I|, z ∈ {0, 1}|I|×|J |,

where M is a sufficiently large number. This problem is an MILP for polyhedral
uncertainty, and an MIQCP for ellipsoidal uncertainty.

Another way of obtaining the exact value is by considering |J ||I| linear opti-
mization problems, e.g. for I = {1, 2} and J = {1, 2} consider the following four
optimization problems:

max
ζ∈Z

`(ζ, x) + `1,1(ζ, x) + `2,1(ζ, x), (4.6)

max
ζ∈Z

`(ζ, x) + `1,1(ζ, x) + `2,2(ζ, x),

max
ζ∈Z

`(ζ, x) + `1,2(ζ, x) + `2,1(ζ, x), and

max
ζ∈Z

`(ζ, x) + `1,2(ζ, x) + `2,2(ζ, x).

Each of these problems is easy, because the maximum of an affine function over a
box or an ellipsoid can be computed in a few operations. The true robust value is
the largest value of the computed maxima.

If determining vtrue(x) is intractable, bounds can still be obtained. Filling in any ζ
from the set Z at the right hand side of equation (4.4), for instance the nominal value,
gives a lower bound. If the dimension of ζ is small, the bound can be improved with
global optimization techniques. Upper bounds can be obtained by fixing x in any
conservative reformulation (such as those mentioned in Section 4.3.2) of constraint
(4.1) and optimizing over the other variables.

4.3 Solution approaches
This section lists exact solution approaches and approximation methods, most of
which can be applied to general RO problems containing the sum of maxima of linear
functions. Many of these methods have been used before, but this full classification
is new. This allows us to show the similary between some methods, and to show how
approximations can be combined with exact methods.
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4.3.1 Exact reformulations
4.3.1.1 Vertex enumeration

Vertex enumeration is an exact solution method first used for a RO problem contain-
ing the sum of maxima by Bienstock and Özbay (2008) that is powerful especially
when the uncertainty region has a small number of vertices. Let V denote the finite
set of vertices, and consider the following reformulation of constraint (4.1):

(Vertex enumeration) `(ζ, x) +
∑
i∈I

yζi ≤ d ∀ζ ∈ V (4.7)

yζi ≥ `ij(ζ, x) ∀i ∈ I ∀j ∈ J ∀ζ ∈ V.
(4.8)

Constraint (4.8) is no longer a semi-infinite constraint, because V is a finite set. This
reformulation is exact because the left hand side of constraint (4.1) is convex in ζ,
and a convex function takes its maximum at an extreme point of its domain.

4.3.1.2 Enumeration of robust linear constraints

The RC-R is inexact because it has analysis variables that may take values corre-
sponding to different worst case scenarios. A constraint with a single max function
does not suffer from this problem, because an equivalent set of linear constraints can
be formulated without analysis variables. An exact reformulation of RC (4.1) can
be obtained by first rewriting it as a constraint with a single max{·} function by
enumerating all combinations, and then applying RO to the reformulation:

(EORLC) `(ζ, x) +
∑
i∈I

`i,j(i)(ζ, x) ≤ d ∀j(i) ∈ J ∀ζ ∈ Z.

We call this the enumeration of robust linear constraints (EORLC) formulation. It
has the advantage that the constraints are linear, so that tractable reformulations
exist for many uncertainty regions. For example, with I = {1, 2} and J = {1, 2}, the
EORLC formulation has the following constraints:

`(ζ, x) + `1,1(ζ, x) + `2,1(ζ, x) ≤ d ∀ζ ∈ Z
`(ζ, x) + `1,1(ζ, x) + `2,2(ζ, x) ≤ d ∀ζ ∈ Z
`(ζ, x) + `1,2(ζ, x) + `2,1(ζ, x) ≤ d ∀ζ ∈ Z
`(ζ, x) + `1,2(ζ, x) + `2,2(ζ, x) ≤ d ∀ζ ∈ Z.

A similar formulation is also given by Bienstock and Özbay (2008), where it was
neglected for its exponential size. While the number of constraints |J ||I| indeed
grows exponentially with the number of terms in the summation, it is effective for
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small |I|. There are situations in which I is small indeed, for instance with a planning
horizon of up to ten periods.

EORLC has a strong relation to vertex enumeration that was not observed before
to the best of our knowledge. In fact, EORLC is vertex enumeration on a different
set. Constraint (4.1) can be formulated as:

`(ζ, x) +
∑
i∈I

∑
j∈J

λij`ij(ζ, x) ≤ d ∀λi ∈ ∆|J |−1 ∀ζ ∈ Z,

where ∆|J |−1 = {λi ∈ R|J | :
∑
j∈J λij = 1, λij ≥ 0} (the standard simplex in R|J |). The

vertices of the simplex are given by unit vectors. If λi is a unit vector, ∑j∈J λij`ij(ζ, x)
simplifies to a single `ij(ζ, x). It follows that vertex enumeration on the |I| simplices
gives the EORLC reformulation.

EORLC can benefit from two preprocessing steps in order to reduce the final
number of constraints. First, every max{·} term should contain at most one func-
tion that does not depend on ζ. If it has more than one, those functions can
all be replaced with a single analysis variable. Second, inequalities of the form
amax{0, `(ζ, x)}+bmax{0,−`(ζ, x)} ≤ d with a, b > 0, which are often used for hold-
ing and backlogging costs, should be reformulated as max{a`(ζ, x),−b`(ζ, x)} ≤ d.

4.3.1.3 Cases with special structure

There are several special cases of (4.1) that allow an exact reformulation. This section
lists a few general cases. More specific cases can be found in (Ben-Tal et al., 2009a,
Ch. 12.2) and in Xu et al. (2009).

The first case is when the uncertainty region Z is the direct product of sets Zi,
where term i in the left hand side of constraint (4.1) is only affected by Zi. The RC-R
is exact because all analysis variables can take their worst case values simultaneously.

The second case is when the inequality contains the sum of absolute values of
linear functions of ζi and x:

`(ζ, x) +
∑
i∈I
|αi(x) + βi(x)>ζ| ≤ d ∀ζ ∈ Z, (4.9)

where αi : Rn → R and βi : Rn → R are linear functions, the components of βi that
may be nonzero for one i are zero for all other i in I, and the uncertainty region
Z is centrosymmetric around ζ = 0, i.e. Z is closed under changing the sign of one
or more vector elements (a box and an ellipsoid are examples of such sets). Note
that the assumption that the symmetry is around 0 is made w.l.o.g. The following
constraint is equivalent to (4.9):

`(ζ, x) +
∑
i∈I
{|αi(x)|+ βi(x)ζi} ≤ d ∀ζ ∈ Z. (4.10)
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Equivalence is readily checked by conditioning on the sign of αi(x). The formulation
for (4.10) where absolute values are replaced with analysis variables is equivalent to
(4.10), since the analysis variables do not depend on ζ.

The third case is when, for a fixed i ∈ I, each of linear functions under the
maximum is the sum of a common nonnegative linear function of ζ and a linear
function of x:

`(ζ, x) +
∑
i∈I

max
j∈J
{αi(ζ) + βi(ζ)`ij(x)} ≤ d ∀ζ ∈ Z,

where αi : RL → R and βi : RL → R+ are linear functions. The common functions
of ζ can be placed outside the max{·} expression:

`(ζ, x) +
∑
i∈I

[
αi(ζ) + βi(ζ) max

j∈J
{`ij(x)}

]
≤ d ∀ζ ∈ Z,

and the RC-R of this constraint is exact. If the range of βi is R instead of R+, then
maxj∈J{`ij(x)} should be minj∈J{`ij(x)} when βi(ζ) < 0. This can be modeled as
follows. Given a subset I+ ⊆ I, we define a set which consists of those ζ for which
βi(ζ) ≥ 0 for i ∈ I+, and βi(ζ) ≤ 0 for i ∈ I\I+:

Z(I+) = Z ∩ {ζ : βi(ζ) ≥ 0 ∀i ∈ I+, βi(ζ) ≤ 0 ∀i ∈ I\I+}.

Note that

Z =
⋃
I+⊆I
Z(I+).

The constraint can now be written as:

`(ζ, x) +
∑
i∈I

αi(ζ) +
∑
i∈I+

βi(ζ) max
j∈J
{`ij(x)}+

∑
i∈I\I+

βi(ζ) min
j∈J
{`ij(x)} ≤ d

∀ζ ∈ Z(I+) ∀I+ ⊆ I.

The number of constraints is 2|I| (one for each I+ ⊆ I), which is less than the |J ||I|
constraints obtained with EORLC. The max and min expressions do not depend on
ζ, so the reformulation with analysis variables is exact. Each constraint is still convex
despite the min expressions, because their coefficients βi(ζ) are negative.

4.3.2 Conservative approximations
The RC-R (4.2)-(4.3) is a conservative approximation to (4.1). We discuss how the
conservatism can be decreased, and also present a new method.
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The variables yi in the RC-R have been introduced for modeling the max{·}
expression. We do not need to know their values because they do not correspond to
a “here and now” decision. Only x has to be known for implementing a solution. The
values of yi may be adjusted according to the realization of the uncertain parameter
ζ as long as the constraints hold for every realization of ζ in the perturbation set
(Adjustable RC). As first applied by Ben-Tal et al. (2005) for a multi-stage problem
and later also done by Ben-Tal et al. (2009b) and Ben-Tal et al. (2011), we can
make yi an affine function of ζ, which leads to the Affinely Adjustable RC of the
reformulation (AARC-R). After substituting yi = vi + w

>
i ζ (with decision variables

vi ∈ R and wi ∈ RL), constraints (4.2)-(4.3) become:

(AARC-R) `(ζ, x) +
∑
i∈I

(
vi + w

>

i ζ
)
≤ d ∀ζ ∈ Z

vi + w
>

i ζ ≥ `ij(ζ, x) ∀ζ ∈ Z ∀i ∈ I ∀j ∈ J.

This substitution gives a less conservative reformulation, while the robust counter-
part is often still tractable, because robust linear constraints are tractable for a wide
class of uncertainty regions. The power of the AARC-R can be increased by lifting
the uncertainty region to a higher dimension (Chen and Zhang, 2009). If `ij does not
depend on one or more components of ζ for all j for some fixed i, the computational
complexity can seemingly be reduced by making yi a function of only those compo-
nents of ζ that appear in term i for one or more j. However, it is easy to construct
an example where this reduction introduces more conservatism.

There are two different approaches that also lead to the formulation AARC-R.
The first approach is considering the Fenchel dual problem of maximizing the left
hand side of constraint (4.1) over ζ in Z. We give the full derivation and a proof
of equivalence to the AARC-R in Appendix 4.A. The other approach is derived in
Appendix 4.B.

An approach that is less conservative than an affine decision rule, is a quadratic
decision rule:

yi = vi + w
>

i ζ + ζ
>
Wiζ,

where vi ∈ R, wi ∈ RL, and Wi ∈ RL×L are new analysis variables. This is called a
Quadratically Adjustable RC of the reformulation (QARC-R) which is known to be
tractable for ellipsoidal uncertainty and (under some restrictions) for box uncertainty.
A deterministic reformulation of the QARC-R with ellipsoidal uncertainty is given in
Appendix 4.C, resulting in |I||J |+ 1 LMIs of size |L+ 1|. For box uncertainty, when
the quadratic terms are restricted such that each element of ζ is multiplied with itself
and at most one other element of ζ, we can use the result by Yanıkoğlu et al. (2012)
to write the RC as an SDP with (|I||J |+ 1)dL/2e variable matrices of size three.
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A new way to reduce the conservatism of the RC-R is by first combining several
max expressions before reformulating. In order to do this, partition I into |G| groups:
I = ⋃

g∈G Ig, where the groups are mutually disjoint: Ig1 ∩ Ig2 = ∅ for g1, g2 ∈ G, g1 6=
g2, and partition in such a way that |Ig| is small for all g. Now introduce analysis
variables for all g:

`(ζ, x) +
∑
g∈G

yg ≤ d ∀ζ ∈ Z

yg ≥
∑
i∈Ig

max{`ij(ζ, x)} ∀ζ ∈ Z ∀g ∈ G.

Because the cardinality of Ig is small, the sum of max expression within each con-
straint can be transformed into a single max (EORLC). Each constraint in this
reformulation is therefore tractable and can be solved exactly, but conservatism still
comes from the analysis variables yg. These analysis variables can also be written as
a linear, quadratic or more general function of ζ.

4.3.3 Cutting plane methods
In this section we describe two cutting plane methods. The first one is based on
vertex enumeration and was used in Bienstock and Özbay (2008), the other one is
new and based on EORLC.

Vertex enumeration results in very large problems if there are many vertices. For
box uncertainty, the number of vertices grows exponentially in the time horizon. Also
for budgeted uncertainty, which is described in Section 4.1, the number of vertices
quickly becomes very large. The cutting plane method outlined in Algorithm 2 adds
only a subset of the vertices.

Algorithm 2 Cutting plane method based on vertex enumeration
Require: A linear program LP with constraints (4.7)

1: V := {ζnom} (the nominal value)
2: k := 0
3: repeat
4: k := k + 1
5: Solve LP
6: Let x∗ be the minimizer of LP , and LB be the value of d in LP

7: Let UB := vtrue(x∗), and ζk be its maximizer
8: V := V ∪ {ζk}
9: until UB − LB < ε
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While the algorithm is running, LB is a lower bound on the optimal value of
d in (4.7) because it is the value of a relaxation of the original problem, and UB

is an upper bound on the optimal d, because it is the maximum for some x and
not for the optimal x. The difference UB − LB indicates the current violation of
the constraint. If ε is set to a larger value, the algorithm terminates quicker but
does not give the optimal solution. If ε = 0 and the algorithm terminates, the final
solution is robust feasible and robust optimal. It is possible that this algorithm still
enumerates all constraints, but we have not encountered problems for which this is
the case. Bienstock and Özbay (2008) find that for their problem the number of
iterations does not increase when the time horizon is increased, and is around four
on average even for 150 time periods. The number of vertices of their uncertainty
region cannot be deducted from their report. In our numerical examples we often
find a larger number of iterations. The same cutting plane method was used by Bohle
et al. (2010), again for budgeted uncertainty, but solution times and the number of
generated constraints are not reported. It is still an open question how well this
method works on other problems, and for non-polyhedral uncertainty regions.

The most time consuming step is determining the true value, since this involves
the maximization of a convex function. As pointed out by Bienstock and Özbay
(2008), it is not necessary to find the optimal solution. It suffices to find any ζ for
which the maximization problem has a larger objective value than LB, because it
corresponds to a violated constraint in the relaxation, and adding that constraint
strengthens the relaxation. Bienstock et al. report that also the problem LP does
not need to be solved to optimality. Optimization can stop as soon as the objective
value is less than UB, because at that point the current solution is already better
than the solution in the previous run.

The second cutting plane method is new and based on EORLC. If |I| becomes too
large for EORLC, this cutting plane method adds only a subset of the robust linear
constraints. It starts with the nominal problem and adds new robust constraints
until the solution is robust feasible (Algorithm 3).

Similar to Algorithm 2, a lower and upper bound are reported and the stopping
criterion can be adjusted. Also for this algorithm, we have not encountered numerical
examples in which all constraints are enumerated. The main difference between this
algorithm and Algorithm 2 is the constraint that is added in every iteration.

Just as with the cutting plane method based on vertex enumeration, determining
the true value is the most time consuming step, and also here the optimization
problem for determining the true value does not need to be solved to optimality as
long as the value is larger than LB. Also LP does not need to be solved to optimality.

Both cutting plane methods can easily be combined so that two sets of constraints
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Algorithm 3 Cutting plane method based on EORLC
Require: A linear program LP with constraints (4.7)

1: V := {ζnom} (the nominal value)
2: k := 0
3: repeat
4: k := k + 1
5: Solve LP
6: Let x∗ be the minimizer of LP , and LB be the value of d in LP

7: Let UB := vtrue(x∗), and ζk be its maximizer
8: Let jki be the maximizer of maxj∈J `ij(ζk, x)
9: Add the following robust constraint to LP :

`(ζ, x) +
∑
i∈I

`i,jki (ζ, x) ≤ d ∀ζ ∈ Z

10: until UB − LB < ε

are added per iteration. This is done by inserting line 8 of Algorithm 2 in between
lines 9 and 10 of Algorithm 3.

The stopping criterion in both algorithms is UB − LB < ε. It is also possible to
use a dimensionless stopping criterion such as 2(UB − LB)/(1 + |UB + LB|) < ε.
This stopping criterion is based on the relative gap.

4.4 RC of a linear constraint with biaffine uncer-
tainty

Constraint (4.1) may appear in RO itself when a constraint has biaffine uncertainty,
and the uncertainty region of one parameter is a box. In general, such a constraint
can be written as:

˜̀(ζ(1), ζ(2), x) ≤ d ∀ζ(1) :
∣∣∣∣∣∣ζ(1)

∣∣∣∣∣∣
∞
≤ ρ ∀ζ(2) ∈ Z, (4.11)

where ˜̀ : R|I| × RL × Rn → R is a triaffine function, ρ is the radius of the box, and
Z is the uncertainty region of ζ(2). Constraints with biaffine uncertainty have never
been investigated before to the best of our knowledge. To show the equivalence to
constraint (4.1), choose `, `i and I in such a way that constraint (4.11) is equivalent
to:

`(ζ(2), x) +
∑
i∈I

ζ
(1)
i `i(ζ(2), x) ≤ d ∀ζ(1) :

∣∣∣∣∣∣ζ(1)
∣∣∣∣∣∣
∞
≤ ρ ∀ζ(2) ∈ Z,
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and maximize the left hand side with respect to ζ(1):

`(ζ(2), x) +
∑
i∈I

ρ|`i(ζ(2), x)| ≤ d ∀ζ(2) ∈ Z, (4.12)

which is indeed in the form of constraint (4.1). This RC includes many practical
problems, of which we give four examples.

The first example is a constraint a>x ≤ d where each element of a has been
estimated using a regression model with the same regressors ζ for every element:
ai = β0

i + (β(i))>ζ + εi (β0
i ∈ R, β(i) ∈ RL, εi ∈ R), in that case the constraint is:

(β0 +Bζ + ε)>x ≤ d.

We assume that the coefficients β0 ∈ Rn and B ∈ Rn×L, the matrix having β(i) as
rows, have been estimated with some error, and also that the regressors ζ are not
fully known. The constraint can be written as constraint (4.11) if β0, B, ζ and ε lie
in some specified uncertainty region, and the uncertainty of either B or ζ is a box.

The second example appears in Adjustable RCs. Consider a robust constraint:

`(ζ(1), ζ(2), x) + b
>
y ≤ d ∀ζ(1) :

∣∣∣∣∣∣ζ(1)
∣∣∣∣∣∣
∞
≤ ρ ∀ζ(2) ∈ Z,

where y ∈ Rm1 is an adjustable variable that represents a “wait and see” decision that
can be made after ζ(1) and ζ(2) are (partially) observed, and b is a vector of known
coefficients (fixed recourse). Determining the true optimal policy for y as a function
of ζ(1) and ζ(2) is often intractable, which is why a suboptimal y is often determined
by a parameterization, i.e. y is written as a function of which the coefficients are
decision variables. The first parameterization in RO was proposed by Ben-Tal et al.
(2004) who proposed an affine decision rule, which results in a problem which is
in the same class (LP, CQP or SDP, depending on the uncertainty region) as the
problem with y as a “here and now” decision variable. This was later extended to
a quadratic decision rule with an ellipsoidal uncertainty region, resulting in an SDP
(Ben-Tal et al. (2009a)), and to a polynomial decision rule of arbitrarily large degree
restricted to uncertainty regions described by polynomial inequalities, resulting in a
conservative SDP (Bertsimas et al. (2012)). The latter includes the biaffine decision
rule y = `

′(ζ(1), ζ(2), v), where `′ is a function R|I| × RL × Rm2 → Rm1 , and v is a
vector of coefficients to be determined by the model. This decision rule could be very
useful if a problem is affected by several sources of uncertainty. The advantage over
affine decision rules is that the former includes cross terms of ζ(1) and ζ(2). Applying
the results of Bertsimas et al. (2012) gives an SDP which is not only conservative,
but also has a potentially large instance size. E.g. if |I| (the dimension of ζ(1)) is
very small but ζ(2) is in a box of (large) dimension L, the conservative SDP has at
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least one variable matrix of size (|I| + 1)L + |I| + 1 and over 2|L| smaller matrices,
while our result is exact and gives a practically solvable LP. If instead ζ(2) is in an
ellipsoid of (large) dimension L, the SDP still has the large variable matrix of size
(|I|+ 1)L+ |I|+ 1 while our exact result gives a CQP for which efficient solvers are
available.

The third example is a constraint with unknown coefficients and implementation
error. Consider the following constraint:

`(ζ(1))>x ≤ d ∀ζ(1) ∈ Z1, (4.13)

where ` is a vector of n functions that are linear in the uncertain parameter ζ(1).
Now suppose that there is implementation error in x, i.e. instead of x we implement
a vector of which component i is given by xi + ζ

(2)
i (additive implementation error)

or by ζ
(2)
i xi (multiplicative implementation error). After substituting x, constraint

(4.13) becomes:

`(ζ(1))>(x+ ζ(2)) ≤ d ∀ζ(1) ∈ Z1 ∀ζ(2) ∈ Z2,

in case of additive implementation error, and:
n∑
i=1

`i(ζ(1))ζ(2)
i xi ≤ d ∀ζ(1) ∈ Z1 ∀ζ(2) ∈ Z2,

in case of multiplicative implementation error. Both constraints are special cases of
constraint (4.11) if either Z1 or Z2 is a box.

The fourth example is the following robust constraint with box uncertainty:

`(ζ(1), x) +
∑
k∈K

∣∣∣∣∣∣`k(ζ(1), x)
∣∣∣∣∣∣
l
≤ d ∀ζ(1) :

∣∣∣∣∣∣ζ(1)
∣∣∣∣∣∣
∞
≤ ρ, (4.14)

where `k is a vector of L linear functions, and l equals 1, 2 or ∞. In order to see
that this constraint is equivalent to constraint (4.11), note that constraint (4.14) is
a reformulation of the following constraint:

`(ζ(1), x) +
∑
k∈K

(ζ(2)
k )>`k(ζ(1), x) ≤ d ∀ζ(1) :

∣∣∣∣∣∣ζ(1)
∣∣∣∣∣∣
∞
≤ ρ

∀ζ(2) :
∣∣∣∣∣∣ζ(2)

k

∣∣∣∣∣∣∗
l
≤ 1 ∀k ∈ K,

where ||·||∗l is the dual norm, and ζ
(2)
k is a vector in RL for all k in K. We will show

how the results in this chapter can be used for solving the robust constraint (4.14)
for different choices of l.

For l = 2 and |K| = 1, constraint (4.14) is a robust conic quadratic constraint,
for which the RC is known only in special cases, one of which is when the vertices
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of the uncertainty region can be enumerated (Ben-Tal et al., 2009a, p. 159). The
case |K| > 1 has not been covered yet. A (conservative) reformulation with analysis
variables for every

∣∣∣∣∣∣`k(ζ(1), x)
∣∣∣∣∣∣

2
reduces the problem to a problem with one linear

constraint and |K| robust conic quadratic constraints, each of which is of the form
(4.14) with |K| = 1, so it can be reformulated using vertex enumeration. A different
approach, that is not only exact but also results in a smaller problem than obtained by
using analysis variables, is to apply vertex enumeration to constraint (4.14) directly.
Vertex enumeration is exact because the constraint is convex in ζ(1). If the dimension
of the box is very large, (iterative) vertex enumeration is no longer tractable, so even
the case |K| = 1 becomes unsolvable, and tractable conservative reformulations are
not known. Our reformulation (4.12) allows the use of all approaches from Section
4.3.

For l = 1 constraint (4.14) is a special case of constraint (4.1), and we know from
Section 4.3 how to solve it or how to find a conservative reformulation. The refor-
mulation may be useful if it is solved with the RC-R, the AARC-R or the QARC-R,
because the resulting formulation is very different. Vertex enumeration and EORLC
are not useful on the reformulation (4.12), because they correspond with EORLC
and vertex enumeration on the original constraint, respectively.

For l = ∞ constraint (4.14) is a special case of constraint (4.1) with I = K and
J = {1, 2, .., L}, and we know from Section 4.3 how to solve it or how to find a
conservative reformulation. The reformulation (4.12) may be useful if it solved with
the RC-R, the AARC-R or the QARC-R, because the resulting formulation is very
different. The reformulation allows to do vertex enumeration on ζ(2), which may
be faster than vertex enumeration in the original constraint (which is done on the
vertices of ζ(1)) if L and |K| are small relative to |I|.

For all three cases of l, it holds that when EORLC is used on the reformulation
(4.12), the resulting constraints are the same ones resulting from vertex enumeration
on constraint (4.14). This implies that reformulating (4.12) is a redundant step if it
is followed by EORLC.

4.5 Numerical examples
The LP, MILP, CQP and MICQP problems in this chapter have been solved with
AIMMS 3.11 FR3 x32 with ILOG CPLEX 12.1 unless stated otherwise. SDP prob-
lems have been modeled with CVX (Grant and Boyd (2010)) and solved with SDPT3
(YALMIP (Löfberg (2012)) would nowadays be a better choice as it allows the user to
specify a linear constraint with quadratic uncertainty with an ellipsoidal uncertainty
region directly). Reported computing times have been obtained under Windows XP
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SP3 on an Intel Core2 Duo E6400 (2.13 GHz) processor and 2 GB of RAM.

4.5.1 Computing the true robust value

We have run some experiments to determine how quickly the true robust value can be
computed using the two different methods from Section 4.2. Using the problem with
integer variables (4.5), the worst case ζ can be determined in less than a minute for
|I| = 50 and |J | = 3 for box uncertainty of dimension 50, and in 7 seconds for |I| = 20
and |J | = 2 for ellipsoidal uncertainty of dimension 20. For testing the performance
of maximizing the |J ||I| linear optimization problems (4.6), we have created a single
threaded C++ application that creates an affine function with coefficients randomly
taken from the interval [−100, 100], maximizes that function, randomly selects new
coefficients, et cetera. Only the running time of the maximization step is measured.
It can maximize 1.5 × 108 affine functions f : R50 → R per minute over a box,
which is 1023 times slower than the MILP. It can maximize 3 × 108 affine functions
g : R20 → R per minute over an ellipsoid, which is 32 times faster than the MIQCP.

4.5.2 Illustrative small problems

Consider the following toy optimization problem:

(TOY1) min d

s.t. d ≥ max{x, x+ ζ}+ max{x, x− ζ} ∀ζ ∈ [−1, 1]
d ∈ R, x ∈ R+.

The optimal value of this problem is 1 (x = 0, d = 1). If we model this problem as
an LP and then apply RO, we get the following model:

(RC-R) min y1 + y2

s.t. y1 ≥ x ∀ζ ∈ [−1, 1]
y1 ≥ x+ ζ ∀ζ ∈ [−1, 1]
y2 ≥ x ∀ζ ∈ [−1, 1]
y2 ≥ x− ζ ∀ζ ∈ [−1, 1]
y1, y2 ∈ R, x ∈ R+.
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The optimal value of this model is 2 (x = 0, y1 = y2 = 1), so the RC-R is not exact.
If we substitute yi = vi + wiζ, the model becomes:

(AARC-R) min y

s.t. y ≥ v1 + w1ζ + v2 + w2ζ ∀ζ ∈ [−1, 1]
v1 + w1ζ ≥ x ∀ζ ∈ [−1, 1]
v1 + w1ζ ≥ x+ ζ ∀ζ ∈ [−1, 1]
v2 + w2ζ ≥ x ∀ζ ∈ [−1, 1]
v2 + w2ζ ≥ x− ζ ∀ζ ∈ [−1, 1]
v1, v2, w1, w2, y ∈ R, x ∈ R+.

The optimal value of this problem is 1 (v1 = v2 = 1
2 , w1 = 1

2 , w2 = −1
2 , y = 1), which

is the same as the optimal value of the original problem. So, in this case the AARC-R
closes the gap. This is not always the case as the following example shows:

(TOY 2) min d

s.t. d ≥ max{x, x+ ζ1 + ζ2}+ max{x, x+ ζ1 − ζ2}
+ max{x, x− ζ1 + ζ2}+ max{x, x− ζ1 − ζ2}
∀ζ ∈ [−1, 1]2

d ∈ R, x ∈ R+.

We obtain vtrue = 2, vRC−R = 8 and vAARC−R = 4. The AARC-R is an improvement
over the RC-R, but is not exact. The QARC-R, which can be derived by reparame-
terizing the uncertainty region to [0, 1]2, applying the work of Yanıkoğlu et al. (2012)
to obtain an LMI description of the uncertainty region, and formulating the RC to
a deterministic program by dualization, gives vQARC−R = 2.83. While this value is
much closer to 2 than the value of the AARC-R, it is still inexact.

4.5.3 Least absolute deviations regression with errors-in-variables
An errors-in-variables regression model is a model yi = β0 + β1x

∗
i + εi (εi ∼ N(0, σ2)

i.i.d.) where x∗i cannot be measured accurately. Only xi and yi with x∗i = (1+ζi)xi are
observed, where ζi is an unknown measurement error. The least absolute deviations
approach estimates β0 and β1 by minimizing ∑n

i=1 |yi − β0 − β1x
∗
i |:

min
β0,β1

n∑
i=1

max{yi − β0 − β1(1 + ζi)xi, β0 + β1(1 + ζi)xi − yi}.

Because we do not know the values ζi, we can apply RO:

min
β0,β1

max
ζ∈Z

n∑
i=1

max{yi − β0 − β1(1 + ζi)xi, β0 + β1(1 + ζi)xi − yi},
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where we choose the uncertainty region Z to be ellipsoidal: Z = {ζ ∈ Rn : ||ζ||2 ≤
Ω}. Note that this is the second special cases in Section 4.3.1.3 because it is the
sum of absolute values, ζi appears only in term i, and the uncertainty region is
centrosymmetric around ζ = 0. It follows that the RC can be written as:

min
β0,β1

n∑
i=1

max{yi − β0 − β1xi, β0 + β1xi − yi}+ Ω ||β1x||2 , (4.15)

which can be reformulated as a CQP. Even though there is this explicit and simple
formulation of the exact RC, we also try the other approaches from Section 4.3 for a
comparison. The RC-R is as follows:

(RC-R) min
n∑
i=1

zi

s.t. zi ≥ yi − β0 − β1xi + Ω|β1xi| ∀i ∈ I
zi ≥ β0 + β1xi − yi + Ω|β1xi| ∀i ∈ I,

which for comparison with formulation (4.15) can also be written as:

min
β0,β1

n∑
i=1

max{yi − β0 − β1xi, β0 + β1xi − yi}+ Ω ||β1x||1 .

This is more pessimistic than constraint (4.15), since ||·||1 ≥ ||·||2. For the RC-R,
the worst case realization in the ellipsoidal set has all but one elements equal to 0.
Therefore, it may seem that the RC-R is the RC of a linear constraint with interval
uncertainty, but this is not the case. The AARC-R is given by:

min d

s.t. d ≥
n∑
i=1

vi + w
>

i ζ ∀ζ ∈ Rn : ||ζ||2 ≤ Ω

vi + w
>

i ζ ≥ yi − β0 − β1(1 + ζi)xi ∀ζ ∈ Rn : ||ζ||2 ≤ Ω ∀i ∈ I

vi + w
>

i ζ ≥ β0 + β1(1 + ζi)xi − yi ∀ζ ∈ Rn : ||ζ||2 ≤ Ω ∀i ∈ I,

which after reformulation becomes:

(AARC-R) min d

s.t. d ≥ Ω ||w||2 +
n∑
i=1

vi

vi ≥ yi − β0 − β1xi + Ω ||β1xiei + wi||2 ∀i ∈ I
vi ≥ β0 + β1xi − yi + Ω ||β1xiei − wi||2 ∀i ∈ I,
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where ei is the ith unit vector.
We have run these four models on 1, 000 cases. In each case, we fixed the pa-

rameters at β0 = 2, β1 = 5 and σ2 = 1. A case consists of 15 observations of xi,
generated uniformly in [0, 100] i.i.d., ζ ∈ Rn : ||ζ||2 ≤ Ω uniformly and εi ∼ N(0, σ2)
i.i.d. Using these random draws, we have computed yi = β0 + β1(1 + ζi)xi + εi. For
the uncertainty region, we have picked Ω = 0.05. For each of this cases, we solved
the exact formulation (4.15), AARC-R, QARC-R, RC-R, and the nominal problem
using CVX and SDPT3. All solution times are very low, and hence, not mentioned.

Next to comparing the usual way by means of vtrue, we also compare solutions by
looking at how well β0 and β1 are estimated. In all 1, 000 cases, the AARC-R and
QARC-R give the same estimates of β0 and β1. Hence, they are considered equal.
Histograms, the mean, and s2 statistics for β0, β1 and vtrue are shown in Figure 4.1.
All models do well in estimating the parameters β0 and β1, except the AARC-R and
the QARC-R for β0.

The objective values (averaged over the 1, 000 cases) are listed in Table 4.1.
The AARC-R and QARC-R objective values are 22.7% respectively 94.4% closer
to the optimum than the RC-R objective value. However, for the true value we
have vtrue(xRC−R) = 92.095 while vtrue(xAARC−R) = vtrue(xQARC−R) = 99.322. The
RC-R outperforms the AARC-R and the QARC-R in 98% of the cases, and even
the nominal solution outperforms the RC-R in 99% of the cases. So, even though
the AARC-R and QARC-R provide a much better bound on the optimal true value,
their true value is not necessarily better. This shows two things: it may be very
misleading to compare robust solutions by their objective values, and using a better
approximation of the true objective function might not improve the solution at all.

While we were able to solve the exact RC (4.15) directly, we have also looked
at the efficiency of the cutting plane methods. This comparison is not based on the
1, 000 cases mentioned earlier, but on new cases where we varied the dimension of ζ
(and consequently, the dimension of x). Each case was created in the same way as
described before. Algorithms 2 and 3 can run very quickly because the worst case
ζ can be computed efficiently, as this is a simple case. It is therefore interesting to
look at the number of iterations the algorithms take. We have generated 1,000 data
sets in which we varied the number of observations. Algorithm 2 adds only 3 or 4
constraints, independent of the number of observations. This shows that the method
is not only effective for polyhedral uncertainty regions. The number of iterations of
Algorithm 3 is shown in Figure 4.2, where it seems to be a square root function of
the number of observations. The regression model numiteri = α

√
numobsi+εi gives

α = 1.258 with a standard error of 0.007 and R2 = 0.966. For 200 observations,
the algorithm generates at most 18 constraints while full EORLC would result in a
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Table 4.1 – A comparison of different solution methods for the regression
example averaged over 1, 000 datasets.

Method vmethod vtrue(xmethod)

Nominal 36.326 91.994
RC-R 224.096 92.095
AARC-R 194.091 99.322
QARC-R 99.323 99.322
Exact 91.973 91.973

model with 2200 constraints. The algorithm needs more iterations than the vertex
enumeration algorithm, but is still effective.

4.5.4 Brachytherapy
High dose rate brachytherapy (HDR-BT) is a form of radiation therapy where a
highly radioactive sealed source is inserted into a tumor for short time periods via
approximately fifteen till twenty catheters. When the catheter positions are fixed,
a treatment plan specifies for how long the radioactive source has to stay at which
position inside the catheters. A perfect treatment plan delivers a prescribed dose to
the tumor while not delivering any dose to the surrounding organs at risk. Because
this is physically impossible, the goal is to find a good trade-off between irradiating
the tumor and saving the organs at risk. The quality of a plan can be measured
by means of calculation points. These are artificial points where the received dose
can be computed and compared to a prescribed lower and upper bound, that are
distributed inside and around the tumor and organs at risk. The dose in a specific
calculation point i can be computed as the sum of the individual contributions from
every catheter k, which in turn is the sum of the dwell times of the individual dwell
positions inside catheter k multiplied by given dose rate vectors dik:

∑
k∈K

d
>

iktk.

If calculation point i fails to satisfy the lower bound Li or the upper bound Ui, it
contributes a linear penalty of αi or βi (respectively) per unit of violation to the
objective function. This results in the following optimization problem:

min
tk∈Rn+

∑
i∈I

max{0, αi(Li −
∑
k∈K

d
>

iktk), βi(
∑
k∈K

d
>

iktk − Ui)}.
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Figure 4.1 – Comparison of the nominal solution, the RC-R solution, the
AARC-R/QARC-R solution and the exact solution for the regression model
of Section 4.5.3.
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Figure 4.2 – The number of iterations needed by Algorithm 3 to find an
optimal solution versus the number of observations in the regression model of
Section 4.5.3.
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This convex piecewise linear objective function is commonly used for treatment plan-
ning (Alterovitz et al. (2006); Karabis et al. (2009); Lessard and Pouliot (2001)).

The parameters dik are computed based on the catheter positions. These posi-
tions cannot be measured accurately, hence the data in the optimization problem is
uncertain. We assume that the true catheter position is within some cone around
the measured position, which is justified because one side of the catheter is fixed
at a known position. We replace the cone with a polyhedral cone with a 10-sided
base to end up with a polyhedral set, and we make the simplification that the vector
dik inside the cone is a convex combination of the vectors dik at the sides of the
cone. Thus, we only need to know the vectors dik at the catheter positions corre-
sponding to the 10 edges of the cone connecting the apex to the base. Using these
vectors as the columns of a matrix B, we can write dik = Bikζk, where ζk ∈ ∆|S|−1

(∆|S|−1 = {ζ ∈ R|S| : e>ζ = 1, ζ ≥ 0}, the standard simplex in R|S|), and |S| is
the number of sides of the base of the polyhedral cone. This gives the following RO
problem:

min v

s.t.
∑
i

max{0, αi(Li −
∑
k∈K

(Bikζk)
>
tk),

βi(
∑
k∈K

(Bikζk)
>
tk − Ui)} ≤ v ∀ζk ∈ ∆|S|−1(k ∈ K)

tk ≥ 0 ∀k ∈ K.

The number of calculation points is usually in the order of magnitude of 5,000.
We have data of one patient that has been exported from treatment planning software
with a large number of calculation points. For the purpose of this chapter, we
have reduced the number of calculation points to 40 by taking a random subset,
because otherwise both the maximization step in Algorithm 3 and the AARC-R
are intractable. The model does not lose its value from this reduction, because the
objective could be a weighted average between the nominal objective based on all
calculation point, and the robust objective based on a small fraction of calculation
points that is well distributed inside the tumor.

The RC-R is based on the original constraint with the sum of 40 maxima of 3
functions. We have also solved the RC-R and AARC-R after splitting up the sum, as
outlined in the last paragraph of Section 4.3.2. If we split the sum in groups of size
4, then the number of sums reduces to 10 while each term of sum is the maximum
of 34 functions.

The results for the different methods are listed in Table 4.2. The first observation
is that the nominal solution has a true value that is five times the optimal value, so
the nominal solution is nonrobust. The AARC-R has value ≈ 143, which is much
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closer to the true value (≈ 137) than to the RC-R value (≈ 229), so the AARC-
R almost closes the gap. Algorithm 3 is outperformed by Algorithm 2. Its long
running time when the optimization problem for determining vtrue is not solved to
optimality is not only due to the larger number of iterations, but more importantly,
to the gradually increasing running time of solving LP in each iteration. This step
becomes so memory consuming, that the algorithm cannot finish with CPLEX on
32 bit hardware. Combining both algorithms reduces the number of iterations, as
more work per iteration is done, but also increases the solution time in case the
optimization problem for determining vtrue is not solved to optimality. Splitting up
the sum does not give any benefit in terms of true value, though it gives a lower
objective value when solving the RC-R.

4.5.5 Inventory planning
We consider a single item inventory model where backlogging is allowed to compare
the AARC-R with the exact RC. At the beginning of each period, an order can
be placed that is delivered instantly. At the end of each period, the holding and
backlogging costs are ch and cb per unit, respectively. The objective is to minimize
the costs:

min
q,w∈R|T |+

max
d∈Z

 |T |∑
t=1

max{ch[x0 +
t∑
i=1

qi − di], cb[x0 +
t∑
i=1

qi − di]}
 ,

where x0 is the starting inventory, qi is the order quantity at time i, and di is the
uncertain demand at time i. In all formulations we allow qi to depend affinely on the
demand in periods 1 up to i− 1.

If the uncertainty region is a box, the AARC-R turns out to be exact for the
intervals we have tried. This is in accordance with the numbers reported by Ben-Tal
et al. (2005). We found that the AARC-R is no longer exact if the uncertainty region
is an ellipsoid. Because demand is nonnegative, the ellipsoid is intersected with the
nonnegative orthant:

Z = {d ∈ R|T |+ :
∣∣∣∣∣∣d− d̄∣∣∣∣∣∣

2
≤ Ω}.

In our numerical study we have looked at 12 time periods, with parameters Ω = 10,
d̄ = 5, ch = 1, and cb = 2.

Each determination of vtrue in Algorithm 3 takes up to 2 minutes if continued to
optimality using CPLEX, making it the most time consuming step in the algorithm.
Because the dimension of the uncertain demand vector is 12, a global solver might
be faster. We have tried LGO 1.0, whose accuracy can be adjusted with the pa-
rameters “maximal number of function evaluations” and “maximal number of stalled
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evaluations”, which initially both are 16,000. Every time the upper bound found by
LGO is less than 0.1 larger than the lower bound, the parameters are increased by
25% until they exceed 1,000,000. This reflects the idea that it is still easy to find a
violated constraint when the algorithm starts, but gradually becomes more difficult
as the quality of the solution increases. Still, CPLEX finds better solutions in less
time.

The RC-R is based on the original constraint with the sum of 12 maxima of 2
functions. We have also solved the RC-R and AARC-R after splitting up the sum, as
outlined in the last paragraph of Section 4.3.2. In this example the uncertainty enters
the model through time, so the most natural way of splitting up the summation is
in consecutive time periods. We split the problem into two groups:

min y1 + y2

s.t.
6∑
t=1

max{ch[x0 +
t∑
i=1

qi − di], cb[x0 +
t∑
i=1

qi − di] ≤ y1 ∀d ∈ Z

12∑
t=7

max{ch[x0 +
t∑
i=1

qi − di], cb[x0 +
t∑
i=1

qi − di] ≤ y2 ∀d ∈ Z,

where again we allow qi to depend affinely on the demand in periods 1 up to i − 1.
This reformulation introduces more constraints with the sum of maxima, but each
sum contains less terms, hopefully resulting in a shorter solution time. The worst
case d may differ for the constraints that set y1 and y2, hence this reformulation is
not exact.

The results are listed in Table 4.3. Again note that the order policies (qi) are
adjustable in all formulations, including the RC-R, so the differences in this table are
caused only by different reformulations of the sum of maxima. The first observation
is that the AARC-R gives a very small gain over the RC-R, but still has almost
twice the optimal value. So, making the analysis variables adjustable does not sig-
nificantly improve the solution. Algorithm 3 is the fastest cutting plane method,
requiring approximately the same number of iterations when combined with Algo-
rithm 2. The sum splitting method significantly reduces the computation time at the
cost of nonoptimality. It performs much better than the AARC-R, both in optimal
value and in true value. Using the AARC-R on the splitted sums gives a very small
gain over the RC-R on the splitted sums, just as for the full problem, so it is not
listed in the table. The large true value of the nominal solution comes from the fact
that the order sizes are fixed in advance and are not adjusted to observed demand.
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4.6 Conclusions
Because RO is applied constraint-wise, it is very important how constraints are formu-
lated. In this chapter we list several approaches to an inequality constraint containing
the sum of maxima of linear functions. The RC-R, often used in the literature, is
the most pessimistic approach. It is obtained by first reformulating the deterministic
constraint into linear constraints using analysis variables, and then applying RO. Its
pessimism can be reduced by replacing the analysis variables with linear decision
rules before applying RO, which gives the AARC-R. The AARC-R seems to work
well for the practical problems we analyzed with polyhedral uncertainty regions, but
we have constructed an example with polyhedral uncertainty where the value of the
AARC-R is 100% higher than the true value. Nonlinear decision rules may give better
results, but are computationally more challenging. The conservatism of the approxi-
mations can be reduced by combining several max expressions before reformulating.
Especially for ellipsoidal uncertainty this method gives much better solutions at the
cost of a slightly higher solution time.

In many cases it is not necessary to use an approximation because an exact
reformulation can be practically solved. We identify four special cases in which an
exact reformulation is often tractable. For the general case we give two exact general
methods: vertex enumeration and EORLC. Both methods may result in very large
optimization models, but cutting plane methods can be used to handle this. Vertex
enumeration adds a set of constraints for every vertex of the uncertainty region,
so this method is preferred if the uncertainty region has a low number of vertices.
Surprisingly, its cutting plane version is also capable of solving problems where the
uncertainty region has an infinite number of extreme points efficiently. EORLC is
preferred if the number of terms with a maximum function is low. If it is not clear
in advance which cutting plane method is faster, both methods have to be tried
because our numerical examples do not show a clear preference. Both methods can
be combined, but we have not found a situation in which it is beneficial to do so.
EORLC can be combined with approximations, which is a new idea that can be used
for large scale problems which shows promising numerical results.

The RC-R is often used in the literature while less conservative approaches could
have been applied, mostly without explicitly mentioning that their approach is con-
servative. In the paper by Kropat and Weber (2008), the exact method EORLC
would have increased the number of constraints by only a factor four while reducing
the number of variables with almost a factor 2 and not changing the structure of the
problem. The same authors applied vertex enumeration to an ellipsoidal constraint
with polyhedral uncertainty (Özmen et al., 2011), which gives an exact reformula-
tion. Bertsimas and Thiele (2006), Wei et al. (2009) and Alem and Morabito (2012)
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apply the RC-R to a problem with polyhedral uncertainty. Our results, and also the
numbers reported by Ben-Tal et al. (2005), show that the AARC-R often gives less
conservative solutions while it has the advantage that the problem remains linear.
For inventory problems in general, when the order quantities are made adjustable,
then oftenly also the analysis variables are made adjustable. We show that the latter
is not beneficial for ellipsoidal uncertainty, and that both the RC-R and the AARC-R
give very bad solutions. For small planning horizons, an exact method has to be used,
while for larger horizons splitting the sum in small groups and applying EORLC on
the groups significantly improves the solution. Ng et al. (2010) solve a lot allocation
problem with ellipsoidal uncertainty. Because the problem is computationally chal-
lenging, they solve a problem equivalent to our RC-R using Benders decomposition.
Even though their problem is so challenging that even the simple RC-R cannot be
solved within a day and their speed-ups are necessary to solve the problem efficiently,
it is still interesting to know the conservatism of their approach. We have been able
to get a suboptimal solution with cutting planes based on vertex enumeration, where
both the minimization and the maximization step were stopped before optimality.
The solution we got after four hours has a true value of 26.8, whereas the RC-R
(which we tried to solve as an MILP) has a value between 28.7 and 47.2. So the
objective value of the solution proposed by Ng et al. (2010) is at least 7-76% too
pessimistic.

From our numerical examples it becomes clear that the RC-R is not necessarily
better than the nominal problem. Neither of the two optimizes the true problem, so
it cannot be determined a priori which one has a better true value. The same holds
for the AARC-R and the RC-R: If the AARC-R gives a much lower value then at
least it provides a guarantee on the worst case, but the RC-R may still outperform
the AARC-R. When using an approximation, it is therefore crucial to measure its
quality. This can be accomplished by comparing the true value of the solution of the
approximation with the value of an exact formulation. If the problem is too large to
be solved exactly, the comparison may be based on a smaller instance with similar
structure.
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4.A Derivation of AARC-R using Fenchel’s dual-
ity

In this appendix we apply Fenchel’s duality to robust constraints, a technique in-
troduced in RO by Ben-Tal et al. (2014). First we will briefly mention the general
theory, then we will apply it to constraints of general form, and finally we will apply
the general results to constraint (4.1) and show that the result is the same as the
AARC-R.

4.A.1 Fenchel’s duality theorem
We start with some definitions that are necessary to formulate Fenchel’s theorem:

Definition 1 A function φ is proper convex if it is convex, its codomain is R∪{∞},
and φ(x) <∞ for at least one x.

Definition 2 A function ψ is proper concave if it is concave, its codomain is R ∪
{−∞}, and ψ(x) > −∞ for at least one x.

Theorem 2 (Fenchel’s duality (Rockafellar, 1970, p. 327)) Let φ be a proper convex
function on Rn, let ψ be a proper concave function on Rn, and let either of the
following conditions be satisifed:

• ri(dom φ) ∩ ri(dom ψ) 6= ∅

• φ and ψ are closed, and ri(dom φ∗) ∩ ri(dom ψ∗) 6= ∅,

where ri is the relative interior, dom is the effective domain (dom φ = {x : φ(x) <
∞}), and φ∗ and ψ∗ are the convex and concave conjugate of φ and ψ, respectively.
That is,

φ∗(s) = sup
x
{s>x− φ(x)}

ψ∗(s) = inf
x
{s>x− ψ(x)}.

Then the following equality holds

inf
x
{φ(x)− ψ(x)} = sup

s
{ψ∗(s)− φ∗(s)}.
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4.A.1.1 Fenchel’s duality applied to a robust constraint of general form.

We focus on the general robust constraint

g(ζ, x) ≤ d ∀ζ ∈ Z, (4.16)

where g is a proper concave function of ζ for any fixed value of x, and the condition for
Fenchel’s duality is satisfied with respect to the first argument for any fixed value of
x. Because values of g are not of interest when ζ /∈ Z, we assume that g(ζ, x) = −∞
for all ζ /∈ Z. We also assume that Z is a compact set so that this constraint is
equivalent to:

max
ζ∈RL
{g(ζ, x)− δZ(ζ)} ≤ d, (4.17)

with δZ the indicator function (δZ(ζ) = 0 if ζ ∈ Z, and ∞ otherwise). We can
rewrite the left-hand side by applying Fenchel’s duality:

min
s∈RL
{δ∗Z(s)− g∗(s, x)} ≤ d,

which holds if and only if there exists some s ∈ RL such that:

δ∗Z(s)− g∗(s, x) ≤ d. (4.18)

Note that this constraint is convex in s. Because every step is ‘if and only if’,
constraint (4.16) is equivalent to constraint (4.18).
4.A.1.2 g is the sum of other functions.

If g can be written as the sum of several other functions, it might be impossible or
very difficult to find a closed form solution for its conjugate function. Suppose we
have a constraint of the form:∑

i∈I
gi(ζ, x) ≤ d ∀ζ ∈ Z, (4.19)

which is constraint (4.16) with g = ∑
i∈I gi. If we want to formulate an equivalent

constraint using Fenchel’s duality, we need the concave conjugate of g. Under some
mild assumptions on gi, it turns out to be sufficient to have closed form solutions for
the conjugates of gi. The following lemma appears to be very useful (Rockafellar,
1970, p. 145):

Lemma 2 Let ψi (i ∈ I) be proper concave functions on Rn. If ∩i∈I ri(dom ψi) 6= ∅
then

(
∑
i∈I

ψi)∗(s) = sup∑
i∈I si=s

{
∑
i∈I

(ψi)∗(si)},

and the supremum is attained.
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Applying this lemma, we can rewrite constraint (4.19) as:

δ∗Z(s)− max∑
i∈I si=s

{
∑
i∈I

(gi)∗(si, x)} ≤ d,

which is valid if and only if there exists si ∈ RL(i ∈ I) such that

δ∗Z(
∑
i∈I

si)−
∑
i∈I

(gi)∗(si, x) ≤ d. (4.20)

So, if all conjugates have closed form solutions, the reformulated constraint also has
a closed form. If all conjugates do not have a closed form, this reformulation is
still useful because it allows computing each term separately. We will show this for
piecewise linear convex functions later in this section. It should again be noted that
this constraint is convex in si.

4.A.1.3 f is not convex or g is not concave.

Let us investigate the consequences to the reformulation if g is not concave. We
assume g is finite on some non-empty set Z, and ∞ elsewhere, so that its conjugate
is non-trivial. Fenchel’s inequality (Rockafellar, 1970, p. 105) states that:

δZ(ζ) + δ∗Z(s) = δZ(ζ) + sup
ζ′∈Z
{ζ ′

>
s− δZ(ζ ′)} ≥ δZ(ζ) + ζ

>
s− δZ(ζ) = ζ

>
s

g(ζ, x) + g∗(s, x) = g(ζ, x) + inf
ζ′∈Z
{ζ ′

>
s− g(ζ ′, x)} ≤ g(ζ, x) + ζ

>
s− g(ζ, x) = ζ

>
s,

hence:

δZ(ζ) + δ∗Z(s) ≥ g(ζ, x) + g∗(s, x),

and consequently:

g(ζ, x)− δZ(ζ) ≤ δ∗Z(s)− g∗(s, x).

This implies that if constraint (4.18) is satisfied, then so is constraint (4.17), but the
reverse implication is not necessarily true. Hence, constraint (4.18) is a conservative
reformulation of constraint (4.17).

Also, Lemma 2 no longer holds with equality. We can rewrite it as an inequality:

(
∑
i∈I

ψi)∗(s) = inf
t
{s>t−

∑
i∈I

ψi(t)}

= inf
t
{
∑
i∈I

s
>

i t− ψi(t)},
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for any s1, ..., sm ∈ RL for which ∑i∈I si = s. So in particular:

(
∑
i∈I

ψi)∗(s) = sup∑
i∈I si=s

{inf
t
{
∑
i∈I

s
>

i t− ψi(t)}}

≥ sup∑
i∈I si=s

{
∑
i∈I

inf
t
{s>i t− ψi(t)}}

= sup∑
i∈I si=s

{
∑
i∈I

(ψi)∗(si)}.

This implies that if constraint (4.20) is satisfied, then so is constraint (4.19), but the
reverse implication is not necessarily true. Hence, constraint (4.20) can be seen as a
conservative reformulation of constraint (4.19).

4.A.1.4 g is the sum of pointwise maxima of linear functions.

Let us first derive the conjugates of some functions before we arrive at the theorem:

δ∗Z(s) = sup
ζ∈RL
{s>ζ − δZ(ζ)} = sup

ζ∈Z
{s>ζ} = max

ζ∈Z
{s>ζ},

and

(max
j∈J
{`ij(ζ, x)})∗(si, x) = inf

ζ∈Z
{s>i ζ −max

j∈J
{`ij(ζ, x)}}

= inf
ζ∈Z
{min
j∈J
{s>i ζ − `ij(ζ, x)}}

= min
j∈J
{ inf
ζ∈Z
{s>i ζ − `ij(ζ, x)}}.

Theorem 3 Applying Fenchel’s duality to:

max
ζ∈Z

∑
i∈I

max
j∈J
{`ij(ζ, x)} ≤ d, (4.21)

gives a formulation that is equivalent to the AARC-R.

Proof. Constraint (4.21) is equivalent to constraint (4.19) where gi(ζ, x) equals
maxj∈J{`ij(ζ, x)} for ζ in Z and −∞ otherwise. For for any fixed x, gi is not concave
in ζ so we will end up with a conservative instead of an equivalent reformulation.
If we fill in the conjugate functions in constraint (4.20), the following conservative
reformulation is obtained:

max
ζ∈Z
{
∑
i∈I

s
>

i ζ} −
∑
i∈I

min
j∈J
{ inf
ζ∈Z
{s>i ζ − `ij(ζ, x)}} ≤ d.
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If we model the second terms as ∑i∈I zi, we can write this as:
∑
i∈I

s
>

i ζ −
∑
i∈I

zi ≤ d ∀ζ ∈ Z

zi ≤ s
>

i ζ − `ij(ζ, x) ∀ζ ∈ Z ∀i ∈ I ∀j ∈ J,

and by rearranging the terms in each constraint we obtain:
∑
i∈I

[(−zi) + s
>

i ζ] ≤ d ∀ζ ∈ Z

(−zi) + s
>

i ζ ≥ `ij(ζ, x) ∀ζ ∈ Z ∀i ∈ I ∀j ∈ J,

which is the same as the AARC-R.

4.B Derivation of AARC-R by reformulating the
nonrobust constraint

In this appendix we give a different derivation of the AARC-R of constraint (4.1)
when both the biaffine functions and the uncertainty region are separable in the
following way:

∑
i∈I

max
j∈J
{
∑
k∈K

`ijk(ζk, x)} ≤ d ∀ζk ∈ Zk (k ∈ K), (4.22)

and Zk is the convex hull of different scenarios ζsk (s ∈ S). An example where this
constraint is commonly used, is HDR brachytherapy optimization (Alterovitz et al.
(2006); Karabis et al. (2009); Lessard and Pouliot (2001)). If the summation over k
were outside the max expression, then an analysis variable could be used for every
k without introducing any conservatism. Vertex enumeration can then be done on
every Zk separately. For problems not affected by uncertainty, we show that indeed
there is an equivalent formulation where the summation over k is outside the max
expression. Then we show equivalence to the AARC-R if there is uncertainty. First,
we prove the following equality for fixed x and ζk:

Lemma 3

∑
i∈I

max
j∈J
{
∑
k∈K

`ijk(ζk, x)} = min
y∈R|I||J||K|:

∑
k∈K yijk=0

∑
k∈K

∑
i∈I

max
j∈J
{yijk + `ijk(ζk, x)}.

(4.23)
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Proof. Note that:

∑
k∈K

∑
i∈I

max
j∈J
{yijk + `ijk(ζk, x)} ≥

∑
k∈K

∑
i∈I

yij(i)k + `ij(i)k(ζk, x)

=
∑
i∈I

∑
k∈K

`ij(i)k(ζk, x) ∀j(i) ∈ J,

for any j(i) in J , so in particular:

∑
k∈K

∑
i∈I

max
j∈J
{yijk + `ijk(ζk, x)} ≥

∑
i∈I

max
j∈J
{
∑
k∈K

`ijk(ζk, x)},

for any y, so in particular for the minimum. Hence, the right hand side of (4.23) is at
least as large as the left hand side. On the other hand, given a feasible point for the
left hand side of (4.23), we can always construct a feasible point for the right hand side
with equal value by taking the same x, and yijk = 1

|K|
∑
k′∈K `ijk′(ζk′ , x)− `ijk(ζk, x):

∑
k∈K

∑
i∈I

max
j∈J
{yijk + `ijk(ζk, x)} =

∑
i∈I

∑
k∈K

max
j∈J
{ 1
|K|

∑
k′∈K

`ijk′(ζk′ , x)}

=
∑
i∈I

max
j∈J
{
∑
k′∈K

`ijk′(ζk′ , x)}.

Lemma 4 A conservative reformulation of constraint (4.22) is given by:

∑
k∈K

∑
i∈I

max
j∈J
{yijk + `ijk(ζk, x)} ≤ d ∀ζk ∈ Zk (k ∈ K)

∑
k∈K

yijk = 0 ∀i ∈ I ∀j ∈ J.

Proof. We use the proof of Lemma 3. The first part of the proof still holds, so the
equality in constraint (4.23) becomes a “≤”. The construction of the feasible point
in the second part of the proof depends on the value `ijk(ζk, x). This value does not
exist in the robust constraint (4.22), since there is no single ζk. Note that the left
hand sides of (4.22) and (4.23) are the same, so by replacing the left hand side of
(4.22) with the right hand side of (4.23), the conservative reformulation is obtained.

The uncertainty is separable per k in the first constraint of the conservative reformu-
lation. Hence, analysis variables per k can replace each term without changing the
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solution. Vertex enumeration can then be done for every Zk separately:∑
k∈K

zk ≤ d (4.24)

zk ≥
∑
i∈I

wiks ∀s ∈ S

wiks ≥ yijk + `ijk(ζsk, x) ∀i ∈ I ∀s ∈ S ∀k ∈ K∑
k∈K

yijk = 0 ∀i ∈ I ∀j ∈ J.

It remains to show that this formulation is equivalent to the AARC-R of constraint
(4.22).

Theorem 4 The conservative reformulation in Lemma 4 is the AARC-R in case of
scenario generated uncertainty.

Proof. The AARC-R of constraint (4.22) is given by:

∑
i∈I

vi +
∑
k∈K

w
>

ikζk

 ≤ d ∀ζk ∈ Zk (k ∈ K)

vi +
∑
k∈K

w
>

ikζk ≥
∑
k∈K

`ij(ζk, x) ∀i ∈ I ∀j ∈ J ∀ζk ∈ Zk (k ∈ K).

(4.25)

Constraint (4.25) can be reformulated as:

w
>

ikζk ≥ yijk + `ij(ζk, x) ∀i ∈ I ∀j ∈ J ∀ζk ∈ Zk ∀k ∈ K∑
k∈K

yijk = −vi ∀i ∈ I ∀j ∈ J.

We have assumed scenario generated uncertainty, so our uncertainty region is Zk =
∆|S|−1, the standard simplex in R|S|. Suppose an optimal solution has vi 6= 0, then
an optimal solution with vi = 0 can be obtained by increasing all elements of wik for
a single random k with vi because the elements of ζk sum to 1. Hence we fix vi = 0.
The AARC-R can then be formulated as:∑

k∈K
zk ≤ d

zk ≥
∑
i∈I

w
>

ikζk ∀ζk ∈ Zk (k ∈ K)

w
>

ikζk ≥ yijk + `ij(ζk, x) ∀i ∈ I ∀j ∈ J ∀ζk ∈ Zk ∀k ∈ K∑
k∈K

yijk = 0 ∀i ∈ I ∀j ∈ J.

Let wiks denote the sth component of wik. Equivalence to (4.24) now follows from
vertex enumeration.
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4.C Derivation of the QARC-R for an ellipsoidal
uncertainty region

In this appendix the SDP reformulation of the QARC-R of (4.1) is derived for an
ellipsoidal uncertainty region. For simplicity, we assume `ij(ζ, x) and ` are bilinear
functions in the parameters. Therefore, they can be expressed as `(ζ, x) = ζ

>
Lx and

`ij(ζ, x) = ζ
>
Lijx, respectively, for some matrices L and Lij. The QARC-R is given

by:

(QARC-R) ζ
>
Lx+

∑
i∈I

(
vi + w

>

i ζ + ζ
>
Wiζ

)
≤ d ∀ζ ∈ RL : ||ζ||2 ≤ Ω

vi + w
>

i ζ + ζ
>
Wiζ ≥ ζ

>
Lijx ∀ζ ∈ RL : ||ζ||2 ≤ Ω

∀i ∈ I ∀j ∈ J.

By application of the S–lemma (Ben-Tal et al., 2009a, Lemma 6.5.3), this can be
reformulated as the following LMIs:

∑
i∈I

(
Wi

1
2wi

1
2wi vi

)
+
(

0 1
2Lx

1
2Lx −d

)
� λ0

(
I 0
0 −Ω2

)

−
(

Wi
1
2 (wi − Lijx)

1
2 (wi − Lijx) vi

)
� λij

(
I 0
0 −Ω2

)
∀i ∈ I ∀j ∈ J

λ0 ≥ 0, λij ≥ 0.

The QARC-R has |I||J |+ 1 LMIs of size |L+ 1|.



CHAPTER 5

Robust fractional programming

Abstract We extend Robust Optimization to fractional programming,
where both the objective and the constraints contain uncertain param-
eters. Earlier work did not consider uncertainty in both the objective
and the constraints, or did not use Robust Optimization. Our contribu-
tion is threefold. First, we provide conditions to guarantee that either
a globally optimal solution, or a sequence converging to the globally
optimal solution, can be found by solving one or more convex opti-
mization problems. Second, we identify two cases for which an exact
solution can be obtained by solving a single optimization problem: (1)
when uncertainty in the numerator is independent from the uncertainty
in the denominator, and (2) when the denominator does not contain
an optimization variable. Third, we show that the general problem
can be solved with an (iterative) root finding method. The results are
demonstrated on a return-on-investment maximization problem, data
envelopment analysis, and mean-variance optimization. We find that
the robust optimal solution is only slightly more robust than the nom-
inal solution. As a side-result, we use Robust Optimization to show
that two existing methods for solving fractional programs are dual to
each other.

5.1 Introduction
A fractional program (FP) is an optimization problem, where the objective is a frac-
tion of two functions. It can be used for an economical trade-off such as maximizing
return/investment, maximizing return/risk, minimizing cost/time, and minimizing
wasted/used material (Schaible and Ibaraki, 1983). A comprehensive overview of
FP papers, containing over 550 references which include many applications, is given
by Schaible (1982). More up-to-date references can be found in (Stancu-Minasian,
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2013), which also refers to six preceding bibliographies by the same author.

Often, the parameters in an optimization problem are affected by uncertainty.
Robust Optimization (RO) is about solving optimization problems with uncertain
data in a computationally tractable way (see, e.g., Ben-Tal et al. (2009a); Bertsimas
et al. (2011)). The key concept is that a solution has to be feasible for all realiza-
tions of the uncertain parameters, which are assumed to reside in convex uncertainty
regions.

For a generalized FP, the objective is the maximum of finitely many fractions, and
the feasible region is a convex set (see, e.g., Barros et al. (1996); Crouzeix and Ferland
(1991) for solution methods). A generalized FP with infinitely many fractions in the
objective was solved in (Lin and Sheu, 2005) using a cutting plane method, that uses
a set of finitely many fractions that is extended in each step. They do not mention
that their method can be used to deal with uncertain data, and do not use existing
results from RO. Our work can be seen as an alternative approach, where we also
deal with uncertainty in the constraints.

The Lagrange dual of a robust FP was studied by Jeyakumar et al. (2013), ex-
tending a result by Beck and Ben-Tal (2009). They assume that the uncertainty in
the numerator of the objective is independent from the uncertainty in the denomi-
nator. The dual is tractable when the numerator, denominator and constraints are
linear and the uncertainty regions are ellipsoidal or finite sets of scenarios. In this
chapter, we focus on the primal problem. Nevertheless, in Section 5.4.2 we obtain
and extend the list of tractable duals.

The aim of this chapter is to combine FP and RO, to provide a comprehensive
overview of the solution methods, and to investigate the improvement of RO on
numerical examples. First, we provide conditions that guarantee that a globally
optimal solution, or a sequence that converges to the globally optimal solution can
be found by solving one or more convex problems. The importance of these conditions
is illustrated with a numerical example from literature. Second, we identify two cases
for which an exact solution can be obtained by solving a single optimization problem.
Third, we show that the general problem can be solved with an (iterative) root finding
method.

In Section 5.2, we outline two existing solution methods for FPs, and present
a new result showing that the two approaches are each others duals. In Section
5.3, we present existing results in RO, that will be used for FPs as well. Our main
contribution is given in Section 5.4. The results are demonstrated on a return-on-
investment maximization problem, data envelopment analysis, and mean-variance
optimization in Section 5.5.
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5.2 Solving nonrobust fractional programs
In this section, we present two existing methods to solve FPs, and show that these
methods are dual to each other. To the best of our knowledge, this duality result is
new. Consider the following general formulation of an FP:

(FP) min
x∈Rn

f(x)
g(x) s.t. hi(x) ≤ 0, ∀i ∈ I.

We will assume that the constraint index set I is finite, that f is convex and non-
negative and that g is concave and positive over the feasible region. When the
functions f , g and hi are affine, (FP) is a linear fractional program:

(LFP) min
x∈Rn

b0 + b>x
c0 + c>x s.t. d0i + di

>
x ≤ 0, i ∈ I.

(Charnes and Cooper, 1962) show that (LFP) can be reformulated as an (equivalent)
LP by substituting y = x/(c0 + c>x) and t = 1/(c0 + c>x):

(CC-LFP) min
t∈R+,y∈Rn

b0t+ b>y s.t. d0it+ di
>
y ≤ 0, ∀i ∈ I,

c0t+ c>y = 1.

An optimal solution of (LFP) is obtained from an optimal solution of (CC-LFP) by
computing x = y/t. (Schaible, 1974) shows that a similar substitution (y = x/g(x),
t = 1/g(x)) transforms (FP), for which the numerator in the objective is positive on
the entire feasible region, into an equivalent convex programming problem:

(Schaible-FP) min
t∈R++,y∈Rn

tf
(
y

t

)
s.t. tg

(
y

t

)
≥ 1, thi

(
y

t

)
≤ 0, ∀i ∈ I.

(Schaible-FP) is indeed a convex problem, since the perspective function p(y, t) :=
tf (y/t) is jointly convex on Rn × R+ when f is convex on Rn. Furthermore, an
optimal x is obtained from x = y/t. Schaible also shows that, if the constraint
tg(y/t) ≥ 1 is formulated as an equality constraint: tg(y/t) = 1, it is not necessary
to require f to be positive (Schaible, 1974).

A different solution approach uses an auxiliary parameterized optimization prob-
lem. Let F (α) = minx∈Rn{f(x)− αg(x) : hi(x) ≤ 0 ∀i ∈ I}. The objective value of
(FP) is at least α if and only if F (α) ≥ 0 (Dinkelbach, 1967). So, the objective of
(FP) equals the largest α such that F (α) ≥ 0:

(P-FP) max
α∈R+
{α : min

x∈X
{f(x)− αg(x)} ≥ 0},
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where X denotes the feasible region {x ∈ Rn : hi(x) ≤ 0, ∀i ∈ I}. The usual way of
solving this problem is by finding the root of F , since the corresponding x is optimal
for (FP) (Dinkelbach, 1967). This is usually done with a Newton-like algorithm,
where there is some freedom in choosing the next iteration point (Chen et al., 2009).
The root of F is unique, since F is monotonically decreasing in α. The parameteric
program F (α) is convex when g is affine or when f is non-negative on the feasible
region (since then only α ∈ R+ needs to be considered). For these cases, the Newton
method to find the root of F was described by Dinkelbach (1967), which creates
a monotonically decreasing sequence that converges superlinearly and often (local)
quadratically to a root of F (Schaible, 1976).

We now show that these approaches are dual to each other when f is non-negative.
The proof for affine g and possibly negative f is similar.

Theorem 5 Assume that f is convex and non-negative on X, g is concave on X, X
is closed and convex, and the optimal value of (FP) is attained. Then (Schaible-FP)
and (P-FP) are dual to each other, and strong duality holds.

Proof. First note that the following reformulation is equivalent to (P-FP):

(RP-FP) max
α∈R+
{α : f(x)− αg(x) ≥ 0, ∀x ∈ X}.

The remainder of the proof is based on the theory “primal worst is dual best” intro-
duced by Beck and Ben-Tal (2009). Beck and Ben-Tal assume that X is compact
and convex. Since we have assumed X to be closed and convex and since an optimal
solution of (FP) is attained, compactness can be achieved by intersecting X with a
box that includes the optimal solution. Additionally, Beck and Ben-Tal assume that
the constraint in (RP-FP) is convex in α and concave in x, which indeed holds. For
fixed x, (RP-FP) is an LP with the following dual:

(D-LP) min
t∈R+
{tf(x) : tg(x) ≥ 1}.

While (RP-FP) is robust since the constraint has to hold for all x in X, the constraint
in the optimistic counterpart of (D-LP) has to hold for a single x:

(OD-LP) min
t∈R+,x∈X

{tf(x) : tg(x) ≥ 1}.

(RP-FP) and (OD-LP) are dual to each other (Beck and Ben-Tal, 2009). Strong
duality holds since (x, t) is a Slater point for (OD-LP) for sufficiently large t. It is
obvious that (OD-LP) and (Schaible-FP) are equivalent, since t = 0 is infeasible for
(OD-LP).
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5.3 Robust Optimization
There are currently two generic methods that deal with an infinite number of con-
straints. The first method is applicable to both linear and nonlinear constraints,
while the second method can only be applied to robust LPs.

The first (“constraint wise”) approach uses conic duality (Ben-Tal et al., 2009a)
or Fenchel duality (Ben-Tal et al., 2014). The vector x in Rn satisfies the following
infinite number of constraints:

hi(ai,x) ≤ 0, ∀ai ∈ RL : τij(ai) ≤ 0, ∀j ∈ J,

if and only if there exists uij ∈ R+ and vij ∈ RL (j ∈ J , J being a finite set) such
that x satisfies the following convex constraint:

∑
j∈J

uijτ
∗
ij

(
vij
uij

)
− (hi)∗

∑
j∈J
vij ,x

 ≤ 0, (5.1)

where τ ∗ij(s) = supai∈RL{s
>
ai− τij(ai)} and (hi)∗(s,x) = infai∈RL{s

>
ai−hi(ai,x)}

are the convex and concave conjugates of τij and hi, respectively, and vij is a vector
of the same dimension as ai. This approach requires the constraint to be concave in
ai, the functions τij to be convex, and ri(dom hi(·,x)) ∩ ri(Ui) 6= ∅ for all x ∈ Rn,
where Ui = {ai ∈ RL : τij(ai) ≤ 0, ∀j ∈ J}. This approach yields a tractable
formulation for many constraints and many uncertainty sets (see Tables 1 and 2 in
(Ben-Tal et al., 2014)), even if the conjugates do not have closed-form expressions.
To give an impression of the broad applicability of this method, let us cite some
examples, for which it provides a tractable reformulation. For uncertainty sets, one
could have a norm-bounded (e.g., box or ball), polyhedral or conic representable set,
or a generic set defined by (convex) power functions, exponential functions, negative
logarithms, or any function for which the convex conjugate exists. Constraints could
be linear or quadratic in the uncertain parameter. There are some operations on
functions that preserve the availability of the conjugate. One is multiplication with
a non-negative scalar: the concave conjugate of tf(a0,y/t) (with respect to a0) for
t ≥ 0, is the perspective of the concave conjugate of f : tf∗(s/t,y/t). Another one is
when hi is the sum of two functions: hi = hi1 + hi2. Suppose closed-form conjugates
exist for hi1 and hi2 separately; then:

(hi)∗(s,x) = max
s1∈RL,s2∈RL

{(hi1)∗(s1,x) + (hi2)∗(s2,x) : s1 + s2 = s} . (5.2)

When substituting (5.2) into (5.1), the max operator in (5.2) may be omitted, since
if the resulting constraint holds for some s1 and s2, then it surely holds for the
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maximum. This example shows that a closed-form expression for the conjugate is
indeed not always required.

The second method solves any robust LP with a convex uncertainty region via
its Lagrange dual (Chapter 2). The transformation from the primal to the dual is
a three step procedure. First, the dual of the nonrobust LP is formulated, where
the uncertain parameters are assumed to be known. Second, instead of enforcing the
constraints for all realizations of the uncertain parameters (“robust counterpart”),
the constraints of the dual have to hold for a single realization of the uncertain
parameters (“optimistic counterpart”). So, the uncertain parameters are added to
the set of optimization variables. The last step is to reformulate the nonconvex
optimistic counterpart to an equivalent convex optimization problem. The optimal
solution of the resulting problem can be translated to an optimal solution of the
original robust LP via the KKT vector.

In the remainder, we provide reformulations based on (5.1), but the reader should
be aware that the other approaches may be useful when all functions involved are
linear.

5.4 Solving robust fractional programs
In this section, we show how to solve (R-FP). It is our aim to obtain Robust Counter-
parts (RCs), that can be solved with existing Robust Optimization methods. First,
we formulate conditions that give raise to convex optimization problems. Under these
conditions, a globally optimal solution can be found by solving a single convex opti-
mization problem (Sections 5.4.2 and 5.4.3). These conditions also guarantee that, in
the general case (Section 5.4.4), a root finding method produces a sequence of convex
optimization problems, whose solutions converge to a globally optimal solution. The
results of this section are summarized in Tables 5.1-5.3.

5.4.1 Robust formulation and assumptions
The uncertain parameters, denoted by ai, are assumed to lie in sets Ui ⊂ RL, which
we define using functions τij : RL → R:

Ui := {ai ∈ RL : τij(ai) ≤ 0, ∀j ∈ J}, (5.3)

where J is a finite set. In the RC of (FP), the constraints have to be satisfied by all
realizations of the uncertain parameters:

(R-FP) min
α∈R,x∈Rn

α s.t. f(a0,x)
g(a0,x) − α ≤ 0 ∀a0 ∈ U0

hi(ai,x) ≤ 0, ∀ai ∈ Ui, ∀i ∈ I. (5.4)
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Note that the uncertainty is specified constraint-wise, which is possible even if the
parameters in different constraints are correlated (Ben-Tal et al., 2009a, p. 12). We
make the following assumptions:

1. τij are convex and the sets Ui are convex and compact,

2. f and hi are convex in x for every fixed value of ai in Ui,

3. g is concave in x for every fixed value of ai in Ui,

4. f and hi are concave in ai for every feasible x,

5. g is convex in ai for every feasible x,

6. g(a0,x) > 0 for every a0 in U0 and every feasible x, and

7. f(a0,x) ≥ 0 for at least one a0 ∈ U0 and for every feasible x.

The last assumption is not necessary if g is biaffine, i.e., when g is affine in each
parameter when the other parameter is fixed, of which we show the consequences in
Section 5.4.5. In robust linear programming, the assumption that Ui is compact and
convex is made without any loss of generality (Ben-Tal et al., 2009a, p. 12). For robust
FP, compactness is not a restriction since the functions hi are continuous and the
constraints do not contain strict inequalities. So, the problem remains unchanged
if the uncertainty region is replaced with its closure. However, requiring Ui to be
convex is a restriction (unless f , g and h are affine in ai), that is necessary for using
existing results in RO.

Assumptions 4 and 5 are made solely because they are required by generic meth-
ods to derive a tractable RC. There are some examples where the RC can be derived
even though these conditions are not fulfilled, e.g., if the uncertainty region is the
convex hull of a limited number of points and the constraint is convex in the uncer-
tain parameter, for a conic quadratic program with implementation error, or when
the S-lemma or a sums of squares result can be applied (Ben-Tal et al., 2009a, 2014;
Ben-Tal and den Hertog, 2014; Bertsimas et al., 2012). In these cases, assumptions
4 and 5 are not necessary.

In literature a problem is solved, that does not satisfy these requirements (Lin
and Sheu, 2005). While the authors claim that this did not affect their computations
and that they find the global optimum, in Appendix 5.A we show that their solution
is suboptimal.
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5.4.2 Special case: uncertainty in the numerator is indepen-
dent of the uncertainty in the denominator

Suppose the uncertainty in the numerator of the objective is decoupled from the
uncertainty in the denominator:

(R-S1) min
α∈R+,x∈Rn

α s.t. f(a0,x)
g(a0′,x) − α ≤ 0, ∀a0 ∈ U0, ∀a0

′ ∈ U ′0

hi(ai,x) ≤ 0, ∀ai ∈ Ui, ∀i ∈ I.

We claim that (R-S1) is equivalent to the RC of the Schaible reformulation:

(R-Schaible-S1) min
α∈R+,t∈R++,y∈Rn

α s.t. tf
(
a0,

y

t

)
− α ≤ 0, ∀a0 ∈ U0

tg
(
a0
′,
y

t

)
≥ 1, ∀a0

′ ∈ U ′0 (5.5)

thi

(
ai,
y

t

)
≤ 0, ∀ai ∈ Ui ∀i ∈ I.

Clearly, an optimal solution of (R-Schaible-S1) exists, for which t = supa01∈U ′0
1/g(a0

′,y/t).
Equivalence between (R-S1) and (R-Schaible-S1) readily follows from the substition
x = y/t that converts a feasible solution of one problem to a feasible solution of the
other problem.

This result extends (Jeyakumar et al., 2013). They provide the dual of (R-S1),
and show that strong duality holds. In case f , g and hi are linear, they show that the
dual of (R-S1) is tractable when the uncertainty region is ellipsoidal or consists of a
finite set of scenarios. The resulting problems can also be obtained from our work
by applying the solution method from Chapter 2 to (R-Schaible-S1). In addition to
ellipsoids or scenarios, our method works with any convex uncertainty region, such
as a polyhedral set or a conic quadratic representable set. A similar result is claimed
by Kaul et al. (1986), but that result is wrong (see Appendix 5.B).

We provide a reformulation of (R-Schaible-S1) if the RO method using conjugates
is used (eq. (5.1)). The resulting equivalent problem becomes:

min α s.t.
∑
j∈J

u0jτ
∗
0j

(
v0j

u0j

)
− tf∗

(∑
j∈J v0j

t
,
y

t

)
− α ≤ 0

∑
j∈J

u0′jτ
∗
0′j

(
v0′j

u0′j

)
− tg∗

(∑
j∈J v0′j

t
,
y

t

)
≥ 1

∑
j∈J

uijτ
∗
ij

(
vij
uij

)
− t(hi)∗

(∑
j∈J vij
t

,
y

t

)
≤ 0, ∀i ∈ I

α ∈ R+, t ∈ R++,u ∈ R(|I|+2)×|J |,v ∈ R(|I|+2)×|J |×L,y ∈ Rn.
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5.4.3 Special case: the denominator does not depend on the
optimization variable x

If the optimization variables do not appear in the denominator, (R-FP) is equivalent
to (Ben-Tal et al., 2014, Ex. 30):

(R-S2) min
α∈R+,x∈Rn

α s.t. f(a0,x)− αg(a0) ≤ 0, ∀a0 ∈ U0

hi(ai,x) ≤ 0, ∀ai ∈ Ui, ∀i ∈ I.

Note that g indeed does not depend on x. (R-S2) can be solved via the following
equivalent convex reformulation using (5.1) and standard techniques for the conjugate
of the sum of two functions:

min α s.t.
∑
j∈J

t0jτ
∗
0j

(
v0j

t0j

)
− f∗

s+
∑
j∈J
v0j ,x

+ αg∗
(
s

α

)
≤ 0

∑
j∈J

tijτ
∗
ij

(
vij
tij

)
− (hi)∗

∑
j∈J

vij ,x

 ≤ 0, ∀i ∈ I

α ∈ R+, t ∈ R(|I|+1)×|J |
+ , s ∈ RL,v ∈ R(|I|+1)×|J |×L,x ∈ Rn.

5.4.4 General case
We now show how to solve the general problem (R-FP) using the following parametric
problem:

F (α) = min
x,w

w s.t. f(a0,x)− αg(a0,x) ≤ w, ∀a0 ∈ U0 (5.6)

hi(ai,x) ≤ 0, ∀ai ∈ Ui, ∀i ∈ I,

which is a convex optimization problem since we only have to solve it for α ∈ R+.
Let α∗ be a root of F . Lin and Sheu show that an optimal solution of (R-FP) is
the minimizer x of F (α∗) if the feasible region for x is compact (Lin and Sheu,
2005). We assume from now on that the constraint functions hi define a compact
feasible region. Moreover, they show that F (α) < 0 if and only if α > α∗. Lin and
Sheu do not use results from RO to arrive at the deterministic reformulation (5.7).
Instead, they replace the set U0 with a finite set, approximate F (α) with entropic
regularization method, and iteratively generate a sequence α̃k that converges to α∗.
The approximation becomes more accurate as the root of F is approached. The
reason why they approximate F (α) is because they claim that computing its value
is difficult. Our approach is to solve F (α) using RO, which inherently produces
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tractable problems. The following convex reformulation using (5.1) is equivalent:

F (α) = min w s.t.
∑
j∈J

t0jτ
∗
0j

(
v0j

t0j

)
− f∗

s+
∑
j∈J
v0j ,x

+ αg∗
(
s

α
,x
)
≤ w

(5.7)
∑
j∈J

tijτ
∗
ij

(
vij
tij

)
− (hi)∗

∑
j∈J
vij ,x

 ≤ 0, ∀i ∈ I

t ∈ R(|I|+1)×|J |
+ , s ∈ RL,v ∈ R(|I|+1)×|J |×L, w ∈ R,x ∈ Rn.

Since F is monotonically decreasing in α, as for FPs and generalized FPs, existing
root-finding methods can be used. We mention a few of these that produce a sequence
{αk} which converges to α∗:

1. The bisection method. Bounds on the interval that contain α∗ are:

αLB = min
x∈Rn
{f(ā0,x)/g(ā0,x) : hi(ai,x) ≤ 0 : ∀ai ∈ Ui ∀i ∈ I} (5.8)

αUB = sup
a0∈U0

f(a0,x)/g(a0,x), (5.9)

where (5.8) is computed for a fixed ā0 from U0, and (5.9) is computed for some
x that is (robust) feasible, i.e., for an x that satisfies (5.4). These bounds can
be computed relatively easily using the Schaible reformulation. Alternatively,
the lower bound (5.8) may be computed for fixed āi from Ui. Since F (αLB) ≥ 0
and F (αUB) ≤ 0, and since F is clearly nonincreasing, α∗ lies in [αLB, αUB].
The middle point of this interval is αk := 0.5(αLB+αUB). By evaluating F (αk),
the width of the interval that contains α∗ can be halved: if F (αk) > 0, then
set αLB := αk, otherwise set αUB := αk. By increasing k by 1 and repeating
this procedure, the series {αk} converges to α∗.

2. The Dinkelbach type algorithm by Crouzeix et al. (1985), adjusted for infinitely
many ratios. The method starts with k := 0 and αk := supa0∈U0 f(a0,x)/g(a0,x)
for some feasible x. Then F (αk) is computed, with maximizer xk. If F (αk) < 0,
then the next α is determined by αk+1 := maxa0∈U0 f(a0,xk)/g(a0,xk). Com-
puting αk+1 requires solving an FP. The method proceeds by increasing k by 1
and again computing F (αk). If the feasible region for x is compact, then the
series {αk} converges linearly to αk.

3. The same as the second method, except that (5.6) is replaced with f(a0,x)−
αg(a0,x) ≤ wg(a0,xk). Multiplying the right-hand side with g(a0,xk) may
increase the speed of convergence for the same complexity of computation
(Crouzeix et al., 1986).
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4. The same as the second or third method, except that the a0 that maximizes
F (αk) is used to compute αk+1 instead of solving a new optimization problem.
The worst case a0 in the final solution of computing F (αk) can be recovered
without much computational effort. Thus, αk+1 = f(a0,xk)/g(a0,xk) is com-
puted more efficiently than in the second or third method. Additional work is
required to ensure convergence to α∗ (Crouzeix and Ferland, 1991, Section 5).

Let xk be the maximizer of F (αk). If a root finding method finds the root in a finite
number of steps, then an exact solution of (R-FP) is found. Otherwise, Crouzeix
et al. show that, if the sequence {αk} converges to α∗, then any convergent sub-
sequence of {xk} converges to the optimal solution x∗ of (R-FP) (Crouzeix et al.,
1985, Theorem 4.1c).

5.4.5 Consequences when the denominator is biaffine
The assumption that the numerator is positive ensures that the objective value of (R-
FP) is positive over the feasible region. Consequently, we could assume α ∈ R+; this
would produce a convex optimization problems. If g is biaffine, then the resulting
problems are also convex for α < 0. We shall discuss the results to each of the
three aforementioned cases separately. For the first special case (Section 5.4.2), the
restriction that the numerator is positive may be dropped only if the denominator
does not contain an uncertain parameter. Then, (R-S1) and (R-Schaible-S1) are
equivalent if α ∈ R+ is replaced with α ∈ R and (5.5) is stated as an equality (cf.
(Schaible, 1974)). The reason why the denominator may not contain an uncertain
parameter is because t = 1/g(x,a01) is not possible for multiple a01.

For the second special case (Section 5.4.3), the denominator only depends on a0,
so “biaffine” in the title of this subsection should be read as “affine”. When (R-S2)
is solved for α ∈ R, the restriction that the numerator is positive may be dropped.

For the general case (Section 5.4.4), no changes need to be made to drop the
restriction that the numerator is positive.

Table 5.1 – Tractable cases when uncertainty in the numerator is independent
of the uncertainty in the denominator. ` denotes an affine function.

f g hi sgn(f) (R-Schaible-S1)

f(a0,x) g(a0
′,x) hi(ai,x) ≥ 0 no modifications

f(a0,x) `(x) hi(ai,x) any α ∈ R, (5.5) as an equality
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Table 5.2 – Tractable cases when the denominator does not depend on x. `
denotes an affine function.

f g hi sgn(f) (R-S2)

f(a0,x) g(a0) hi(ai,x) ≥ 0 no modifications
f(a0,x) `(a0) hi(ai,x) any α ∈ R

Table 5.3 – Tractable cases for the general case. ` denotes a biaffine function.

f g hi sgn(f)

f(a0,x) g(a0,x) hi(ai,x) ≥ 0
f(a0,x) `(a0,x) hi(ai,x) any

5.5 Numerical examples
In this section, we test our method on three examples: a multi-item newsvendor
problem (Section 5.5.1), mean-variance optimization (Section 5.5.2) and data envel-
opment analysis (Section 5.5.3).

5.5.1 Multi-item newsvendor example
In Chapter 2, a multi-item newsvendor problem is solved by minimizing the invest-
ment cost under the condition that at least a certain expected profit is made.

We show how to directly optimize the expected return on investment for this
example. Let us first recapitulate the problem. The newsvendor buys Qi units
of item i at the beginning of the day. Each item has its associated ordering cost
ci, selling price vi, salvage price ri, and unsatisfied demand loss li. We assume
ri ≤ vi + li. During the day the newsvendor faces a demand di, resulting in a profit
of min{viQi + li(Qi− di)− ciQi, vidi + ri(Qi− di)− ciQi}. The demand is not known
in advance, but there are finitely many demand scenarios dis (s in S) that occur with
(uncertain) probability pis, independently of other items.

The problem of maximizing expected return on investment can be formulated as:

(R-NV) max
Q∈R|I|+ ,u∈R|I|×|S|

min
pi∈Ui

∑
i∈I
∑
s∈S pisuis∑

i∈I ciQi

s.t. uis + (ci − ri)Qi ≤ dis (vi − ri) , ∀i ∈ I, ∀s ∈ S
uis + (ci − vi − li)Qi ≤ −disli, ∀i ∈ I, ∀s ∈ S,

where uis is the contribution to the profit of item i in scenario s, and the convex and
compact uncertainty regions Ui are defined using the Matusita distance, which is a
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φ–divergence measure (Ben-Tal et al., 2013):

Ui =
{
pi ∈ R

|S|
+ :

∑
s∈S

pis = 1,
∑
s∈S
|(p̂is)α − (pis)α|1/α ≤ ρ, ∀i ∈ I

}
.

Note that the denominator is strictly positive if at least one item is bought, and also
the other assumptions are fulfilled. (R-NV) can be classified under the first special
case (Section 5.4.2). Since all functions are affine and the denominator is certain,
the Schaible reformulation and the Charnes-Cooper reformulation are equivalent.
(R-NV) is therefore equivalent to:

(R-CC-NV)
max

Q∈R|I|+ ,t∈R+,u∈R|I|×|S|
min
pi∈Ui

∑
i∈I

∑
s∈S

pisuis

s.t. uis + (ci − ri)Qi ≤ dis (vi − ri) t, ∀i ∈ I, ∀s ∈ S
uis + (ci − vi − li)Qi ≤ −dislit, ∀i ∈ I, ∀s ∈ S∑
i∈I

ciQi = 1,

where Q and u in (R-CC-NV) have to be divided by t to obtain the Q and u in
(R-NV). (R-CC-NV) is a linear program with a convex uncertainty region that we
solve via its dual as outlined in the introduction. The last of the reformulation steps,
a substitution, is not necessary since the uncertainty only appears in the objective.
Let xis, yis and z be the dual variables of (CC-NV); then the optimistic dual (OD-
CC-NV) is given by:

(OD-CC-NV) min z

s.t. xis + yis = pis, ∀i ∈ I, ∀s ∈ S∑
s∈S
{(ci − ri)xis + (ci − vi − li)yis}+ ciz ≥ 0, ∀i ∈ I

(5.10)∑
i∈I

∑
s∈S
−dis(vi − ri)xis + disliyis ≥ 0 (5.11)

∑
s∈S

pis = 1, ∀i ∈ I
∑
s∈S
|(p̂is)α − (pis)α|1/α ≤ ρ, ∀i ∈ I

p ∈ R|S|+ ,x ∈ R|I|×|S|+ ,y ∈ R|I|×|S|+ , z ∈ R. (5.12)

The optimal value of (OD-CC-NV) is the robust expected return on investment. The
corresponding optimal order quantities Q can be derived from the KKT vector of
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(OD-CC-NV) by dividing its elements associated with (5.10) by the element corre-
sponding to (5.11). This is the same as dividing Q by t in (R-CC-NV) to undo the
Charnes-Cooper transformation.

We solve the problem for the same data as in Chapter 2 with AIMMS 3.11
(Paragon Decision Technology, the Netherlands) and KNITRO 7.0 (Zienna Opti-
mization LLC, USA) with its default settings. Computation errors for negative pis
were avoided by using |pis|α instead of (pis)α. To obtain the nominal solution we take
ρ = 0, while ρ = 0.03 for the robust solution. Solutions were obtained in less than
0.01 seconds. When the probabilities are as expected (ρ = 0), the expected return on
investment of the nominal solution is 0.297, while for the robust solution it is 0.285.
When ρ = 0.03 and the worst case probabilities occur for the nominal solution, i.e.,
the probabilities that minimize the expected return on investment for the nominal
solution, the objective value drops to 0.211, while for the robust solution it drops
to 0.214. So, the solution indeed becomes more robust, but the difference with the
nominal solution is small. We verify if the decision maker could have done better, if
he knows beforehand which probability vector realizes. This done by optimizing the
nominal model (ρ = 0) while setting the probabilty estimates p̂is equal to the worst
case probabilities for the robust solution. This gives the so-called perfect hindsight
solution. The objective value is as low as 0.214. So, even though the robust objective
could deteriorate substantially, there is no other solution that performs better.

5.5.2 Mean-variance optimization
We are to present an example that involves a trade-off between mean and variance.
This trade-off is commonly used in portfolio optimization, including the Modern
Portfolio Theory (MPT) founded by Markowitz (1952), where the goal is to select
the right mix of assets. In contrast to MPT, we do not impose that the expected
returns on the assets and the covariance matrix are fully known. Instead, we assume
that finitely many scenarios s (in S) for the future can be identified along with
unknown probabilities of occurence ps, which are estimated by p̂s. The return of
asset i in scenario s is a constant ris, so when xi units of money are invested in
asset i, the return in scenario s is given by us = ∑

i∈I risxi (possibly negative). The
expected return and variance are given by:

E(return) :=
∑
s∈S

psus

Var(return) :=
∑
s∈S

ps (us − E(return))2 (5.13)

=
∑
s∈S

psu
2
s −

(∑
s∈S

psus

)2

. (5.14)
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To remain in the minimization framework, the objective is to minimize the variance-
to-mean ratio (or the dispersion index). The robust optimization problem is given
by:

(R-I) min
x∈R|I|+ ,u∈R|S|

max
p∈U

∑
s∈S psu

2
s − (∑s∈S psus)2∑
s∈S psus

s.t. us =
∑
i∈I

risxi, ∀s ∈ S∑
i∈I

xi = C

∑
s∈S

psus > 0, ∀p ∈ U .

The last two constraints ensure that C units of money are invested, and that this
model has a feasible solution only if the expected profit is positive. The numerator
is convex in us (from (5.13)) and concave in ps (from (5.14)). The denominator is
clearly concave in ps and convex in us. Moreover, the numerator is non-negative and
the denominator is positive on the feasible region. For the uncertainty region we
use the modified χ2–distance as a φ–divergence measure, which can be justified by
statistical theory (Ben-Tal et al., 2013):

U0 =
{
p ∈ R|S|+ :

∑
s∈S

ps = 1,
∑
s∈S

(ps − p̂s)2

p̂s
≤ ρ

}
.

(R-I) is not one of the special cases, so we solve this problem using the general method.
In order to formulate (5.7) explicitly, we first derive some conjugate functions. The
conjugate for f is from Ben-Tal et al. (2014, Ex. 25).

f(p,u) =
∑
s∈S

psu
2
s −

(∑
s∈S

psus

)2

f∗(v,u) = sup
z
{−z

2

4 : u2
s + usz = vs, ∀s ∈ S}

g(p,u) =
∑
s∈S

psus g∗(v,u) =

0, if vs = us, ∀s ∈ S
∞, otherwise

τi1(p) = max
s
{−ps} τ ∗i1(v) =

0, if vs ≤ 0, ∀s ∈ S and ∑
s∈S vs ≥ −1

∞, otherwise

τi2(p) =
∑
s∈S

ps − 1 τ ∗i2(v) =

1, if vs = 1, ∀s ∈ S
∞, otherwise

τi3(p) = 1−
∑
s∈S

ps τ ∗i3(v) =

−1, if vs = −1, ∀s ∈ S
∞, otherwise

τi4(p) =
∑
s∈S

(ps − p̂s)2

p̂s
− ρ τ ∗i4(v) = ρ+

∑
s∈S

p̂s

(1
4v

2
s + vs

)
.
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Plugging in these formulas in (5.7) yields F (α) =

min w s.t. t02 − t03 + ρt04 +
∑
s∈S

p̂s

(
(v04)2

s

4t04
+ (v04)s

)
+ z2

4 ≤ w (5.15)

(v01)s ≤ 0 (v11)s ≤ 0, ∀s ∈ S∑
s∈S

(v01)s ≥ −t01
∑
s∈S

(v11)s ≥ −t11

u2
s + usz = usα + (v01)s + t02 − t03 + (v04)s, ∀s ∈ S (5.16)

t12 − t13 + ρt14 +
∑
s∈S

p̂s

(
(v14)2

s

4t14
+ (v14)s

)
< 0

us + (v11)s + t12 − t13 + (v14)s = 0, ∀s ∈ S
us =

∑
i∈I

risxi, ∀s ∈ S∑
i∈I

xi = C

t ∈ R2×4
+ ,u ∈ R|S|,v ∈ R2×4, w ∈ R,x ∈ R|I|, z ∈ R.

This problem is nonconvex because of the product usz in (5.16). Similar to (Yanıkoğlu
et al., 2013, Theorem 1) the problem can be made convex by replacing t02 − t03 in
(5.15) with u2

s + usz − usα − (v01)s − (v04)s and omitting (5.16) from the problem.
Constraint (5.15) then becomes:

(
us + z

2

)2
− usα− (v01)s − (v04)s + ρt04 +

∑
s′∈S

p̂s′

(
(v04)2

s′

4t04
+ (v04)s′

)
≤ w, ∀s ∈ S,

(5.17)

which is jointly convex in all variables. In order to improve the tractability of com-
puting F (α), we cast it as a conic quadratic problem. The only complicating terms
are (v04)2

s/(4t04), which can be reformulated using a standard trick. Constraint (5.17)
is satisfied if and only if there exists auxiliary variables ys such that the following
inequalities are satisfied:(

us + z

2

)2
− usα− (v01)s − (v04)s + ρt04 + 2

∑
s′∈S

p̂s′ (ys′ + (v04)s′) ≤ w, ∀s ∈ S
∣∣∣∣∣
∣∣∣∣∣
(

(v04)s
ys
2 − 2t04

)∣∣∣∣∣
∣∣∣∣∣
2
≤ ys

2 + 2t04, ∀s ∈ S.

The problem (R-I) can now be solved by determining the root of F .
We perform a numerical analysis on 10 items and a generated data set of 50

scenarios. In order to incorporate correlations, we first construct a covariance matrix
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AA
> , where A is a 10 × 10 matrix whose entries are uniformly and independently

distributed on [−0.5, 0.5]. Then, to reflect the idea that a higher risk gives a higher
expected return, a vector of expected returns µ is constructed with a linear mapping
on the variances of the items. The item with the smallest variance gets an expected
return of 0.01, and the item with the largest variance gets an expected return of
0.20. Finally, the scenarios are drawn, each from a multivariate normal distribution
with the constructed mean µ and covariance AA> . We solve the model for ρ = 1,
p̂s = 0.02 for all s, and C = 100 to obtain a robust solution using YALMIP (Löfberg,
2012) and MOSEK (Mosek ApS, Denmark) with their default settings. For this value
of ρ the probabilities can vary, on average, between 0 and 0.04. Additionally, we solve
the same problem for ρ = 0, i.e., when ps = p̂s, to obtain a nonrobust solution. We
use bisection search on the interval determined by (5.8) and (5.9) and stopped when
the interval width was less than 10−10 . One step in bisection search takes around 2
seconds, of which around 7% is spent by MOSEK.

The convergence of the bisection method turns out to be adequate. Let xi denote
the solution in iteration i, and let x∗ denote the final solution. The initial search in-
terval is [0.70, 20.09]. The solution x1, obtained from solving F ((0.70 + 20.09)/2), is
far from optimal: ||x1 − x∗||∞ ≈ 2.2. In each three or four iterations, xi gains
one extra digit of accuracy. After 22 iterations, the accuracy has improved to
||x22 − x∗||∞ ≈ 4.1 · 10−7. The algorithm terminates after 37 iterations, with no
apparent improvement following the 22nd iteration. Since ||x∗||2 ≈ 44.9, the error
after 22 iterations is relatively small.

When ps = p̂s for all s, the mean-variance ratio of the nominal solution (which
is 6.34) is indeed lower than that of the robust solution (which is 6.45). For both
solutions we determined the worst case p̂ and the corresponding objective value.
The objective of the robust solution (which is 18.62) is slightly better than that of
the nominal solution (which is 18.98). This shows that uncertainty may cause a
factor three deterioration of the objective value. Relative to this large difference,
the difference between the two solutions is small. So, the nominal solution performs
quite well for this example. For the worst case probabilities for the robust solution,
we have computed the optimal portfolio as if these solutions were known beforehand
(perfect hindsight solution). The objective value equals that of the robust solution.
So, even though the robust objective could deteriorate substantially, there is no other
solution that performs better.

5.5.3 Data envelopment analysis
Data Envelopment Analysis (DEA) is a tool to estimate the efficiency of different
decision making units (DMUs) based on their inputs and outputs. DEA was orig-
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inally introduced for not-for-profit companies, e.g., schools where inputs could be
number of teacher hours and number of students per class, and outputs could be
arithmetic scores and psychological tests of student attitudes, e.g., toward the com-
munity (Charnes et al., 1978). The applicability of DEA is not limited to nonprofit
organizations. A reference list of more than 4,000 publications on DEA is given in
(Emrouznejad et al., 2008).

Let ni and no denote the number of in- and outputs, respectively. The efficiency
of a DMU is defined as the largest fraction of weighted outputs divided by weighted
inputs, given that the efficiency of the other DMUs is at most 1:

(DEA) max
u∈Rno+ ,v∈Rni+

u
>
y0

v>x0
s.t. u

>
yi

v>xi
≤ 1, ∀i ∈ I,

where xi and yi are the vectors of inputs and outputs of DMU i, and u and v are
the non-negative weights.

The inputs and outputs are model parameters that have to be acquired from
each DMU and are affected by measurement errors. Especially when a single DMU
represents a group of smaller business units or is a pool of all activities in a cer-
tain region, and the inputs and outputs are aggregated, errors become practically
inevitable. There have been many attempts to incorporate uncertainty in DEA. For
an overview, e.g., see (Shokouhi et al., 2014). Since our focus is on RO, we only
discuss the three papers that are relevant. The first only considers uncertain outputs
(Sadjadi and Omrani, 2008). The second considers jointly uncertain inputs and out-
puts (Shokouhi et al., 2010). Unfortunately, the robust counterpart in this chapter is
constructed in an ad-hoc manner that results in a nonconvex formulation, for which
it is not clear whether globally optimal solutions were found. The third considers
either uncertain inputs or uncertain outputs (Wang and Wei, 2010). In the last two
papers, a simulation study is performed to quantify the improvement offered by the
robust solution. For each randomly drawn set of inputs and outputs, they compute
the relative efficiencies with the u and v obtained from the robust solution. However,
in our view, when the inputs and outputs are fully known, the relative efficiencies
can only be computed by optimizing DEA for those known inputs and outputs. Our
results are therefore different in two ways. First, we consider both uncertain inputs
and uncertain outputs and solve the correct problem. Second, we perform a valid
simulation study to verify whether the robust solution is better than the nominal
solution.

In this section, we take the data from Shokouhi et al. (2010), solve the correct
robust counterpart with uncertain inputs and uncertain outputs, and perform a valid
comparison between the robust and the nonrobust solution. In this data set there
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are five DMUs, two inputs and two outputs. The in- and outputs are uncertain, but
known to reside in given intervals (Table 5.4).

In order to get in the minimization framework, the objective of (DEA) is replaced
with its reciprocal. The optimal solution of the robust counterpart of (DEA) then
corresponds to the reciprocal of the root of:

F (α) = min
u∈Rno+ ,v∈Rni+ ,w∈R

w s.t. v
>
x0 − αu

>
y0 ≤ w, ∀(x,y) ∈ U ,

u
>
yi ≤ v

>
xi, ∀(x,y) ∈ U , ∀i ∈ I.

Following Shokouhi et al. (2010), we take the Bertsimas and Sim uncertainty region:

U = {(x,y) ∈ R(|I|+1)×ni × R(|I|+1)×no : xij = x̄ij + ζxij∆x̂ij,
yij = ȳij + ζyij∆ŷij, ||vec(ζx, ζy)||∞ ≤ 1, ||vec(ζx, ζy)||1 ≤ Γ},

where x̄ij and ȳij are the midpoints, ∆x̂ij and ∆ŷij are the half-widths of the uncer-
tainty intervals, and the vec operator stacks the columns of the matrix arguments
into a single vector. For robust LP, this set has the property that when Γ is integer,
it controls the number of uncertain elements that can deviate from their nominal
values (Bertsimas and Sim, 2004). This property also holds for a robust LFP, since
F (α) is a robust LP.

The optimal weights u and v depend on the actual inputs and outputs. One
may therefore be inclined to use Adjustable Robust Optimization (ARO) when Γ is
larger than the dimensions of xi and yi added. Consequently, u and v are replaced
by functions of the uncertain parameters. Unfortunately, even in the simple case of
affine decision rules, this is often intractable. In the constraints of F (α), u and v are
multiplied with uncertain parameters, which yields constraints that are quadratic in
the uncertain parameters. These can currently only be solved efficiently for ellipsoidal
uncertainty sets.

We use bisection search on the interval determined by (5.8) and (5.9) to determine
the root of F (α), and stop when the interval width is less than 10−4 (which turns out
to be accurate enough for ranking the DMUs). F (α) is computed using YALMIP and
MOSEK with their default settings, and takes a few tenths of a second on a normal
desktop computer where MOSEK accounts for around 10% of that time. The time
it takes to compute F (α) turns out to be approximately constant, so independent of
the remaining width of the interval and independent of the size of the uncertainty
region Γ. The root of F (α) is determined in a few seconds.

We computed the robust efficiencies of the DMUs for Γ ranging between 0 and
4 in steps of 0.1, since each constraint has at most four uncertain parameters. For
Γ ≤ 0.2, the list of DMUs ranked from most to least efficient, is 1, 2, 3, 5, 4. For
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Table 5.4 – Data set for the DEA example of Section 5.5.3.

DMUi Input 1 Input 2 Output 1 Output 2

1 [14,15] [0.06, 0.09] [157, 161] [28, 40]
2 [4,12] [0.16, 0.35] [157, 198] [21, 29]
3 [10,17] [0.10, 0.70] [143, 159] [28, 35]
4 [12,15] [0.21, 0.48] [138, 144] [21, 22]
5 [19,22] [0.12, 0.19] [158, 181] [21, 25]

Γ ≥ 0.3, DMUs 3 and 5 switch positions. Hence, DMU 5 is more efficient than DMU
3 when Γ ≥ 0.3. We have tried to verify this claim by running 100 simulations where
in each simulation we uniformly drew inputs and outputs from the uncertainty region,
solved (DEA) for each set of inputs and outputs, and ranked the DMUs based on
efficiency. In 76 out of 100 simulations, DMU 3 was more efficient than DMU 5. This
result advocates against the use of RO in DEA, since it shows that for Γ = 0 (i.e., the
nonrobust solution), the ranking is better than for Γ ≥ 1. We have also performed
the simulation with more extreme data, by drawing the inputs and outputs only
from the endpoints of their uncertainty intervals. This yielded similar results. Other
experiments, where we used an ellipsoidal uncertainty region instead of the Bertsimas
and Sim uncertainty region, or where we used the nominal objectives (based on x̄
and ȳ) but kept the uncertain constraints, also yielded similar results.

5.6 Conclusions
We have shown how RO can be applied to FPs as a method to deal with uncertain
data. The method has been tested on three problems. In all three examples we
observe that the nominal solution, which is obtained by solving the deterministic
problem, is severely affected by uncertainty. Surprisingly, this also holds for the
robust solution, and in none of the examples the robust solution offers a significant
improvement even when comparing worst case performance.

The first question that arises, is why the nominal solution performs so well. We
try to answer this question for the mean-variance optimization problem, and note
that the explanation for the multi-item newsvendor problem is similar. For a given
solution, the worst case for the mean is when the probability vector is a unit vector,
that assigns unit weight to the scenario with lowest return. For the variance, the
worst case is when the scenarios with the lowest and highest return each occur with
probability 0.5. For a robust solution w.r.t. the mean value, the scenario with lowest
return should be optimized, whereas for the variance, the returns in the scenarios
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with lowest and highest return should be close to each other. The nominal solution
simultaneously maximizes the expected value and minimizes the variance. While not
identical to the robust objective, it contains some aspects of it. For example, the
mean is a weighted sum that contains the return for the scenario with lowest return.

The second question that arises, is why there is a realization of the uncertain
parameters in Sections 5.5.1 and 5.5.2, for which no solution can outperform the
robust solution; even if the former is optimized as if the realization of the uncertain
parameters are known beforehand. This turns out to be due to Sion’s minimax
theorem (Sion, 1958). Our assumptions ensure that f(a0,x)/g(a0,x) is quasi-convex
in x (for fixed a0), quasi-concave in a0 (for fixed x), and continuous, and that
the uncertainty set is compact and convex, and the feasible set for x, say X, is
convex. Therefore, by Sion’s minimax theorem, maxa0∈U minx∈X f(a0,x)/g(a0,x) =
minx∈X maxa0∈U f(a0,x)/g(a0,x). This no longer holds when there is uncertainty in
the constraints, since the feasible region X changes when the values for the uncertain
parameters are known.

So, the robust solution is good in the sense that it cannot be improved in the
worst case, even if the values of the uncertain parameters are known beforehand.
On the other hand, the nominal solution performs well, at least in the examples
studied. It shall be interesting to see the difference in real-life examples, especially
with uncertainty in the constraints.

5.A The importance of convexity conditions

We provide a short example to stress the importance of the convexity/concavity
conditions on f and g. The second numerical example in (Lin and Sheu, 2005) is:

min
x∈Rn

max
a∈[0,1]

a2x1x2 + x2a
1 + ax3

3
5(a− 1)2x4

1 + 2x2
2 + 4ax3

s.t. 0.5 ≤ xi ≤ 5, i = 1, 2, 3.

This problem does not satisfy the convexity/concavity conditions from Section 5.4.
Lin and Sheu claim that x = (0.5 1.5 0.5) and a = 0 is optimal with a value
of 0.21 (reported as −0.21), but x = (0.5 5 0.5) and a = 1 is a better solution
(maybe still not optimal) since the corresponding value is 0.06.
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5.B On the result by Kaul et al. (1986)
This appendix shows a mistake in the paper by Kaul et al. (1986). Essentially, they
formulate the dual of:

min
α∈R+,x∈Rn+

α s.t. b0 + b>x
c0 + c>x ≤ α, ∀(b0, b) ∈ U1 × U2, ∀(c0, c) ∈ U3 × U4,

Ax ≤ d.

Note that x is non-negative. In their Lemma 2.1 they claim that the worst case (c0, c)
does not depend on x, and is given by c∗0 = minc0∈U3{c0} and c∗ with components
c∗i = minc∈U4{ci}. This implicitly assumes that c∗ is a member of U4, which is not
always true. The mistake becomes clear in their numerical example where they use
c∗ = [4; 2], which is not in the uncertainty set. Consequently, the proposed approach
gives the wrong dual problem and a suboptimal solution. Our results in Section 5.4.2
can provide the correct dual problem under milder conditions on the uncertainty sets.
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CHAPTER 6

Approximating the Pareto set of multiobjective
linear programs via Robust Optimization

Abstract We consider problems with multiple linear objectives and
linear constraints and use Adjustable Robust Optimization and Poly-
nomial Optimization as tools to approximate the Pareto set with poly-
nomials of arbitrarily large degree. The main difference with exist-
ing techniques is that we optimize a single (extended) optimization
problem that provides a polynomial approximation whereas existing
methods iteratively construct a piecewise linear approximation. One
of the advantages of the proposed method is that it is more useful for
visualizing the Pareto set.

6.1 Introduction
Multiobjective optimization problems (MOPs) have a vector valued objective func-
tion f = [fi]1≤i≤k, where each fi is a separate objective. Often it is not possible to
have optimal values for all fi simultaneously, e.g. in portfolio optimization it is not
possible to have minimum risk and maximum return at the same time. Another ex-
ample is intensity-modulated radiation therapy, where tumour coverage is balanced
with sparing of surrounding organs (Craft and Bortfeld, 2008; Rennen et al., 2011).
Optimization of a vector valued function involves a trade-off between two or more
objectives fi (1 ≤ i ≤ k).

A simple way to deal with multiple objectives is by assigning an importance factor
wi > 0 to each objective and optimizing ∑k

i=1wifi (we make the assumption that all
fi should be minimized w.l.o.g.). If such importance factors are not known a priori,
a Pareto set (PS) allows the decision maker to make the trade-off after optimization.
The set PS consists of all objective vectors f in which one or more objectives can
not be improved without deteriorating one or more other objectives. Overviews of
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MOPs and approximation methods can be found in (Branke et al., 2008; Ehrgott,
2005; Miettinen, 1999).

In practice often approximations of PS are used, since the exact PS can often
not be found. In literature many different approximation methods are proposed. It is
desirable to approximate PS with as few optimization runs as possible (Rennen et al.,
2011). A well-known class of such approximation methods is sandwich methods.
Sandwich methods (Rennen et al., 2011) produce piecewise linear approximations in
which between PS is located. In each iteration an optimization problem is solved,
which leads to adding one or more facets to the approximations. All other methods
(again see (Branke et al., 2008; Ehrgott, 2005; Miettinen, 1999)) are also sequential,
i.e. in each iteration one has to solve an optimization problem which leads to an
improvement of the approximation.

In this chapter, we focus on approximating PS for linear programming and pro-
pose a totally different way than those in the literature. The first difference is that
our method is not sequential, but generates the approximation by solving one ex-
tended optimization problem. The second difference is that the final approximation
is not piecewise linear but a polynomial. The way we construct this approximation
is by using techniques from Adjustable Robust Optimization (ARO) (Ben-Tal et al.,
2009a) and Polynomial Optimization (Laurent, 2009). We first explain the link to
ARO. The Pareto set is seen as a function of the uncertain parameters f1, ..., fk−1.
The area of interest, i.e. the domain for f1, ..., fk−1 for which we would like to ap-
proximate the Pareto set, is considered as the uncertainty region. All variables in the
linear program are made adjustable in the parameters f1, ..., fk−1. We use polyno-
mials for the decision rule, and use Polynomial Optimization theory to reformulate
the resulting robust counterpart into a Semi-Definite Programming (SDP) problem.
Since the number of uncertain parameters (i.e. k − 1) is often low, the sizes of the
LMIs in the SDP are relatively small. Notice that in our approach ARO is merely
used as a tool, uncertainty in the data is not considered.

The approach proposed in this chapter has the following advantages:
The first advantage is that the final approximation is more tractable for navigating

through PS. The polynomial representation is useful for the user to visualize PS
for selecting the final solution. This is the reason why in (Goel et al., 2007), afer
determining points in the feasible region close to or on PS, polynomial regression is
used to obtain a tractable representation of PS (a so-called response surface). Our
method finds such a tractable representation directly, with the additional advantage
that it is guaranteed to lie in the feasible region. Sometimes the decision maker needs
a local approximation of PS around a given solution. Zhang et al. (2000) formulate
and test a method that gives a local quadratic approximation of (not necessarily
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convex) PS, but this approximation is neither an inner nor an outer approximation.
Our method gives a polynomial of arbitrary degree and is guaranteed to give an inner
approximation.

The second advantage is that our approach can be used to certify with a single
optimization run that a given set V is dominated, i.e. that all elements of the set are
dominated. If our method finds a feasible solution, then this solution is a certificate
that the set V is dominated.

The third advantage is that the explicit polynomial approximation can be used in
optimization problems with Pareto constraints. Such problems contain constraints
that enforce that the solution should be (near) Pareto optimal for a certain multi-
objective linear program. Examples of these problems can be found in e.g. (Hackman
and Passy, 2002). A Pareto constraint can be replaced by the explicit polynomial
approximation found by our method.

The fourth advantage is the possibility to quickly determine the shape of PS.
(Craft and Bortfeld, 2008), e.g., show that in IMRT the set of feasible objective
vectors is often “long and narrow” and therefore a linear approximation of PS suffices.
This linear approximation can be easily obtained by our approach. Finally, after an
initial approximation, the most interesting subregion can be selected, followed by one
or more iterations of approximation and selection. An interesting subregion can also
be used as input for another algorithm that explores it more carefully.

This method also has five disadvantages. First, the resulting problem is often an
SDP while the original problem is LP. Only in case the approximation is linear and
the region of interest is polyhedral, the resulting problem is LP. Note that this is still
an interesting case; see (Craft and Bortfeld, 2008) that uses linear approximations
in IMRT problems. Second, our method requires the region of interest to be known.
Sandwich algorithms are capable of exploring the region of interest (Rennen et al.,
2011). Third, it is difficult to approximate the Pareto set at its vertices, because
polynomials are smooth functions. The further the vertex angle from 180◦, the more
difficult it is to approximate it. However, in some cases a smooth approximation is
desirable, see e.g. (Mello et al., 2002). Fourth, the method can not be extended
to nonlinear multiobjective problems with current ARO technology. Methods for
approximating nonlinear MOPs can be found in (Luque et al., 2012; Utyuzhnikov
et al., 2009). Fifth, while we show (Appendix 6.A) that the method can also produce
outer approximations, this is practically impossible due to computational issues.

6.2 Notation
We use the notation from (Rennen et al., 2011) with some minor changes.
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Throughout this chapter, we use the following orderings of vectors. Let x,y ∈ Rn
with n ≥ 2. With xi, we denote the ith element of the vector x. To enumerate
different vectors, we use superscripts. When ordering two vectors, we use:

• x < y ⇔ xi < yi for all i = 1, . . . , n.

• x � y ⇔ xi ≤ yi for all i = 1, . . . , n and x 6= y.

• x ≤ y ⇔ xi ≤ yi for all i = 1, . . . , n.

The symbols >, 	 and ≥ are defined accordingly. We furthermore define the set
Rn− = {x ∈ Rn : x ≤ 0}. If X ⊆ Rn, then we define X + Rn− = {x + y : x ∈ X,y ∈
Rn−}. The sets Rn+ and X + Rn+ are defined accordingly.

In this chapter, we consider the following multi-objective optimization problem:

min f(x) = [(c1)>x, . . . , (ck)>x]>

Ax ≤ b,

where x ∈ Rn is the optimization variable, ci ∈ Rn are the objective vectors, and
A ∈ Rm×n and b ∈ Rm.

As it is generally impossible to find a feasible x that minimizes all objectives at
the same time, our aim is to find a set of so-called Pareto optimal solutions.

Definition 3
An objective vector f(x), for x such that Ax ≤ b, is (strongly) dominated if there
exists an x̃ such that Ax̃ ≤ b and f(x̃) < f(x). If no such x̃ exists, the objective
vector f(x) is weakly Pareto optimal.
An objective vector f(x), for x such that Ax ≤ b, is weakly dominated if there exists
an x̃ such that Ax̃ ≤ b and f(x̃) � f(x). If no such x̃ exists, the objective vector
f(x) is (strongly) Pareto optimal.

The set of Pareto optimal solutions is denoted by PS. An inner and outer ap-
proximation of the Pareto set are defined as follows:

Definition 4 A set IPS ⊆ Rk is an inner approximation of PS if it satisfies IPS ⊆
PS + Rk+.

Definition 5 A set OPS ⊆ Rk is an outer approximation of PS if it satisfies PS ⊆
OPS + Rk+.

We will approximate PS with polynomials on multidimensional sets. The following
definitions are used to define the degree of a polynomial.
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Definition 6 A monomial of degree d in x ∈ Rn with powers a ∈ Rn such that∑n
i=1 ai = d, is defined by ∏n

i=1 x
ai
i .

Definition 7 A polynomial of degree d in x ∈ Rn is defined as the sum of monomials
in x of degree up to d. The degree of a polynomial f is denoted as deg(f).

6.3 Inner approximation
Let U ⊆ Rk−1 be the domain of interest for
((c1)>x, (c2)>x, . . . , (ck−1)>x). For a fixed u in U , the following optimization prob-
lem determines a single weakly Pareto optimal solution (Miettinen, 1999, Thm.
3.2.1):

min
x

(ck)>x

(ci)>x ≤ ui i = 1, 2, . . . , k − 1
Ax ≤ b.

If the solution x is unique, it is (strongly) Pareto optimal (Miettinen, 1999, Thm.
3.2.4). For every u, there will be a different optimal x. So, we want to solve for x
as a function of u. The constraints should hold for all x(u) for which u is in U , and
the goal is e.g. to minimize the average objective:

min
x(u)

∫
U

(ck)>x(u)du (6.1a)

(ci)>x(u) ≤ ui ∀u ∈ U, i = 1, 2, . . . , k − 1 (6.1b)
Ax(u) ≤ b ∀u ∈ U. (6.1c)

This is an ARO problem, where u is the uncertain parameter, U is the uncertainty
region, and x is an adjustable variable Ben-Tal et al. (2009a). It is difficult to optimize
over functions, therefore ARO uses parameterized functions for adjustable variables.
The adjustable variables then become expressions that are linear in the parameters.
For instance, if we take a linear parameterization x(u) = α0 + α1u, the parameters
are α0 ∈ Rn and α1 ∈ Rn×(k−1). After substituting x(u) in the problem (6.1a)-(6.1c),
an ARO problem with constraints that are linear in α0 and α1 remains. In general,
the tractability of (6.1a)-(6.1c) depends on the class of functions considered for x and
the set U . Given a solution to this optimization problem, an inner approximation is
given by
{((c1)>x(u), (c2)>x(u), ..., (ck)>x(u)) : u ∈ U}. Constraint (6.1c) ensures that
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x(u) is feasible. So, the resulting inner approximation indeed lies in PS + Rk+.
The objective (6.1a) minimizes the volume under the inner approximation if (6.1b)
is tight for all u . Note that a constant function x(u) may be feasible for this
optimization problem. The reason why this problem returns an interesting inner
approximation and not just a constant function x is because from the objective it
follows that a smaller (ck)>x(u) is better, and a smaller (ck)>x(u) can only be
obtained by increasing (ci)>x(u) for i = 1, 2, . . . , k − 1. This increase as a function
of u is constrained by (6.1b).

A functional description of the inner approximation may be more tractable for a
specific purpose. Therefore, we define:

IPS = {(u, (ck)>x(u)) : u ∈ U}.

If constraint (6.1b) is tight for all u, IPS is the same as the inner approximation
given before. Otherwise, the given inner approximation dominates IPS.

The question arises for which regions U and functions x this formulation is
tractable. When U is polyhedral, for instance a box ({u ∈ Rk−1 : ||u||∞ ≤ 1}), and
x is linear in u, this problem can be formulated as an LP. The optimization problem
minimizes the volume enclosed between the linear approximation, the Pareto curve
and the boundary of U . In case of two objectives (k = 2), it will find the line con-
necting the point on the Pareto curve where (c1)>x = −1 with the point on the
Pareto curve where (c1)>x = 1. Hence, it finds two Pareto optimal points. This
extends to larger k, where it finds a plane going through k−1 Pareto optimal points.
In case U is a box, the instance size also grows linearly in k. This result of linear
growth is new, because determining a linear inner approximation over a box would
require determining the Pareto optimal points at the exponentially growing number
of extreme points of U .

The inner approximation becomes more interesting when x is nonlinear in u.
When k = 2, a tractable choice is given by polynomials: for polynomials of arbitrarily
large degree, the problem can be formulated as an SDP (Ben-Tal et al., 2009a, Lemma
14.3.4), for which polynomial time solvers are available. When k > 2, the problem is
tractable when U is ellipsoidal and x is quadratic in u (Ben-Tal et al., 2009a, Lemma
14.3.7). The resulting problem is an SDP with m + k − 1 variables matrices of size
k + 1 and m+ k − 1 constraints.

For k > 2, the problem can also be reformulated as an SDP when U is a semi-
algebraic set (U = {u : pi(u) ≤ 0 (i ∈ I)}, where pi are polynomials of arbitrary
degree), and x is a polynomial in u, but the reformulation is not always equivalent.
This means that the resulting optimal solution for the SDP reformulation may not
be optimal for (6.1a)-(6.1c). However, the solution to the reformulation is always
an inner approximation, and the numerical results in Section 6.4.2 are promising.
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Table 6.1 – Tractability of the inner approximation.

k U x(u) Tractability Exact

≥ 2 box linear LP
√

≥ 2 polyhedral linear LP
√

≥ 2 ball linear CQP
√

2 interval polynomial SDP
√

> 2 ellipsoidal quadratic SDP
√

≥ 2 semialgebraic polynomial SDP −

The reformulation is based on polynomials that are sums of squares (SOS) of other
polynomials. An example of an SOS polynomial is 5x2 + 2x+ 65, because it can be
decomposed as (2x+4)2 +(x−7)2. Testing whether a polynomial is SOS is equivalent
to solving an SDP (Laurent, 2009, Lemma 3.8) with a matrix of size

(
k−1+d
d

)
, where

k − 1 is the number of variables and d is the degree of the polynomial. An SOS
polynomial is obviously nonnegative. Let us focus on constraint (6.1b):

u1 − (c1)>x(u) ≥ 0 ∀u : pi(u) ≤ 0 (i ∈ I).

By applying Putinar’s Positivstellensatz (Laurent, 2009, Thm. 3.20), which has been
done before in ARO Bertsimas et al. (2012), we can obtain a sufficient condition under
which this constraint holds:

u1 − (c1)>x(u) = σ0(u) +
∑
i∈I

pi(u)σi(u), (6.2)

where σ0 and σi (i ∈ I) are SOS. Solving a problem with constraint (6.2) instead of
(6.1b) is conservative for two reasons. First, (6.2) may not be a necessary condition
when there are no σ0, σi that are SOS for which the set {u : σ0(u)+∑i∈I pi(u)σi(u) ≥
0} is compact, or when (6.1b) is a not a strict inequality. Compactness can easily be
guaranteed by including a constraint ∑k−1

i=1 u
2
i −R ≤ 0 to the description of U , which

can be done without changing U because U is bounded (Laurent, 2009, p. 186).
However, (6.1b) will in general not be a strict inequality. Second, solving a problem
with constraint (6.2) as an SDP requires bounding the degree of σ0 and σi.

We let the degree of x determine the complexity of the problem unless g is of
higher degree, so we take the degree of σ0 equal to max{deg(x),maxi{deg(gi)}}, and
the degree of σi equal to max{0, deg(σ0)− deg(gi)}.

An overview of all tractable cases is given in Table 6.1.



144 Approximating the Pareto set via Robust Optimization

For many uncertainty regions it may be difficult to reformulate the integral in
the objective function as a simple linear function in the optimization variables. In
that case the objective can be replaced with the average value of (ck)>x(u) at well
distributed sampling points u in U . For efficient sampling from a polytope, see e.g.
Kannan and Narayanan (2009).

The user has to specify the domain of interest U . If the specified region is too
large, two things may occur. First, U may contain a vector with objective values that
are too optimistic in the sense than they can not be met, in which case constraint
(6.1b) is infeasible. Second, U may contain objective values that are not weakly
dominated by f(x) for any feasible x. In that case constraint (6.1b) will not be
tight and also the objective is not fully related to the area of interest.

When the number of objectives is three or more, a weak parameterization of x
can be another cause of infeasibility. If feasible solutions exist for all u in U , it
is possible that these solutions can not be attained with the parameterization. An
easy example is the case where U contains two different Pareto optimal solutions
(projected on the first k − 1 coordinates) while x is a constant function. When the
optimization problem is infeasible, we do not see a possibility to detect whether the
parameterization is too weak or U contains infeasible points.

It is known that PS is convex, and that it is nonincreasing. It may be the case
that these properties do not hold for the inner approximation, which is problematic
when the inner approximation is used in an algorithm that assumes these properties
to hold. In case x is linear in u, these conditions are automatically satisfied. In case
k = 2, u is one-dimensional and convexity and nonincreasingness of (c2)>x(u) can
be enforced by constraining the first and second derivative w.r.t. u. The first and
second derivative of a polynomial is again a polynomial, so constraining these to be
negative and positive, respectively, for polynomial x does not increase the complexity
class of the problem. In case k > 2, U is a polynomial and x is quadratic in u, say
x(u)i = α0

i + (α1
i )
>
u + u>Γiu where α0

i ∈ R,α1
i ∈ Rk−1 and Γi ∈ R(k−1)×(k−1) are

decision variables. Nonincreasingness can easily be enforced by adding the constraints
α1
i+2Γiu ≤ 0 for all u in U , which is a set of n(k−1) linear constraints with ellipsoidal

uncertainty, each of which can be reformulated as a conic quadratic constraint. For
convexity it is required that Γi is positive semidefinite, which is an SDP constraint.

6.4 Numerical examples
6.4.1 Two objectives
We construct a semi-random 150×170 matrix A, a 150-vector b, and two 170-vectors
c1 and c2, such that the Pareto cuve is interesting on the interval [0, 25]. We compute
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(d) degree 16

Figure 6.1 – Numerical example with two objectives indicating the quality
of the inner approximation with a polynomial decision rule. The lowest curve
represents the set PS which is usually not known.

a polynomial inner approximations of degree up to 16.
We solve linear programs with Matlab linprog. We enter linear constraints with

LMI uncertainty into YALMIP Löfberg (2012). YALMIP reformulates this problem
as an SDP. In Appendix 6.B we show how to do this reformulation by hand in case
of a polynomial of degree 3. We let YALMIP export the resulting problem, then we
reformulate free variables as the difference of two nonnegative variables using CSDP’s
convertf, and solve the problems with SDPA Yamashita et al. (2010) (SDPA-DD
Nakata (2010) for the problem with a polynomial of degree 16). Figure 6.1 shows
the resulting solutions. The solution time ranges from 21 seconds for the polynomial
approximation of degree 4 to 4 minutes for degree 8 (with SDPA), and 45 minutes
for degree 16 (with SDPA-DD).

6.4.2 Three objectives
We semi-randomly construct vectors c1 ∈ [0, 1]10, c2 ∈ [0, 1]10 and c3 ∈ [−1, 0]10, and
take R10

+ as the feasible region. Recall from Table 6.1 that we have an exact result for
a quadratic inner approximation over an ellipsoidal set, and a conservative result for
polynomial inner approximations of arbitrary degree over semialgebraic sets. Again
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Figure 6.2 – Numerical example with three objectives indicating the quality
of the inner approximation with a polynomial decision rule. The lowest set
represents the set PS which is usually not known.

we use YALMIP and SDPA to formulate the problem and solve the resulting SDPs.
We use YALMIPs SOS module for constraining an expression to be SOS.

We take {u : ||u− 5||2 ≤ 5} as the area of interest for (c1)>x and (c2)>x, and
approximate the Pareto set with a polynomial of degree 2 and with a polynomial of
degree 4. For degree 2, we solve the exact robust counterpart, while for degree 4 we
solve the SOS approximation. We also solve the SOS approximation for degree 2, and
notice that the inner approximation is the same as with the exact robust counterpart.
Figure 6.2 shows that the polynomial of degree 4 gives an approximation that is closer
to PS than the polynomial of degree 2. The solution time is around 1.6 seconds for
all three approximations.

6.A Outer approximation
In this appendix we show how ARO can be used to construct an outer approximation.
While theoretically possible, it is practically not tractable to determine polynomial
approximations of degree 2 or higher due to computational issues. For linear approx-
imations, the results are trivial. We still mention the result because it also uses ARO
to approximate PS.

Let U = [a1, b1]× [a2, b2]× · · · × [ak−1, bk−1] with [ai, bi] be the domain of interest
for (ci)>x (i = 1, 2, . . . , k − 1). We construct the set OPS by creating a function
function ` : Rk−1 → R for which (u1, u2, . . . , uk−1, `(u1, u2, . . . , uk−1)) is in PS + Rk−,
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and optimizing over this function:

max
`

∫
U
`(u1, u2, . . . , uk−1)du (6.3a)

s.t. `((c1)>x, (c2)>x, . . . , (ck−1)>x) ≤ (ck)>x
∀x : Ax ≤ b, ai ≤ (ci)>x ≤ bi. (6.3b)

Given a solution to this optimization problem, the outer approximation is
{(u1, u2, . . . , uk−1, `(u1, u2, . . . , uk−1)) : u ∈ U}. The objective (6.3a) maximizes the
volume under this approximation. Constraint (6.3b) ensures that the outer approx-
imation as a function of (c1)>x lies under (c2)>x for every x in the domain of
interest.

An optimal outer approximation is tangent to the Pareto curve at (at least) one
point. This becomes clear from (6.3b): this constraint holds with equality for at
least one x because otherwise we can add a constant to ` without losing feasibility,
which contradicts optimality. Previous results force the decision maker to specify
either this point of tangency or the derivative at this point a priori. Our formulation
determines the point of tangency in such a way that the volume enclosed between
this linear outer approximation and the Pareto curve over the set U , but in the linear
case this turns out to give a trivial result.

When ` is linear, the problem (6.3b) can be reformulated as an LP using ARO.
For the case k = 2 (two objectives) it can be shown that the optimal linear ` is
a line tangent to PS at a1+b1

2 , i.e. halfway the interval of interest. We conjecture
that in higher dimensions the point of tangency is the barycenter of U . This would
imply that the formulation for the outer approximation is not interesting because it
is already known how to obtain an outer approximation that is tangent at a given
point.

For nonlinear ` the SOS framework used in Section 6.3 can be used to reformulate
the problem as an SDP when ` is a polynomial of arbitrary degree d. This is a
polynomial in the vector x, so the number of terms is

(
n+d
d

)
, which is also the order

of the matrix in the SDP. Even for a quadratic function, the size of the SDP is often
too large to solve.

The user has to specify the domain of interest [u1, u2]. Specifying the wrong do-
main does not lead to infeasibility. However, if the interval is too large, i.e. (c1)>x
does not range through the full interval, part of the outer approximation is meaning-
less because PS is inexistent for some u.
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6.B Derivation of the SDP formulation for a poly-
nomial inner approximation with two objec-
tives

We give a derivation of the SDP formulation of (6.1a)-(6.1c) in case x(u) = α0 +
α1u+α2u

2 +α3u
3 (where αi in R170, i=1,2,3) for the numerical example of Section

6.4.1. Suppose the area of interest for (c1)>x is [0, 25], then u runs from 0 to 25.
Because in the result by (Ben-Tal et al., 2009a, Lemma 14.3.4) u runs from -1 to 1, we
use the following linear transformation x→ Dx + d to transform Z = {(u, u2, u3) :
−1 ≤ u ≤ 1} into {(u, u2, u3) : 0 ≤ u ≤ 25}:

D =


12.5 0 0
312.5 156.25 0

5859.375 5859.375 1953.125

 d =


12.5

156.25
1953.125


The problem can now be written as follows:

min (c2)>(25α0 + 252

2 α1 + 253

3 α2 + 254

4 α3)

(c1)> (α0 + [α1 α2 α3](Dζ + d)) ≤ (Dζ + d)1

∀ζ ∈ Z (6.4a)
A (α0 + [α1 α2 α3](Dζ + d)) ≤ b
∀ζ ∈ Z, (6.4b)

where:

Z = {ζ ∈ R3 :
(

1
ζ

)
=



1 0 0 0
0 2 0 0
3 0 4 0
0 4 0 8
3 0 4 0
0 2 0 0
1 0 0 0



> 

λ0

λ1

λ2

λ3

λ4

λ5

λ6


,


λ0 λ1 λ2 λ3

λ1 λ2 λ3 λ4

λ2 λ3 λ4 λ5

λ3 λ4 λ5 λ6

 � 0}.

Constraints (6.4a) and (6.4b) are a total of 151 semi-infinite constraints that have
to hold for an infinite number of ζ. Let Aj denote the jth row of A. In order to allow
for shorter notation, we define the linear function ` : R170×R170×R170 → R3 vector
`(α) := Aj[α1 α2 α3]D. The jth constraint of (6.4b) can be rearranged to:

Ajα0 − b+ [α1 α2 α3]d+ `(α)ζ ≤ 0 ∀ζ ∈ Z,
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which is equivalent to:

Ajα0 − b+ [α1 α2 α3]d+ max
ζ∈Z
{`(α)ζ} ≤ 0. (6.5)

The maximization problem is an SDP. Replacing this problem with its SDP dual
and omitting the min operator is a well-known method to transform a semi-infinite
constraint into a single constraint. We show how to do this. In the following SDP,
we take the 4 × 4 matrix with λi’s in the description of Z as our variable X. Let
`i(α) denote the ith component of `(α).

The optimization problem in (6.5) is:

max 〈C,X〉
s.t. 〈Ai, X〉 = bi (i = 1, 2, 3, 4)

X � 0,

where 〈·, ·〉 denotes the trace inner product, b1 = 1, b2 = b3 = b4 = 0, and:

C =


`3(α) `2(α) g(α) `2(α)
`2(α) g(α) `2(α) g(α)
g(α) `2(α) g(α) `2(α)
`2(α) g(α) `2(α) `3(α)

 ,

with g(α) = 4
3`1(α) + `3(α), and:

A1 =


0 0 0 2
0 0 2 0
0 2 0 0
2 0 0 0

, A2 =


0 0 −1

2 0
0 1 0 0
−1

2 0 0 0
0 0 0 0

 ,

A3 =


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

, A4 =


0 0 0 0
0 0 0 −1

2
0 0 1 0
0 −1

2 0 0

 .

By formulating the dual and putting this into constraint (6.5), we get the following
robust counterpart:

Ajα0 − b+ [α1 α2 α3]d+ y1 ≤ 0
4∑
i=1

yiAi − C � 0.

Constraint (6.4a) and the other constraints (6.4b) can be transformed in a smilar
way.
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CHAPTER 7

Mixed integer programming improves
comprehensibility and plan quality in inverse
optimization of prostate HDR-brachytherapy

Abstract Current inverse treatment planning methods that optimize
both catheter positions and dwell times in prostate HDR brachytherapy
use surrogate linear or quadratic objective functions that have no direct
interpretation in terms of dose-volume histogram (DVH) criteria, do
not result in an optimum or have long solution times.
We decrease the solution time of existing linear and quadratic dose-
based programming models (LP and QP, respectively) to allow optimiz-
ing over potential catheter positions using mixed integer programming.
An additional average speed-up of 75% can be obtained by stopping
the solver at an early stage, without deterioration of the plan quality.
For a fixed catheter configuration, the dwell time optimization model
LP solves to optimality in less than 15 seconds, which confirms ear-
lier results. We propose an iterative procedure for QP that allows to
prescribe the target dose as an interval, while retaining independence
between the solution time and the number of dose calculation points.
This iterative procedure is comparable in speed to the LP model, and
produces better plans than the non-iterative QP.
We formulate a new dose-volume based model that maximizes V100%

while satisfying pre-set DVH-criteria. This model optimizes both
catheter positions and dwell times within a few minutes depending on
prostate volume and number of catheters, optimizes dwell times within
35 seconds, and gives better DVH statistics than dose-based models.
The solutions suggest that the correlation between objective value and
clinical plan quality is weak in existing dose-based models.
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7.1 Introduction

7.1.1 HDR brachytherapy optimization
Interstitial high-dose-rate (HDR) brachytherapy is a form of internal radiation ther-
apy where a high activity iridium-192 stepping source is temporarily placed into the
tumour volume or its proximity through the use of implanted catheters. This type of
radiotherapy has shown to be an excellent option for the definitive treatment of lo-
calized prostate cancer in any risk category (Yamada et al., 2012). Clinical outcome
data shows high tumour control and low toxicity rates because of the precision and
control with which highly conformal optimized HDR treatment can be delivered.

Treatment planning is one of the steps in the process to deliver the prescribed
dose, and entails two design problems. Firstly, the number and spatial configuration
of the catheters to be implanted has to be determined. Secondly, the spatio-temporal
source stepping pattern within the implanted catheters needs to be calculated. The
number and configuration of catheters depend on the prostate shape, volume, and
regional anatomy. Often a template is used for the transperineal implantation of
needles. As each catheter offers a range of potential stopping points (dwell positions)
where the source can stay for a predefined time (dwell time), the design problem
has many degrees of freedom. Hence, the problem formulation to design an HDR
brachytherapy plan comes down to: 1) determine where to insert the catheters in
the template, and 2) determine where and for how long to stop the source inside the
catheters to achieve adequate coverage of the planning target volume (PTV) while
sufficiently limiting dose to surrounding organs at risk (OAR).

Computerized techniques for anatomy-based inverse treatment planning of HDR
bra-chytherapy enable solving these problems by calculating catheter configurations
and source dwell time distributions, based on mathematical optimization models.
These models require the above problem formulation to be translated into a mathe-
matical framework that describes how the dose distribution depends on the decision
variables. Furthermore, it is mandatory to establish several levels of abstraction to
assess the dosimetric quality of the resulting treatment plan. In this chapter, we
discriminate between three levels of abstraction. At the highest level, a dose penalty
function is used to assign a penalty measure to a treatment plan. At the interme-
diate level, dose-volume-histogram (DVH) statistics are used to evaluate the dose
and dose-volume characteristics of a given dose distribution. At the lowest level, the
opinion of a human expert forms a subjective judgement of the three dimensional
dose distribution. Ideally, lower values at the highest level correspond to better plans
when evaluated at the lowest level. We briefly discuss these three levels, as they are
relevant for the remainder of this chapter.
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Dose penalty functions. As it is impossible to calculate dose deposited to every
single cell, the most relevant tissue volumes (i.e., prostate, urethra, rectum) are dis-
cretized into finite sets of dose calculation points that each represents an adequately
small subvolume where the dose is considered to be uniform. At each point i, the
delivered dose, di, is compared with a prescribed lower bound Li and upper bound
Ui. If the delivered dose is not between these bounds, the violation is penalized. We
use the linear and quadratic penalty function to develop our linear and quadratic
dose-based optimization models, respectively (Figure 7.1). For a linear penalty func-
tion, costs of αi or βi are incurred per unit dose (Gy) violation of the lower or upper
bound, respectively, whereas for a quadratic penalty function a dose violation is pe-
nalized to the second degree. The total penalty per tissue structure is the summed
penalty over all calculation points within the structure.

The linear penalty function has been used in two well-known algorithms for
anatomy-based inverse treatment planning: Inverse Planning by Simulated Anneal-
ing (IPSA) (Lessard and Pouliot, 2001; Alterovitz et al., 2006) and Hybrid Inverse
treatment Planning and Optimization (HIPO) (Karabis et al., 2005). The quadratic
penalty function has also been discussed in the literature (Milickovic et al., 2002;
Lahanas et al., 2003a; Lahanas and Baltas, 2003).

Dose (Gy)

P
en

al
ty

α
i

β
i

L
i

U
i

(a)
Dose (Gy)

P
en

al
ty

L
i

U
i

(b)

Figure 7.1 – The penalty in calculation point i for not satisfying the lower
or upper bound is either linear (a) or quadratic (b) in the violation.

DVH statistics. A typical example of clinically relevant dose-volume criteria for
an HDR brachytherapy prostate plan with 2 fractions of 8.5 Gy following external
beam radiation treatment with 13 fractions of 2.75 Gy is listed in Table 7.1. The
criterion D90% ≥ 90% requires the hottest 90% of the PTV to receive at least 90%
of the prescribed dose, and V150% ≤ 55% requires the relative volume that is exposed
to more than 150% of the prescribed dose to be less than 55%. For the urethra,
D0.1cc ≤ 10 Gy means that the minimum dose delivered to the hottest 0.1 cc does
not exceed 10 Gy.
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Table 7.1 – Local protocol based on (Hoskin et al., 2007) of DVH criteria for
a prescribed dose of 8.5 Gy per fraction.

PTV Rectum Urethra

D90% ≥ 90% D10% ≤ 7.2 Gy D10% ≤ 10 Gy
V100% ≥ 90% D2cc ≤ 6.7 Gy D0.1cc ≤ 10 Gy
V150% ≤ 55% V94% = 0 cc V125% = 0 cc
V200% ≤ 20%

Expert opinion. Clinically established DVH criteria are often used as quality in-
dicators of a treatment plan. Computer optimized treatment plans often do not
satisfy pre-set DVH criteria, and hence require a posteriori adjustment of the dwell
time distributions. This is often accomplished using so-called ‘graphical optimiza-
tion’, see e.g. (Morton et al., 2008), or manual adaptation of individual dwell times.
The quality of an optimization method can therefore also be expressed by the time
spent to post-process the plan. It is obvious that the perceived plan quality strongly
depends on the level of experience of the treatment planner.

Mixed integer programming. There is a matured field of research that deals
with optimization problems where (some of the) variables have to be integer, which
are inherently difficult to solve to optimality. When applied to problems in which
variables are restricted to 0 or 1, the method starts by solving a relaxed problem
where the binary variables are allowed to take any value between 0 and 1. If in the
optimal solution there is at least one binary variable which is not integer, the method
procedes by either (1) adding a constraint that does not exclude the optimal binary
solution, but excludes the current optimal solution, or (2) splitting the problem into
two subproblems, one with a selected binary variable fixed to 0 and one with the
same binary variable fixed to 1. These steps may be combined, and are repeated
until the optimal solution is found. This way, the method can report an upper and
a lower bound on the objective value, where one corresponds to the current best
solution and the other to the solution of a relaxed problem. We refer the interested
reader to (Nemhauser and Wolsey, 1999).

7.1.2 Our contributions
Currently, only HIPO can solve the problem of catheter placement for prostate HDR
brachytherapy. However, because HIPO is partially based on heuristical optimiza-
tion, mathematical optimality of the solution cannot be guaranteed. This means
that there may be solutions with lower objective values, that better satisfy the pre-
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scribed dose. We apply modifications to existing dose-based optimization models, so
that a state-of-the-art mixed-integer linear programming (MILP) or mixed-integer
quadratic programming (MIQP) solver can solve them to optimality.

Conventional quadratic dose-based optimization models have the advantage that
the complexity of the optimization problem is independent of the number of dose
calculation points if the target dose is specified as a single value rather than the
interval [Li, Ui] (Lahanas et al., 2003a; Lahanas and Baltas, 2003). This implies that
underdosage and overdosage are penalized equally, even though the latter is allowed
up to Ui. It is our second contribution to present an iterative procedure for quadratic
penalty functions that retains the advantage of the conventional quadratic dose-based
models.

As a third contribution, we present a new model that maximizes PTV coverage
while constraining DVH parameters on the OAR(s). This model has a more direct
clinical interpretation than linear penalty functions, solves in clinically acceptable
time and is expected to produce better treatment plans than dose-based models.
Using this model, we show that dose-based objective functions are bad surrogates for
dose-volume based plan evaluation criteria.

The structure of this chapter is as follows. We start by introducing the mathemat-
ical notations and optimization models in Section 7.2. Our methods are numerically
evaluated on three clinical sample cases in Section 7.3. The relation to other work is
discussed in Section 7.4.

7.2 Methods

7.2.1 Mathematical notation

We use the sets, parameters and variables listed in Tables 7.2-7.4. The dose delivered
to calculation point i is a linear function of dwell time and dose rate:

(Ḋt)i =
∑
j∈J

ḋijtj. (7.1)
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Table 7.2 – Sets used for inverse treatment planning.

set description

S Tissue structures {PTV, R(ectum), (U)rethra}
Is Calculation points in structure s ∈ S
I All calculation points, IPTV ∪ IR ∪ IU
K Catheters
Jk Dwell positions in catheter k ∈ K
J All dwell positions,

⋃
k∈K Jk

Γ(j) Dwell positions adjacent to dwell position j ∈ Jk within catheter k

Table 7.3 – Parameters used for inverse treatment planning.

parameter unit description

N 1 Upper bound on the number of catheters allowed
tmax s An upper bound on the dwell time for a single dwell position
˙dij Gy The dose rate delivered to calculation point i ∈ I by a source

at dwell position j ∈ J per unit of time
Ḋ Gy The first order dose kernel matrix, i.e. the matrix with ele-

ments ˙dij
Li Gy Prescribed lower bound on the dose for calculation point

i ∈ I
Ui Gy Prescribed upper bound on the dose for calculation point

i ∈ I
pi Gy Prescribed dose for calculation point i ∈ I (in case Li = Ui)
p Gy The prescribed dose vector with elements pi
τs 1 Percentage of calculation points receiving a dose less than

Li in structure s ∈ S
αi Gy−1 Penalty per Gy below the lower bound Li for calculation

point i ∈ I
βi Gy−1 Penalty per Gy exceeding the upper bound Ui for calculation

point i ∈ I
γ % The maximum allowable relative difference in dwell times

between two adjacent dwell positions
wi 1 Relative weight of calculation point i, wi = 1/|Is| where s is

the structure containing i
W 1 Weight matrix, with wi on the diagonal and 0 at other po-

sitions
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Table 7.4 – Variables used for inverse treatment planning.

variable unit description

tj s Dwell time at dwell position j ∈ J
t s The dwell time vector with elements tj , j ∈ J
vi 1 Binary variable indicating whether calculation point i re-

ceives at most (or at least) its prescribed dose
bk 1 Binary variable indicating whether catheter position k ∈ K

in the treatment template is used
xi 1 Penalty for calculation point i ∈ I

7.2.2 Optimization models
7.2.2.1 Linear Dose-based (LD) model.

Using the notation introduced in Section 7.2.1, the linear dose-based objective func-
tion in Figure 7.1a can be written as:

min ∑
i∈I max{0, αi(Li −

∑
j∈J ḋijtj), βi(

∑
j∈J ḋijtj − Ui)}. (7.2)

In order to transform this objective function into a model with a linear objective
function and linear constraints, we introduce a variable xi replacing the argument
of the max operator in (7.2). Additional constraints limit the number of catheters
used and the relative difference in dwell time between adjacent positions. The latter
implements the dwell time modulation restriction (DTMR), that is often used to
prevent hot spots (Baltas et al., 2009). The full model then becomes:

(LD) min ∑
i∈I wixi (7.3a)

s.t. xi ≥ αi[Li −
∑
j∈J ḋijtj] ∀i ∈ I (7.3b)

xi ≥ βi[
∑
j∈J ḋijtj − Ui] ∀i ∈ I (7.3c)

tj ≤ bktmax ∀k ∈ K ∀j ∈ Jk (7.3d)
tj1 ≤ (1 + 100γ)tj2 ∀j1 ∈ J ∀j2 ∈ Γ(j1) (7.3e)∑

k∈K bk ≤ N (7.3f)
bk ∈ {0, 1} ∀k ∈ K (7.3g)
xi ≥ 0 ∀i ∈ I (7.3h)
tj ≥ 0 ∀j ∈ J. (7.3i)

The penalty function for calculation point i is a convex piecewise linear function
in the dose ∑j∈J ḋijtj. Constraints (7.3b), (7.3c) and (7.3h) together with objective
(7.3a) make xi equal to the pointwise maximum. If catheter k is not used then bk = 0.
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Constraint (7.3d) sets the dwell times within that catheter to 0 seconds. Constraints
(7.3e) and (7.3f) implement the DMTR and enforce no more than N catheters to be
selected, respectively.

If the DTMR would be dropped, the model is equivalent to the one described by
Karabis et al. (2009). If additionally the values of bk are fixed, i.e., if all catheter
positions are fixed, the model corresponds to the one by Alterovitz et al. (2006).

When we solve it as an MILP, the solution times are very high and clinically
unacceptable. This is in line with the results from Karabis et al. (2009), where a
similar model could not be solved in less than 5 hours when the number of catheter
positions was more than 25–30.

We have improved the solution time by making two improvements. The first is
to specify constraint (7.3d) as an indicator constraint, which is an option offered by
our solver that helps treating this constraint more efficiently. Only if bk = 0, the
constraint tj = 0 becomes visible to the solver. The second improvement is to make
two adjacent catheter positions mutually exclusive by adding an exclusion restriction
bk1 + bk2 ≤ 1 for any two catheters k1 and k2 that are adjacent in the template.
The rationale for this is that two adjacent catheters are likely to cause high-dose
subregions to become connected and form undesirable hot spots.

7.2.2.2 Quadratic Dose-based (QD) model.

As an alternative to the (LD) model, we propose a convex quadratic model. If we
use a quadratic objective function, the number of calculation points no longer plays a
role, thus greatly reduces complexity. By using identity (7.1), (Ḋt)i it is evident that∑
i(wi(Dt)i − pi)2 measures the deviation from the prescribed dose pi in calculation

point i. This can also be written as the squared 2-norm ||W(Ḋt − p)||22, which is
convex in t. Consider the following constrained least-squares approximation model:

(QD) min ||W(Ḋt− p)||22 (7.4a)
s.t. tj ≤ bktmax ∀k ∈ K ∀j ∈ Jk (7.4b)

tj1 ≤ (1 + 100γ)tj2 ∀j1 ∈ J ∀j2 ∈ Γ(j1) (7.4c)∑
k∈K bk ≤ N (7.4d)
bk ∈ {0, 1} ∀k ∈ K (7.4e)
tj ≥ 0. (7.4f)

The objective can be rewritten as: (W(Ḋt−p))>(W(Ḋt−p)) = t>Ḋ
>
W>WḊt−

2p>W>WḊt+p>W>Wp. Instead of the full |I|×|J | matrix Ḋ it suffices to specify
the |J | × |J | matrix Ḋ

>
W>WḊ and the |J | × |1| vector Ḋ

>
W>Wp, whose sizes

do not increase with the number of calculation points. The latter has been observed
before by Lahanas et al. (2003a), but has not been used for formulating a convex
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quadratic programming model. Instead, these authors formulate nonconvex mod-
els, for which optimality cannot be guaranteed. However, the (QD) model can be
solved to optimality. The solution time is greatly reduced by adding the exclusion
restriction.

In this model, the prescribed dose pi for calculation point i has to be specified. It
is not immediately clear which value should be taken. For points outside the PTV, a
value of 0 is reasonable. For points inside the PTV it is difficult not to penalize very
reasonable values. Finding a good value for pi only gives a target value that is good
for the average calculation point. All calculation points will still contribute some
amount to the objective function even though they receive a dose between Li and Ui.
We can alleviate this disadvantage by solving the problem iteratively. The algorithm
starts by initializing each pi at (Li + Ui) /2. For each iteration, first the problem is
solved, then pi gets adjusted to a value in [Li, Ui] closest to the dose received in the
current optimal solution. The algorithm stops when the improvement in objective
value is sufficiently small. A very precise description is given in Algorithm 4 in 7.B.
This procedure in general does not necessarily converge to the global optimum that
could have been obtained by minimizing simultaneously over t, ḋij and bk, which is
proven with a small example in 7.C.

7.2.2.3 Linear Dose-Volume based (LDV) model.

We propose a new model that maximizes the fraction of the PTV receiving the
prescribed dose, while constraining DVH parameters for OARs. For the rectum and
urethra we enforce D10% ≤ 7.2 Gy and D10% ≤ 10 Gy, respectively. In accordance
with Table 7.1, we do not allow a dose higher than 8 Gy in the rectum, and 10.6 Gy
in the urethra. This formulation has the advantage that a feasible solution exists
(e.g. take all dwell times equal to 0), and that the solution shows the best target
coverage that satisfies clinically derived DVH constraints. We formulate the model
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as:

(LDV ) max 1
|IPTV |

∑
i∈IPTV

vi (7.5a)

s.t.
∑
j∈J

ḋijtj ≥ Livi ∀i ∈ IPTV (7.5b)
∑
j∈J

ḋijtj ≤ Li + (Ui − Li)(1− vi) ∀i ∈ IR ∪ IU (7.5c)
∑
i∈Is

vi ≥ τs|Is| ∀s ∈ {R,U} (7.5d)

tj ≤ bktmax ∀k ∈ K ∀j ∈ Jk (7.5e)
tj1 ≤ (1 + 100γ)tj2 ∀j1 ∈ J ∀j2 ∈ Γ(j1) (7.5f)∑
k∈K

bk ≤ N (7.5g)

bk ∈ {0, 1} ∀k ∈ K (7.5h)
vi ∈ {0, 1} ∀i ∈ I (7.5i)
tj ≥ 0 ∀j ∈ J. (7.5j)

Here Li and Ui have a slightly different interpretation than in the dose-based models.
We select Li = 8.5 Gy for the PTV, (Li, Ui) = (7.2, 8) Gy for the rectum, (Li, Ui) =
(10, 10.6) Gy for the urethra and τR = τU = 0.9.

Constraint (7.5b) allows vi for i ∈ IPTV to be 1 only if the dose exceeds Li. Hence
objective function (7.5a) maximizes the number of points inside the PTV that receive
the prescribed dose. Constraint (7.5c) allows vi for i ∈ IR to be 1 only if the dose is
less than 7.2 Gy, and never allows a dose higher than 8 Gy. Constraint (7.5d) then
enforces 90% of the vi to be 1. Similarly, the same constraints enforce that 90% of
the urethra receives a dose less than 10 Gy, and no part in the urethra receives a dose
higher than 125%. Constraints (7.5e)–(7.5g) are the same as constraints (7.3d)–(7.3f)
in the (LD) model.

By fixing the parameters bk, (LDV) becomes a dwell time optimization model.
This enables a comparison with IPSA, which is not able to optimize catheter posi-
tions.

One of the advantages of directly optimizing on clinically relevant criteria is the
possibility to extend the model in a clinically interpretable way. Suppose for instance
that the maximum number of catheters is not fixed a priori, but the planner wants to
insert an extra catheter only if it leads to an improvement of V100% of at least 5%. This
can be incorporated into (LDV) by changing the objective to 1/|IPTV |

∑
i∈IPTV vi +

0.05N and by treating N as a variable rather than as a parameter.
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7.3 Numerical evaluation
7.3.1 Patient data
Clinical data from three different patients have been obtained from the treatment
planning system (HDRplus, version 3.0, Eckert & Ziegler BEBIG GmbH, Berlin, Ger-
many). Characteristics are summarized in Table 7.5. Approximately 2500 calculation
points have been hexagonally distributed over the PTV, rectum and urethra. The
number of potential catheter positions in the template is 40, 49 and 43 for patient 1,
2 and 3, having a prostate volume of 50 cc, 75 cc and 81 cc, respectively. According
to our clinical protocol, the PTV had been extended with a 2 mm margin, and dwell
positions were activated with a separation of 3 mm. A transperineal needle template
with a hole resolution of 5 mm was used (Martinez Prostate Template, Nucletron
BV, Veenendaal, the Netherlands). The dose rates have been calculated using the
TG-43 formalism with the source parameters according to (Granero et al., 2006).

Table 7.5 – Characteristics of the patient data.

Number of calculation points

Structure αi Li βi Ui Patient 1 Patient 2 Patient 3

PTV 8 8.5 3 25 1732 1834 1791
Rectum 0 0 10 8 246 234 240
Urethra 0 0 10 10 489 473 495

7.3.2 Inverse planning simulated annealing (IPSA)
We compare our results with the IPSA implementation in HDRplus, which exploits
the linear penalty function (7.2) and was configured as follows. The composite ob-
jective function did not include the total dwell time. A maximum weight was used
for the DTMR. The trade-off between speed and quality was set to its default value.
After three consecutive runs, the plan with the lowest objective value was selected.

7.3.3 Our optimization models
For the model parameter values we set tmax at 5 seconds for an apparent source
activity of 370 GBq. The DTMR parameter γ was set at 10%, and the maximum
allowed number of catheters N was varied between 15 and 20.

All computing times reported have been obtained with the optimization software
AIMMS 3.10 x64 using ILOG CPLEX 12.1 as solver running on Windows 7 x64 on
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an Intel Core i5 660 (3.33 GHz) processor with 8 GB of RAM.
The exclusion restriction reduces the number of allowed catheter configurations

with a factor 103–108, depending on the prostate volume and number of catheters.
The solution time and objective values of all models are listed in Tables 7.6–7.8.

The first line is read as follows: for patient 1, the IPSA model, which is optimized for
16 preselected catheters, returns an optimized plan within 0.8 minutes. If the (LD)
model, (QD) model, Algorithm 7.B or the (LDV) model had chosen the same dwell
times as IPSA, they would have given objective values of 0.9280, 189, 1.1229 or 86.1,
respectively. The other columns show the dosimetric plan performance.

7.3.3.1 Linear dose-based optimization

The solution times for the (LD) model are 5, 364 and 3 minutes for patients 1, 2 and
3, respectively when the allowed number of catheters is 20. The high solution time
for patient 2 is probably due to the large number of feasible catheter configurations.
We have not been able to obtain a solution within 24 hours without the exclusion re-
striction. Specifying constraint (7.3d) as an indicator constraint decreases calculation
time by about 10%.

The convergence rate of the lower and upper bound of V100% during the opti-
mization process is depicted in Figure 7.2. We observe that most time is spent on
obtaining a better lower bound. If we would terminate the solver when the upper
bound is at most twice the lower bound, we would get a solution four times quicker
at the cost of a 5% higher objective value. A slightly higher objective value does
not translate into a significantly lower plan quality when evaluated at a lower level
(Alterovitz et al., 2006; Karabis et al., 2009). Hence, stopping early will on average
not result in clinically worse treatment plans.

When the catheter positions are fixed, the (LD) model reduces to an LP. CPLEX
finds the optimal solution in 2.4 seconds. This is comparable to the solution time
reported for a similar LP (Alterovitz et al., 2006; Karabis et al., 2009).

7.3.3.2 Quadratic dose-based optimization

First, we searched for a good value of pi in the PTV. By repeatedly solving the model
for different target doses and evaluating the dose distribution, we found that 21 Gy
gave an acceptable treatment plan for patient 1. We used the same target value for
patient 2 and 3.

The (QD) model solved in between 18 seconds and 1.5 minutes for N = 20
catheter positions. Again, we observed that the solution time decreased with a
larger allowed number of catheters. Comparing the solution times to those of the
(LD) model, we found that the (QD) model was at least ten times faster.

For the iterative procedure (Algorithm 4), we observed a drop in objective value
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Figure 7.2 – Convergence of the lower and upper bound during the optimiza-
tion of the (LD) model.

to 5% of the initial value after the first iteration. In the subsequent 15 steps, the
additional decrement was 40–50%. After 14–24 iterations in total, the decrements in
objective value were smaller than 10−3, which is when the procedure was halted.

When the catheter positions are fixed, and only the dwell times are to be opti-
mized, the (QD) model solves in 0.14, 0.9 and 0.9 seconds for patients 1, 2 and 3
respectively, while Algorithm 4 solves in 8.5, 13.3, and 11.8 seconds, respectively.

7.3.3.3 Dose-volume based optimization

The solver requires more than 24 hours to solve the (LDV) model to optimality.
This is not problematic, because during execution the solver reports both V100% of
the best solution found so far, and an upper bound on V100% that gradually gets
lower. Hence, in a clinical setting, the treatment planner can stop the solver as soon
as the value of V100% is satisfactory. Here, we stopped as soon as V100% ≥ 95% or
after 15 minutes. Stopping the solver before optimality is reached is not a novel
idea. It has been applied before with low-dose-rate brachytherapy (Gallagher and
Lee, 1997; Lee and Zaider, 2003). For dwell time optimization, the solution time
is 8.5 minutes for patient 2. By changing solver parameters, we have reduced the
solution time for dwell time optimization to 14, 30 and 35 seconds for patients 1, 2
and 3, respectively. The new parameters make the solver first consider solutions in
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which binary variables that are close to 0 in the LP relaxation, are fixed at 0. At
least 90% of the binary variables must be 1. After fixing 10% of those variables to 0,
the other variables must take the value 1 in the LP relaxation (Pryor and Chinneck,
2011). We have also tried Benders’ decomposition (Benders, 1962), but it did not
provide a speed-up.

7.3.4 Plan performance evaluation
All models generate plans with good OAR sparing. The DVH bounds on the rectum
and the urethra are (almost) satisfied in all cases. The V100% for the PTV is suffi-
ciently high for all models except the (QD) model. V150% and V200% are sufficiently
low for all models, except for the (QD) model.

The plan performance as assessed from the three-dimensional (3D) dose distribu-
tion by an experienced planner (ALH) is listed in the last column of Tables 7.6-7.8.
The experienced planner paid most attention to conformality of the dose distribution
and to whether high dose subvolumes (150% and 200%) around dwell positions were
connected. Indeed a high correlation was found between the plan performance scored
by the expert and the COIN value.

The (QD) model produces inacceptable plans due to a low V100%, especially for
patient 2. All other models perform very well, the (LDV) model for patient 1 being
an exception. The latter is due to the activation of dwell positions outside the PTV,
giving rise to significant dose contributions outside the PTV. This can probably be
avoided by activating dwell positions only inside the PTV or by adding constraints
on auxiliary avoidance structures that limit dose outside the PTV.

The relation between the linear penalty function value and the expert opinion
is very weak. This becomes clear from the objective values of the solution of the
(LDV) model: for patient 3 with 18 catheters the plan of the (LDV) model is still
preferred by the expert even though the linear objective value is 4.6 times higher
(0.1038 vs. 0.4816) than the optimal plan of the (LD) model. Also the relation
between the linear objective value and DVH statistics is weak. For patient 1 with 16
catheters, the plans of the (LD) and (LDV) models have similar DVH statistics, but
their linear penalty value differs by a factor 12 (0.1338 vs. 1.6512).

The effect on the clinical evaluation criteria of extra catheters above 15 is small
for all three patients. In most cases, the models could slightly improve V100% by
increasing the number of catheters, the largest improvement being 2.1%. The expert
opinion is almost constant for a specific patient and model, with most variability
related to patient 3. For this patient, the expert opinion always becomes more
positive when more catheters were inserted.
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7.4 Discussion
With existing dose-based models for inverse treatment planning of HDR brachyther-
apy, it is often a trial-and-error process to obtain adequate treatment plans that
satisfy pre-set DVH criteria. In a clinical setting, this is undesirable because of the
time burden and the required degree of user experience. Often, the aim is to de-
sign a plan with maximum achievable target coverage under fixed OAR dose-volume
constraints. This type of optimization problem can be formulated and solved using
mixed integer programming. This improves comprehensibility and plan quality com-
pared to traditional dose-based inverse optimization. We investigated enhancements
of existing linear and quadratic programming models for dose-based optimization
and showed that the solution time could be decreased substantially.

We have limited our analysis to three representative clinical cases that cover a
range of prostate sizes. The limited number of patients has allowed us to perform
an extensive analysis of the effects of different algorithms on the allowed number
of catheters. We realize that it is necessary to include more patients to further
strengthen our conclusions.

In this dosimetric study, perturbations unavoidable in a clinical implementation
were not taken into account. There is still a lack of validated data on the uncertain-
ties, which makes it hard to assess the impact of these uncertainties on the optimality
of a treatment plan. In future work the uncertainties need to be identified and quan-
tified, and the effect on treatment plans needs to be evaluated. Current optimization
techniques that deal with uncertainties such as “stochastic programming” or “robust
optimization” require a model that finds good treatment plans when there is no un-
certainty (Ben-Tal et al., 2009a; Kall and Wallace, 1994). This means that our work
is also relevant for a future study on finding robust treatment plans.

For dwell time optimization, all models except (QD) can produce clinically good
plans. This confirms current practice where the (LD) model is used.

Choosing catheter positions is still a difficult problem. Despite the exclusion
restriction, only the (LDV) model produces plans in clinically acceptable time for
all patients. There is one other article that uses an exclusion restriction, allowing
a maximum of two catheters in any 2 × 2 square of template holes (Holm, 2011).
This is weaker than our restriction. The HIPO algorithm is widely used and can
optimize catheter positions in clinically acceptable time. HIPO inherently differs
from our mixed integer programming approach, making it difficult to clarify any
discrepancies.

DVH-based optimization has been applied to HDR brachytherapy by others (La-
hanas et al., 2003b; Panchal, 2008; Siauw et al., 2011). All restrict to dwell time opti-
mization and use heuristics for which mathematical optimality cannot be guaranteed.
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Of these, only Siauw et al. (2011) provide a fast solution to a MILP formulation, but
cannot provide a good upper bound for V100%.

Weak correlation between the (LD) objective value and DVH parameters was also
observed by Holm (2011). Holm claims that the (LD) objective can make a rough
division between good and bad plans. We confirm that there could be an order of
magnitude difference in (LD) objective values among good plans. This implies there
is a gap between the objective function in dose-based models and clinically desired
properties of a dose distribution. The (LDV) model has the potential to close this
gap, and to give the planner a better tool to steer the optimization.

7.5 Conclusion
With the proposed extensions, existing dose-based optimization models that simul-
taneously optimize catheter positions and dwell times can be solved more quickly
to proven optimality with mixed integer programming techniques. Our dose-volume
based model relates more closely with clinical parameters compared to dose-based
models, and is faster to solve.
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7.B Iterative procedure for adjusting the target
dose in the (QD) model

Algorithm 4 Iterative procedure for adjusting target dose in (QD)
for i ∈ I do

pi := (Li + Ui)/2
end for
CURVAL := ∞
repeat

solve the (QD) model
OLDVAL := CURVAL
CURVAL := (QD).value
for i ∈ I do

if (Ḋt)i < Li then
pi := Li

else if (Ḋt)i > Ui then
pi := Ui

else
pi := (Ḋt)i

end if
end for

until OLDVAL − CURVAL ≤ ε

7.C Counter example for global convergence of
the iterative procedure

We show that Algorithm 4 does not always converge to the global optimum that
we would have obtained by optimizing the (QD) model simultaneously over t, p
and bk.

Consider two mutually exclusive catheter positions, each offering one dwell po-
sition. There are three calculation points; the first one has (L1, U1) = (8, 10) and
the other two have (L2, U2) = (L3, U3) = (10, 15). All dose rates are 1 except
d22 = d23 = 2. In the first iteration we start with prescribed dose vector p = (9
12.5 12.5), in which case catheter position 2 is optimal with a dwell time of 118/18 s.
The new prescribed dose vector becomes p = (8 13.1 13.1). In every subsequent
iteration, the dose vector gets closer to (8 15 15), resulting in a total penalty of 2/9.
But the optimal dose distribution is obtained by selecting catheter position 1, which
can deliver a dose of 10 Gy to all three calculation points, resulting in zero penalty.



CHAPTER 8

HDR prostate brachytherapy inverse planning on
dose-volume criteria by simulated annealing

Abstract High-dose-rate brachytherapy is a tumor treatment method
where a highly radioactive source is brought in close proximity to the
tumor. In this chapter we develop a simulated annealing (SA) algo-
rithm to optimize the dwell times at preselected dwell positions to
maximize tumor coverage under dose-volume constraints on the organs
at risk. SA is extended to cope with hard constraints, and changes
have been made to ensure good performance. Compared to existing
algorithms, our algorithm has advantages in terms of speed and objec-
tive value and does not require an expensive general purpose solver. Its
success mainly depends on exploiting the efficiency of matrix multipli-
cation and a careful selection of the neighboring states. In this chapter
we outline its details and make an in-depth comparison with existing
methods using real patient data.

8.1 Introduction
High-dose-rate brachytherapy is a form of radiation therapy in which the tumor is
temporarily exposed to a highly radioactive source which dwells at different positions
in or around the Planning Target Volume (PTV). For prostate tumors, the dwell
positions are offered by a temporary transperineal implant of catheters which run
through the prostate. A remote afterloader, which is connected to all the catheters,
then sends a radioactive source through the catheters one by one, stopping at sev-
eral dwell positions inside the PTV. We assume that the catheter locations and the
dwell positions are known. The goal of the treatment planner is to irradiate the
PTV while sparing the surrounding Organs at Risk (OARs) by optimizing the dwell
time at each dwell position. Traditionally, this has been done by forward planning,
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Figure 8.1 – Dose-volume histogram for a prescribed dose of 8.5 Gy.
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a trial-and-error procedure in which dwell times are adjusted until the dose distri-
bution is satisfactory. In the last fifteen years, inverse planning has been developed
as a computerized technique where the dwell times are optimized according to the
treatment planner’s preferences.

In the remainder of this introduction, we explain how dose distributions are eval-
uated, we provide a literature review on the ongoing progress of inverse planning,
and we show how this work contributes to these developments.

DVH Criteria. The dose distribution within the PTV or an OAR is described
in a dose-volume histogram (DVH). Such a histogram displays the percentage of the
structure receiving at least a certain dose. An example histogram is displayed in
Figure 8.1. Points on this histogram are denoted by Dx or Vy, e.g. D90% is the
minimum dose received in the hottest 90% of the structure under consideration and
V150% represents the percentage of the volume receiving 150% of the prescribed dose.
These statistics are currently the most important quantitative evaluation criteria
(Hoskin et al., 2013). Besides these, the treatment planner inspects the isodose lines
in order to avoid undesired hot spots and cold spots.

Table 8.1 displays clinically used DVH criteria from a local hospital. In order
to achieve tumor control, V100% of the PTV needs to be at least 90%, i.e., at least
90% of the PTV’s volume need to receive at least 100% of the prescribed dose.
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PTV Rectum Urethra

V100% ≥ 90% D10% ≤ 7.2 Gy D10% ≤ 10 Gy
Dmax ≤ 8 Gy Dmax ≤ 10.6 Gy

Table 8.1 – DVH protocol for a prescribed dose of 8.5 Gy for HDR prostate
brachytherapy based on Hoskin et al. (2007).

The limitation of complications is expressed in DVH constraints on the rectum and
urethra. D10% ≤ 7.2 Gy for the rectum imposes that 90% of the rectum’s tissue may
not receive more than 7.2 Gy. A hard upper bound for tissue in the rectum is set by
Dmax ≤ 8 Gy. For the urethra, 10 Gy is the upper bound for 90% of the tissue. The
remaining 10% are allowed to reach radiation levels of at most 10.6 Gy.

Dose measurement. In order to compute DVH statistics, the PTV and the OARs
are discretized into a grid of calculation points. The dose rates dij describe the
amount of radiation emitted from dwell position j ∈ J towards calculation point
i ∈ I per second. The dose at a calculation point i is equal to the sum of radiation
received from each dwell position j:

(Dt)i =
∑
j∈J

dijtj, (8.1)

where tj is the dwell time at dwell position j. Let D be the |I| × |J | matrix with all
dose rates dij. The matrix-vector product Dt yields a vector that denotes the dose
per calculation point.

Literature review. Traditionally, inverse planning is dose-based: the treatment
planner prescribes a lower bound Li and and an upper bound Ui on the desired dose
for each calculation point. Typically these bounds are the same for all calculation
points within the same structure. At each calculation point i, the received dose
(Dt)i is compared to its respective prescribed lower and upper bounds. If the dose
lies outside the interval [Li, Ui], a penalty is imposed that is linear or quadratic in
the deviation. A treatment plan is optimal if it minimizes the sum of penalties over
all calculation points. Linear penalty functions have been successfully implemented
in the commercially available algorithms Inverse Planning by Simulated Annealing
(IPSA) (Lessard and Pouliot, 2001) and Hybrid Inverse Treatment Planning and
Optimization (HIPO) (Karabis et al., 2005). Quadratic penalty functions are used
by Lahanas et al. (2003a); Lahanas and Baltas (2003); Milickovic et al. (2002).

The disadvantage of dose-based penalty functions is that the resulting treatment
plans may need a posteriori adjustments as they do not necessarily adhere to the
DVH criteria. More recently, dose-volume based optimization methods have been
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developed that directly optimize on DVH criteria. Panchal (2008) has formulated a
Harmony Search heuristic. Siauw et al. (2011) have presented a Mixed Integer Linear
Program (MILP) and suggested a heuristic (IPIP) that determines a solution that
is feasible and near-optimal by solving two LPs. In Chapter 7, we have devised to
directly optimize an MILP using specific solver settings. Beliën et al. (2009) have
introduced a hybrid approach based on simulated annealing and linear programming.
Their objective is dose-based, while the delivered radiation to OARs is now also
subject to dose-volume constraints. For the constraint D10% ≤ 7.2 Gy, the linear
constraint (Dt)i ≤ 7.2 needs to hold for 90% of the calculation points. The authors
utilize simulated annealing to determine which calculation points are in the group
of 90%. According to Beliën et al. (2009), the algorithm yields results superior to
running the integer program alone based on ten problem instances with 30 minutes
computation time each.

Our contribution. This chapter follows up on Beliën et al. (2009)’s suggestion
to develop a pure simulated annealing (SA) heuristic to optimize on DVH statistics.
We present DOPSA (DVH Optimization by Pure Simulated Annealing), a novel
algorithm that solves the same MILP model as Siauw et al. (2011) and as in Chapter
7. In this model the objective is to maximize V100% for the PTV, i.e., the volume
of the PTV receiving the prescribed dose, while meeting DVH constraints on the
OARs. Our method exploits the speed of matrix multiplication, and has been tuned
by conducting many trial-and-error experiments. The parameters have been selected
using a metamodel.

The advantage of SA over the existing dose-volume based models lies in its simple
implementation independent of costly LP or MILP solvers. Since optimization is
often offered as a separate module for treatment planning systems, clinics may choose
cheaper dose-based optimization modules or keep using them if the price difference is
too large, leaving the potential of dose-volume based methods unused. Furthermore,
the results in Section 8.4 show that our heuristic has clear advantages over existing
methods in terms of speed and objective value.

The significance of this result becomes apparent when investigating the structure
of the MILP formulation. The objective is to maximize the number of calculation
points that receive the prescribed dose of 8.5 Gy. Let us first define the vector x,
indexed by i in IPTV as follows:

xi = max{0, 8.5− (Dt)i
8.5 }. (8.2)

Since xi is zero if calculation point i receives at least the prescribed dose, minimizing
the number of non-zero elements in x yields a treatment plan with maximal V100%.
The number of nonzero elements is ||x||0 (recall that the l0-norm counts the number
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of non-zero elements in a vector). Attaining sparse vectors by minimizing the l0-norm
has been shown to be NP-hard (Natarajan, 1995).

An MILP solver first solves the LP relaxation:

max
x∈[0,1],t≥0

{
∑

i∈IPTV
xi : (Dt)i ≥ 8.5xi, (x, t) ∈ X}, (8.3)

where X is a polyhedron. Substituting yi = 1 − xi yields the following equivalent
program:

min
y∈[0,1],t≥0

{
∑

i∈IPTV
|yi| : yi ≥ 8.5−(Dt)i

8.5 , (1− y, t) ∈ X}. (8.4)

So, the LP relaxation is equivalent to l1-norm minimization. Literature, predom-
inately in the field of image processing, suggests that solutions found for the LP
relaxation (l1-norm minimization) provide good approximations of the solutions for
the MILP (l0-norm minimization).

Donoho (2006) shows that, in most cases, the l1-approximation is also the sparsest
solution for underdetermined systems of equations. Li (2010) discusses necessary and
sufficient conditions for the equivalence of l0-norm and l1-norm solutions in general.
These conditions do not hold in our case. Nevertheless, Candes et al. (2005) provide
numerical evidence for the power of these l1-approximations and also the results in
Chapter 7 show that the LP relaxation is strong.

This may explain the result in Chapter 7 that an MILP solver quickly determines
good treatment plans. However, our results in Sections 8.4 show that the DOPSA
still outperforms an MILP solver in finding good solutions in a short time-span.
Bearing in mind the observations from literature, one can therefore conclude that
this SA heuristic is a powerful optimization tool for inverse treatment planning.

In the next section, the concept of SA will be outlined. The implementation
details of DOPSA will be explained in Section 8.3, followed by a discussion of the
results and a comparison with existing algorithms in Section 8.4.

8.2 Simulated annealing
SA is an iterative metaheuristic introduced by Kirkpatrick et al. (1983) in analogy to
an annealing process in metallurgy. The heuristic is initiated in a feasible state tstart
and proceeds through the feasible region searching the global maximizer topt of an
objective function f . The distinguishing characteristic of SA is that it avoids prema-
ture termination in a local optimum by accepting non-improving states with a given
probability. In every iteration, a new state tnew is selected from the neighborhood
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of the current state tcur. This new state is accepted with an acceptance probability,
also named the metropolis criterion:

P(accept tnew) =
{

1 if f(tnew) ≥ f(tcur)
exp f(tnew)−f(tcur)

ck
otherwise, (8.5)

where tcur is the state with the current objective value f(tcur), and ck ∈ (0,∞)
is the variable control parameter representing the temperature. Hence, any new
state tnew is accepted with probability 1 if the objective is at least as high as in the
current state tcur. States with lower objective value are accepted with a probability
decreasing in the loss in objective value f(tnew)−f(tcur) and increasing in temperature
c. Therefore, the search path is increasing in objective values except for occasional
drops, which facilitate break-outs from local maxima. Kirkpatrick et al. (1983) have
proven, given certain conditions, that objective values increase along the search path
and converge to the global optimum.

Cooling schedules govern the decrease in temperature ck from its initial value c0,
which in turn decreases the probability to accept states with lower objective val-
ues. Essentially, SA steadily reduces to a hill-climbing procedure as the temperature
approaches zero. The Exponential Schedule (Salamon et al. 2002, p. 91) sets the
temperature at iteration k to

ck = c0α
b kmc, (8.6)

where m ∈ (0,∞) is a fixed number of iterations after which the temperature is
rescaled by α ∈ (0, 1).

8.3 Implementation
In this section we provide in-depth information about DOPSA. Its final implementa-
tion is the result of a long trial-and-error process where many ideas have been tested.
Here, we restrict ourselves to a description of the final algorithm. For the selection
procedure and parameter tuning based on trial-and-error and a metamodel we refer
the reader to Deist (2013).

First, we describe the optimization model (Section 8.3.1) and the main steps in the
algorithm (Section 8.3.2). Then we focus on the two most important steps, which
are the generation of neighborhood states (Section 8.3.3) and checking feasibility
(Section 8.3.4).
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8.3.1 Optimization model
We use the same model as (Siauw et al., 2011) and Chapter 7 to allow a comparison
with their results. This model is based on the DVH protocol from Table 8.1. The
objective is to maximize V100% under D10% and Dmax constraints on the OARs. Ad-
ditionally, to avoid high doses outside the PTV in regions where there is no OAR to
limit the dose in that region, we also consider an artificial structure that surrounds
the prostate at 2 mm distance. This collection of tissue is henceforth denoted as the
’shell’, and a constraint is added to ensure that the maximum dose in this structure
is below 8.5 Gy. Additionally, a dwell time modulation restriction (DTMR) is added
to avoid excessively high dwell times. The DTMR prohibits the dwell times of two
adjacent dwell positions within the same catheter to differ more than a factor two.

8.3.2 Algorithm
DOPSA has been implemented in MATLAB according to Algorithm 5. DOPSA’s
code is designed to generate and evaluate multiple states simultaneously. All time
consuming procedures within the heuristic thus become matrix-operations which de-
creases the required CPU time per state. Essentially, it is faster to check the fea-
sibility of n states in one operation, than to check the feasibility of the n states
individually, since computing DT , where T is a |J | × n matrix with the n states as
columns, takes less than n times longer than computing Dt for a single state t.

Algorithm 5 Simulated Annealing Code
set the initial state to t = 0
set the temperature to c0

while running time does not exceed limit do
every 15000 iterations: return to current optimum
generate neighborhood states
discard infeasible states
choose tnew from neighborhood according to highest V100%

decide acceptance
lower the temperature by scaling with α

end while

DOPSA is initialized with the dwell times set to zero because it should start in
the feasible region and, a priori, any other feasible state can only be determined at
relatively high computational effort. Then, one state is chosen from the set of fea-
sible candidates in the neighborhood and is evaluated by the metropolis criterion as
described in Section 8.2. Subsequently, the temperature is decreased in every itera-
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tion according to an exponential cooling schedule (see Section 8.2) with parameters
α = 0.99, m = 1, and c0 = 1.5. The search continues in the chosen state, if ac-
cepted, or restarts in the current state. After each 15,000 iterations, the state with
the highest V100% is selected and the search is restarted in the neighborhood of this
state. This is to recover from an unsuccessful attempt to escape from a local opti-
mum. Returning to the state with the highest V100% focuses the search to areas with
high objective function values and avoids unnecessary search efforts in low-potential
regions.

The running time of DOPSA is restricted to a fixed limit to allow a comparison
with existing methods and to test whether DOPSA can provide satisfactory results
within a short time-span. In practice, the treatment planner would run the heuristic
until satisfactory results are returned, i.e., when the coverage is sufficiently high.

The performance of the algorithm revealed to be insensitive to changes in the
parameter values of α and c0. This suggests that hill-climbing methods might be
similarly successful.

8.3.3 Generating neighborhood states
DOPSA generates a neighborhood solution t by perturbing the dwell times of the
current state tcur:

t = tcur + bre,

where r is a vector of the same size as t. The vector r is chosen randomly according
to rj ∼ N(0, 0.05) i.i.d. for all j in Jc, the set of dwell positions that are changed,
and rj = 0 for all j in J\Jc. The operator be rounds the elements of r to one decimal
place, which is the input precision of the Flexitron remote afterloader (Nucletron
BV, Veenendaal, the Netherlands). Negative dwell times are subsequently set to 0.

For the DTMR, the dwell times in each catheter are adjusted one by one to ensure
the relative difference with the previous dwell time is less than a factor 2. This may
increase the number of changed entries in the dwell time vector.

Number of changed entries. We observed that controlling the number of dwell
time changes applied to a new state is fundamental to the performance of DOPSA.
A lower number of changes is more likely to yield a feasible new state. However,
lowering this number decreases the potential maximal increase in V100% in the new
state, which is most notable in early iterations.

For this reason, a negative correlation between the number of changed entries
and the improvement over the past 200 iterations is introduced. In the first 200
iterations, all entries are subject to changes before the dynamic adjustment begins.
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The delay of 200 iterations only affects the initial phase of DOPSA since the total
number of iterations is approximately 50000.

Let Jc denote the index set of entries in tcur that are varied to construct a new
vector t. The relation between the cardinality of Jc and the improvement in V100% is
defined by

|Jc| = d
V k100%−V

k−200,max
100%

V k−200,max
100%

|J |e, (8.7)

where V k
100% is the V100% attained in the current state tcur. V k−200,max

100% is the overall
highest V100% attained until iteration k − 200.

Note that the states chosen during the search can also exhibit V100% lower than in
preceding iterations due to the metropolis criterion, resulting in a negative |Jc|. For
that reason and to maintain a natural upper bound, |Jc| is restricted to the interval
[d|J |/50e, |J |]. The lower bound is chosen to be higher than 1 (assuming |J | > 50)
since improvements in V100% might only be attained with increases in dwell times for
one dwell position while simultaneously decreasing the dwell time of another position.
Taking 2% of all entries as the lower bound ensures sufficient dwell time changes in
generated states.

Empirical results indicate that a newly generated state has a six times higher
probability of being feasible by using Jc compared to perturbing all dwell times. The
number of states that is dropped due to infeasibility decreases from 95% to 70%.

Dwell position selection. Once |Jc|, the number of dwell positions for which the
dwell times are perturbed, is chosen, the next step is to select that many dwell
positions. The intention is to alter dwell times such that the objective value is
improved. This is achieved by changing the dwell times of the dwell positions close
to the calculation points in the PTV that do not yet receive the prescribed dose.
Since the distance between dwell position j and calculation point i has an inverse
squared relation to the dose rate dij, the probability that dwell position j is chosen
in a single draw is therefore set to:

P (tj ∈ Jc) =

∑
i∈IPTV :(Dt)i<8.5

dij∑
j∈J

∑
i∈IPTV :(Dt)i<8.5

dij
, (8.8)

where IPTV is the set of calculation points in the PTV. The denominator normalizes
the term to attain a probability distribution. Using probabilities rather than simply
picking the closest dwell positions bears the advantage that the set of states that can
be generated from the current state does not become too small. Occasionally also
dwell positions further away are selected which diversifies the search.



180 HDR-BT inverse planning on DVH criteria by Simulated Annealing

Using this methods requires a random sample of dwell positions in each iteration of
the search. Randomly sampling dwell positions without replacement in MATLAB is
a computationally expensive procedure. Our experiments have shown that sampling
|Jc| items with replacement and removing duplicates yields better results, due to a
larger number of iterations in the same running time. In a direct comparison, the
average PTV coverage after a running time of 3 minutes over 50 replications was
0.12% higher when using sampling without replacement.

Number of generated states. In the early stages of the search process, improving
states can be determined with few generated states per iteration since the improve-
ment potential in the neighborhood of tcur is high. This saves computational effort.
Later on, an intensification of the search in one of those areas is most important.
Moreover, intensification becomes necessary only when the search approaches the
boundary, where one expects to find optimal solutions. Therefore, DOPSA generates
more states when the boundary is reached (as suggested by Hedar and Fukushima
(2006)). This can be controlled with an opposite relation between the number of
states generated in a single iteration g and V100%:

g = d(1− V k100%−V
k−200,max

100%
V k−200,max

100%
)e. (8.9)

g is limited to the interval [1, 40] because trial runs indicated that excessive state
generation does not further improve the DOPSA’s performance. In the first 200
iterations, g = 1 is used.

8.3.4 Checking feasibility
The feasibility of each generated state needs to be verified, which is one of the com-
putationally most expensive procedures next to computing V100%. Testing each con-
straint discussed in Section 8.1 requires a row subset of the matrix D corresponding
to a specific OAR to be multiplied with the dwell time vector t. The computation
time of checking a constraint increases with the number of calculation points in the
corresponding OAR.

The sequence in which the constraints on the DVHs for the OARs are checked is
chosen to minimize the required computation time: the most restrictive constraints
with lowest computational cost are evaluated first. States that do not satisfy a
constraint are immediately excluded in order to reduce the computation time for
checking other constraints.

The calculation of constraint values and V100% for newly generated states can be
sped up by using the values for the current state tcur that have been computed in
the preceding iteration. Let T cur denote the |J | × g matrix containing the current
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state as columns, and let T new denote the |J | × g matrix with the neighboring states
as columns.

The dose computation for each generated state DT new can be reformulated as
follows:

DT new = DT cur +D(T new − T cur). (8.10)

The matrix product DT cur is known from the previous iteration, so only D(T new −
T cur) needs to be computed. T new−T cur is a sparse matrix with at most |Jc| non-zero
entries per column, since states generated in the neighborhood of a current state only
differ in |Jc|-many entries. Moreover, the sparsity increases over the search process.
Using MATLAB’s toolpack for multiplication of sparse matrices, an increase of the
number of iterations over the total running time of 5% up to 21% could be observed,
depending on the number of dwell positions.

8.4 Results
The performance of DOPSA is assessed by a direct comparison with two existing
dose-volume-based methods: the MILP formulation from Chapter 7 and the IPIP
algorithm by Siauw et al. (2011). The running time has been fixed to 3 minutes on
an Intel Xeon E5620 2.4 GHz with 6 GB of memory. Both MILP and IPIP are solved
using the state-of-the-art solver CPLEX 12.4 (IBM).

8.4.1 Patient data
Tables 8.2 and 8.3 provide an overview of the three patient data sets. Each data
set uses the same number of calculation points in the PTV and the OARs. The
PTV contains the biggest share of calculation points since it is the largest organ. All
dwell positions inside the PTV have been activated based on a step size of 2.5 mm,
resulting in 115 to 236 dwell positions per patient. The number of inserted catheters
is similar among patients with 17 for Patient 2 and 16 for the other two patients.
The dose rates have been calculated using the TG-43 formalism.

8.4.2 Running time and objective value
DOPSA has been tested on three patients. Since it is a random local search proce-
dure, the result can be subject to random effects. Therefore, the heuristic has been
run 250 times for each patient in order to provide a detailed analysis of the average
treatment plan quality and the variation in quality. If a low variation can be ensured
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Table 8.2 – The number of calculation points per structure.

Structure Calculation Points

PTV 1750
Urethra 500
Rectum 250
Shell 250

Table 8.3 – The number of dwell positions and catheters for each patient.

Patient Dwell Positions Catheters

1 236 16
2 115 17
3 182 16

for this optimization algorithm, only a single optimization run per patient will be
necessary in a clinical setting to obtain treatment plans with consistent quality.

Figures 8.2-8.4 show the results for all three patient data sets. The average and
standard deviation in PTV coverage over 250 replications are displayed over the
running time of 180 seconds. The positioning of catheters determines the maximally
achievable level of V100% in the PTV, which explains the difference in objective values
between patients.

In all three cases, the PTV coverage increases rapidly within the first 30 seconds
and further improvements on the treatment plan quality are achieved over the re-
maining running time. Every treatment plan determined by DOPSA is feasible, i.e.,
it always satisfies the DVH criteria imposed on the OARs (see Table 8.1).

The absolute standard deviations in PTV coverage after a running time of 3
minutes for each of the 250 replications are 0.09%, 0.33%, and 0.23%, respectively.
Therefore, DOPSA delivers treatment plans with consistent quality across replica-
tions.
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Figure 8.2 – Average and standard deviation in PTV coverage for Patient 1
(250 replications).
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Figure 8.3 – Average and standard deviation in PTV coverage for Patient 2
(250 replications).
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Figure 8.4 – Average and standard deviation in PTV coverage for Patient 3
(250 replications).
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8.4.3 Comparison with existing DVH-based optimizers
For the comparison with existing DVH-based optimizers, we have run an MILP solver
with the solver settings from Chapter 7 and we have implemented IPIP (Siauw et al.,
2011). These have been run on the same three patient data sets and on the same
model. It is important to recognize that IPIP can only provide a single solution
per data set, whereas MILP and DOPSA continue improving the solution. This
is observable in Figures 8.5-8.7, where the line for IPIP remains flat after a single
increase. In theory, MILP could stop when it proves that the solution is optimal, but
this did not happen for any of the patients.

Figures 8.5 to 8.7 show the average PTV coverage obtained by DOPSA and the
coverage obtained by the existing methods MILP and IPIP. The running time for
Patient 3 has been extended to 5 minutes since MILP requires more than 3 minutes
to find nonzero feasible points.

IPIP attains adequate PTV coverage within less than 6 seconds for each patient.
All those solutions are initially superior to treatment plans found by DOPSA. Over
the running time of 3 minutes, however, DOPSA consistently outperforms IPIP for
all patient data sets. In each of the 250 replications for all three patients, the PTV
coverage after 3 minutes is higher for DOPSA than for IPIP. The average PTV
coverage attained by DOPSA exceeds the results by IPIP after only 18, 6, and 12
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seconds, respectively.

MILP requires substantially more time to determine good treatment plans. For
2 out of 3 patients, MILP requires more than 1 minute to determine a treatment
plan with nonzero PTV coverage. However, after 3 minutes for Patients 1-2 and 5
minutes for Patient 3 it has found the best plan among the three algorithms.

Unfortunately, the optimal objective values are not known. There is still a large
gap between the best solution found by any of the algorithms and the upper bound
provided by the MILP solver, and this gap does not decrease substantially after
running the solver for a week. DOPSA differs greatly from the existing dose-volume
based methods while it finds similar objective values. This could be an indication
that much better solutions do not exist.

Figure 8.5 – Comparison of PTV coverage for DVH-based optimizers for
Patient 1.
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Figure 8.6 – Comparison of PTV coverage for DVH-based optimizers for
Patient 2.
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Figure 8.7 – Comparison of PTV coverage for DVH-based optimizers for
Patient 3.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 550

60

70

80

90

Time (min)

V
10

0%
(%

)

MILP
IPIP
SA



Conclusions 187

8.5 Conclusions
The existing dose-volume based optimization methods MILP and IPIP have not been
compared before. Our results show that each method has its own advantages. IPIP
is faster while MILP determines a better solution.

DOPSA, our new algorithm, is a viable alternative to both. Its main advantage
is that it does not require a costly solver. The time it takes to determine a good
solution is less than MILP but more than IPIP. Since IPIP returns a single solution
quickly but does not keep improving the solution, DOPSA eventually determines
better treatment plans. This leads to two observations. First, advances in computing
power will reduce the absolute time difference between both methods, making IPIP
lose its edge. Second, it is possible to combine the strength of two methods and use
the IPIP solution as a starting point for DOPSA.

An interesting observation is that the currently used method IPSA, which was
developed over a decade ago, uses SA to optimize a dose-based objective function
as a surrogate for dose-volume optimization. Recently it has been shown that the
correlation between dose-based objective functions and dose-volume criteria is weak
(Holm (2011) and Chapter 7). Consequently, a posteriori manual tuning is required
for plans that are optimized with a dose-based objective function to obtain plans
that are good with respect to dose-volume criteria. Our results show that SA is
capable of directly optimizing on dose-volume criteria. Dose-based methods may not
have become the prevalent method in treatment planning systems, if IPSA had been
designed to optimize dose-volume criteria.

We have disclosed all information necessary to implement DOPSA. We hope it
receives more testing by the community, and will eventually become available to
treatment planners at a relatively low price.
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CHAPTER 9

Dwell time modulation restrictions do not
necessarily improve treatment plan quality for

prostate HDR brachytherapy implants.

Abstract Inverse planning algorithms for dwell time optimisation
in interstitial high-dose-rate (HDR) brachytherapy may produce so-
lutions with large dwell time variations within catheters, which may
result in undesirable selective high-dose subvolumes. Extending the
dwell time optimisation model with a dwell time modulation restric-
tion (DTMR) that limits dwell time differences between neighboring
dwell positions has been suggested to eliminate this problem. DTMRs
may additionally reduce the sensitivity for uncertainties in dwell po-
sitions that inevitably result from catheter reconstruction errors and
afterloader source positioning inaccuracies. This study quantifies the
reduction of high-dose subvolumes and the robustness against these
uncertainties by applying a DTMR to template-based prostate HDR
brachytherapy implants.
Three different DTMRs were consecutively applied to a linear dose-
based penalty model (LD) and a dose-volume based model (LDV), both
obtained from literature. The models were solved with DTMR levels
ranging from no restriction to uniform dwell times within catheters
in discrete steps. Uncertainties were simulated on clinical cases using
in-house developed software, and dose-volume metrics were calculated
in each simulation. For the assessment of high-dose subvolumes, the
dose homogeneity index (DHI) and the contiguous dose volume his-
togram were analysed. Robustness was measured by the improvement
of the lowest D90% of the planning target volume (PTV) observed in
the simulations.
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For (LD), a DTMR yields an increase in DHI of approximately 30% and
reduces the size of the largest high-dose volume by 2 to 5 cc. However,
this comes at a cost of a reduction in D90% of the PTV of 10%, which
often implies that it drops below the desired minimum of 100%. For
(LDV), none of the DTMRs were able to improve high-dose volume
measures. DTMRs were not capable of improving robustness of PTV
D90% against uncertainty in dwell positions for both models.

9.1 Introduction
Interstitial high-dose-rate (HDR) brachytherapy with a high activity 192Ir stepping
source using remote afterloading has shown to be an excellent treatment option for
localised prostate cancer in any risk category. Its high tumour control and low
toxicity rates result from the precision and control with which this highly conformal
treatment can be delivered Yamada et al. (2012).

In modern treatment planning systems, automated techniques for anatomy-based
inverse treatment planning enable a fast adjustment of the source dwell time distri-
bution within implanted catheters. The fundament of these automated techniques is
a mathematical optimisation model that uses dose penalty functions for the planning
target volume (PTV) and all relevant organs at risk (OARs) to achieve pre-set dose
requirements. Several optimisation algorithms, like the inverse planning simulated
annealing (IPSA, Lessard and Pouliot, 2001) and hybrid inverse planning optimisa-
tion (HIPO, Karabis et al., 2005) algorithms have been described in the literature to
solve this task.

Often these algorithms produce solutions with large dwell time variations within
catheters Holm et al. (2012). This may give rise to the following problems related to
treatment plan robustness against uncertainties in dose delivery. Firstly, large dwell
times may produce selective high-dose subvolumes around dominant dwell positions.
As stated by Baltas et al. (2009), these high-dose subvolumes should be avoided unless
inhomogeneities in the GTV structure ask for an inhomogeneous dose distribution.
Secondly, catheters with large dwell time variations are expected to yield a hetero-
geneous dose distribution. Since a longitudinal displacement of the catheter implies
that a dwell position may shift to the location of its neighbor, heterogeneous dose
distributions are expected to be more susceptible to inter- and intra-fraction catheter
displacement. Thirdly, it is generally believed that irregular dwell time distributions
may be sensitive to uncertainties in dwell positions due to catheter reconstruction
errors and (mechanical) source positioning inaccuracies of the afterloader.
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9.1.1 Clinical procedure and workflow
This study is based on a clinical procedure for HDR brachytherapy delivered in two
fractions of 8.5 Gy with a week interfraction interval. The brachytherapy fractions
are a boost to external radiotherapy delivered in 13 fractions of 2.75 Gy. Dose
prescriptions are according to Hoskin et al. (2007) and Hoskin et al. (2013). Prior
to treatment, the patient is placed in dorsal lithotomy position, and is not moved
until the treatment fraction has been completed. First, TRUS images are made
and relevant tissue structures are contoured. Second, a pre-plan is made, where
the catheter configuration as well as dwell times are optimised via inverse planning.
For each fraction, a new implant is made using rigid steel catheters. In the third
step, catheters are inserted under transrectal ultrasound (TRUS) guidance, using a
transperineal template with a hole spacing of 5 mm. Fourth, new TRUS images are
made, on which catheters are reconstructed and structure delineations are adapted
when necessary. Since we make use of rigid catheters which can be assumed to be
unbent, catheter reconstruction is performed by localising two points. The first point
is the location of the catheter at the template, which is known, and the second point is
the catheter tip, which is identified on the scan. In the fifth phase, a treatment plan
is developed based on the delineations and catheter reconstructions using inverse
planning. This work only considers the dwell time optimisation in this fifth step,
where the catheter configuration is fixed. Finally, the treatment can be delivered.

9.1.2 High-dose subvolumes
Small high-dose subvolumes inevitably occur around each of the dwell positions,
where the size of this region depends on the dwell time. When large dwell times
occur, the high-dose subvolumes around two neighboring dwell positions may get
connected, resulting in a large high-dose volume. Without (radio)biological informa-
tion about the intra-tumoural heterogeneity, such large high-dose subvolumes may
cause irreversible damage to the stromal tissue causing necrosis, and are thus con-
sidered an undesirable property of a dose distribution. Therefore, it is reasonable to
avoid the formation of such high-dose subvolumes.

The size of the largest high-dose volume for a range of dose levels is reflected in
the contiguous dose-volume histogram (DVHc Thomas et al., 2007).

Besides DVHc, which is a local measure, we consider the global measure DHI,
which is calculated as Wu et al. (1988):

DHI = V100% − V150%

V100%
.

DHI can be interpreted as the fraction of calculation points receiving a dose between
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100% and 150% of the prescribed dose relative to the points receiving at least 100%
of the prescribed dose. DHI attains a value between 0 and 1, where a value close to
1 corresponds to a homogeneous dose distribution.

While DVHc shows the largest volume receiving at least a certain dose, interest
may also be in the second or third largest volume. We only take these into account
indirectly via the DHI for a dose of 150% of the prescribed dose. In order to see this,
note that 1− DHI = V150%/V100%, which is the total volume of all regions receiving
at least 150% of the prescribed dose, as a fraction of the total volume receiving at
least the prescribed dose.

9.1.3 Uncertainty in dwell locations
A generally acknowledged problem encountered in HDR brachytherapy is the uncer-
tainty in the location of the dwell positions, resulting in a difference between the
intended dose distribution and the one actually delivered. Here, we identify three
causes. The first cause is a catheter positioning error, which occurs when the catheter
is not exactly positioned during implantation as it was planned in the pre-plan Abol-
hassani et al. (2007). We do not consider this type of error here, since we focus on
cases where the catheter positions are given. The second cause is a reconstruction
error: it is difficult to determine the exact location of the catheter tip from TRUS
imaging data Siebert et al. (2009). This uncertainty translates to an uncertainty
in the location of each of the dwell positions within that catheter. The third cause
is a source positioning error caused by mechanical inaccuracies of the afterloader,
resulting from the resolution of the afterloader as well as uncertainty in the path of
the source guide transit tube. The latter may be slightly bent, causing an error in
the distance from the afterloader to the source. These inaccuracies result in all dwell
positions within one catheter to shift in the same direction with the same magnitude.

When the expected locations of the dwell positions differ from the true locations,
the delivered dose distribution differs from the expected dose distribution. Treatment
plans should be robust in the sense that the influence of these uncertainties on the
dose distribution is small.

9.1.4 Dwell time modulation restrictions
In the literature it has been proposed to regularise the dwell time distribution per
catheter by adding a dwell time modulation restriction (DTMR) to the optimisation
model Baltas et al. (2009). This is a constraint that puts a restriction on the difference
between dwell times of adjacent dwell positions. In Chapter 7, a DTMR restricting
the relative dwell time difference is used. Van der Laarse and Prins (1994) considered
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the sum of squared differences between dwell times of adjacent dwell locations.
DTMRs are available in commercial treatment planning systems, as for example

in the real-time intra-operative planning system Oncentra Prostate (Nucletron B.V.,
Veenendaal, The Netherlands) that employs the HIPO Karabis et al. (2005) and the
IPSA algorithm Lessard and Pouliot (2001); Alterovitz et al. (2006). Here, a user-
selectable level between 0 and 1 allows for different degrees of dwell time modulation.
Unfortunately, no mathematical definition of the DTMR is given for these particular
dwell-time optimisation algorithms, and the interpretation of the various restriction
levels remains unclear. Baltas et al. (2009) and Mavroidis et al. (2010) have studied
the effects of a DTMR in HIPO, and concluded that including a DTMR results in
treatment plans with fewer high-dose subvolumes and lower total dwell time.

9.1.5 Aim of the paper
The aim of this study is to quantify the assumed improvement in treatment plan
quality caused by DTMRs in HDR brachytherapy of the prostate. We measure the
reduction in high-dose subvolumes caused by three different DTMRs in existing dose-
or dose-volume based inverse treatment planning models and are the first to do so
in a quantitative manner. Furthermore, this study is the first to assess robustness
against uncertainties in dwell locations as a result of these DTMRs. It is our aim to
investigate the trend caused by an increasing DTMR level, not to consider treatment
quality for a single DTMR level.

9.2 Methods and materials
9.2.1 Dwell time optimisation models
For our analysis, we used two different dwell time optimisation models. The first
model is the linear dose (LD) model by Alterovitz et al. (2006), which forms the
basis for the IPSA algorithm. This model assigns a penalty to each dose calculation
point receiving a dose below the preset lower bound or above the preset upper bound,
where the penalty is linear in the difference between the dose and the corresponding
bound. The objective is to minimise the total penalty. Recently, new optimisation
models have been developed that directly optimise dose-volume histogram (DVH)
parameters (Siauw et al. (2011) and Chapter 7). The second model we use is the
linear dose volume (LDV) model decribed in Chapter 7. This model maximises the
number of dose calculation points in the PTV that receive at least the prescribed
dose, while restricting the dose received by the hottest ten percent of the rectum and
urethra, denoted by D10%(rectum) and D10%(urethra), respectively.
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9.2.2 Modulation restrictions
Both the (LD) and (LDV) models contain the dwell time variable tj, which denotes
the dwell time of dwell position j. A restriction can be placed on the dwell time
gradient of neighboring dwell positions using these dwell time variables. DTMR-R
was introduced in Chapter 7:

tj1 ≤ (1 + γ)tj2 ∀j1 ∈ J, ∀j2 ∈ Γ(j1), (9.1)

where γ denotes the pre-set maximum relative difference between two adjacent dwell
positions, J denotes the set of dwell positions and Γ(j) denotes the set of all dwell
positions adjacent to dwell position j. Note that constraint (9.1) also implies the
reversed constraint, where the dwell time of dwell position j2 cannot exceed (1+γ)tj1 .

Instead of restricting the relative differences as in constraint (9.1) we can restrict
the absolute difference between dwell times of two adjacent dwell positions. We
introduce DTMR-A, formulated as:

tj1 − tj2 ≤ θ ∀j1 ∈ J, ∀j2 ∈ Γ(j1), (9.2)

where θ is the pre-set maximum absolute difference between two adjacent dwell po-
sitions. Just as constraint (9.1), constraint (9.2) works two ways.

Finally, DTMR-Q is introduced as a modification of the quadratic penalty first
described by Van der Laarse and Prins (1994):

1
2
∑
j1∈J

∑
j2∈Γ(j1)

(tj1 − tj2)2 ≤ ρ,

where ρ is some pre-set maximum on the sum of squared differences between dwell
times of adjacent dwell positions.

9.2.3 Patient data and simulations
In order to investigate the effects of the different DTMRs on the quality of the dose
distribution, the three restrictions are applied to the (LD) and (LDV) dwell time
optimisation models.

For the numerical evaluation clinical data from three prostate cancer patients
were used, where the rectum and urethra are the delineated OARs. These three
patients cover various prostate sizes: 32, 55 and 48 cc, respectively. The PTV is
defined as the clinical target volume extended with a 2 mm margin. The catheter
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positions used have been chosen by an experienced treatment planner (ALH). For
patients 1 and 2, 16 catheters were used, and 14 were used for patient 3.

Patient data were obtained from the treatment planning system (HDRplus, ver-
sion 3.0, Eckert and Ziegler BEBIG GmbH, Berlin, Germany), comprising the sets
of dwell positions, catheter positions and dose calculation points, the parameters
necessary for optimisation, and the dose rate matrix. We used the same data as in
Chapter 7. Dose calculation points had been hexagonally distributed over the delin-
eated structures. For treatment planning, a resolution of approximately 40, 30 and
180 calculation points per cc was used for the PTV, rectum and urethra, respectively.
Approximately four times as many dose calculation points were used for evaluation
of the resulting dose distribution, in order to increase accuracy. The PTV consists of
the prostate extended with a 2 mm margin, according to our clinical protocol. The
dose rates were determined according to the TG-43 formalism Nath et al. (1995),
with parameters according to Granero et al (2006).

For all three patients different treatment plans were obtained by solving the (LD)
and (LDV) models extended with each DTMR for different values for γ, θ and ρ. In
the models extended with DTMR-R, 1 + γ ranges from 1 to 4.6 with an incremental
step size of 10%, implying that the relative difference between dwell times of adjacent
dwell positions is restricted to be 0 up to 360%. Note that 1+γ = 4.6 is closest to the
unrestricted case, and for 1+γ = 1 all dwell times within the same catheter are forced
to be equal. In the models extended with DTMR-A, θ varies from 0 to 5 in steps
of 0.05, where θ = 5 approaches the unrestricted case. In the models extended with
DTMR-Q, ρ varies from 0 to the value implying free modulation, taking 50 steps.
The optimisation models extended with DTMR-R or DMTR-A were solved using
CPLEX 12.2 Optimiser (IBM Corporation, Somers, USA). For (LD) extended with
DTMR-Q we obtained more accurate results using the MOSEK 6.0 solver (Mosek
ApS, Copenhagen, Denmark) due to its strongly developed interior point method.
For model (LDV) we stopped the solver as soon as 95% of the PTV received at
least the prescribed dose, or after 30 minutes (on a computer with an Intel Q8400
processor). The (LDV) model extended with DTMR-Q could not be solved within
reasonable time, and is thus not included in the analysis.

After the treatment plans had been generated, the actual locations of the catheters
were perturbed by means of simulation, resulting in different locations of the dwell
positions. Due to the large number of possible scenarios, at least 10,000 simulations
were calculated per patient. Simulated locations are based on deviations from the
nominal (measured) scenario. The accuracies used for simulation are consistent with
values reported in the literature (Pantelis et al., 2004, page 62). For each simulation,
the location of the catheter tip was uniformly sampled from a sphere of 2 mm around
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the measured position, resulting in a change in angle between the catheter and the
template and in catheter depth. Consequently, all dwell positions in that catheter
were moved with the catheter. A single longitudinal shift was uniformly sampled
on the interval [-1,1] mm, which applies to all dwell positions within the catheter
simultaneously. Dislocations were sampled for each catheter separately. For each
treatment plan obtained, the resulting objective values and DVH evaluation criteria
were calculated for every simulation. In order to assess whether the models provide
good and robust treatment plans, the objective value and the DVH criteria were
compared for different DTMR parameter values by simulation.

9.2.4 Plan quality indicators

We consider the following performance indicators to assess treatment plan quality.
In Table 9.1 the DVH criteria are shown, based on the 8.5 Gy per fraction boost
according to the treatment protocol by Hoskin et al. (2007). Here, V100% (PTV) is
referred to as the fraction of the PTV receiving at least 100% of the prescribed dose,
while D90% reflects the minimum dose received by the hottest 90% of the PTV as a
fraction of the prescribed dose.

Table 9.1 – Dose-volume criteria, based on the protocol by Hoskin et al.
(2007).

PTV Rectum Urethra

D90% ≥ 100% D10% ≤ 7.2 Gy D10% ≤ 10 Gy
V100% ≥ 95% D2cc ≤ 6.7 Gy D0.1cc ≤ 10 Gy
V150% ≤ 55%
V200% ≤ 20%

For the assessment of robustness against uncertainty in catheter positions, the
objective value is a useful indicator. Ideally, a robust model does not deteriorate the
objective value, while it improves the worst case value in the simulations. Further-
more, it decreases the standard deviation among simulations.

The objective of (LD) is only a surrogate for the actual goal, which is to satisfy
the preset DVH criteria as well as possible (Holm (2011) and Chapter 7). Therefore,
we also consider the results for D90% of the PTV. For the (LDV) model, we consider
the objective (V100%) as well as D90%.
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9.3 Results
The objective values, DVH metrics and high-dose volume measures resulting from
the different treatment plans applied to the simulations are summarised in graphs.
Since the number of graphs is huge, we only discuss graphs for patient 1 for (LD)
extended with DTMR-R as an illustration. The remaining graphs have been included
as supplementary data.

In all graphs except for those concerning DVHc, the modulation parameter is
shown on the horizontal axis. The smallest value implies a strong DTMR, while the
largest value implies free or almost free modulation. Consequently, the two extreme
observations are the same for all modulation restrictions. For example, it does not
matter whether DTMR-A, DTMR-R or DTMR-Q is used when the best plan is the
one with the strongest DTMR, because for all DTMRs a parameter value exists that
forces all dwell times to be equal within the same catheter. In contrast, a specific
DTMR is favourable if the best plan is found for non-extreme DTMR parameter
values, i.e., in the middle of the graph. Note that, since (LDV) could not always
be solved to optimality, the results for the extreme modulation restrictions are not
exactly the same.

In the figures displaying dose-volume parameters, the three solid lines represent
the average, the maximum and the minimum value over all simulations, and the
dotted curve represents the value when all locations of the dwell positions are as
derived from the imaging data (i.e., nominal value). The grey area denotes the
values within a distance of one standard deviation from the mean.

By way of example, we briefly describe the interpretation of Figure 9.1b. From
this figure we see that for the strongest modulation restriction, i.e., when 1 + γ = 1,
the minimum, mean and maximum D90%(PTV) over all simulations are approxi-
mately 99.9%, 105% and 109%, respectively. The D90%(PTV) is 106% if the dwell
locations are exactly as in the nominal scenario, which can be seen from the dotted
line representing the nominal value. When the treatment plan developed with (LD)
and DTMR-R with 1+γ = 1 is used, the values for D90%(PTV) that deviate at most
one standard deviation from the mean lie between 104% and 106%. When moving
along the x-axis, the D90%(PTV) for less strict DTMRs can be found, until we reach
the values for the almost unrestricted case at 1 + γ = 4.6.

As opposed to DHI and dose-volume metrics, DVHc is not a single value, but a
complete graph for every DTMR level. Therefore, a 3D graph shows the DVHc for
various DTMR levels.

The most prominent aspect of all graphs for (LDV) is the large variation of each
curve. The main cause is that we did not solve (LDV) to optimality. Therefore, we
should consider the trend, rather than the individual values.
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9.3.1 Relative dwell time difference restricted in (LD)
The results obtained from (LD) extended with the relative dwell time difference con-
straint (9.1) are discussed in this subsection. First, the results concerning robustness
are discussed, followed by high-dose volume measures. Note that we are not inter-
ested in the absolute values of the quality indicators, but merely in the improvements
as a result of applying a DTMR. Hence, we will only consider deviations in parameter
values caused by applying a stronger restriction.

From Figure 9.1a, it is evident that the range of penalties among the simulations
becomes smaller when the DTMR gets stronger. Furthermore, the penalty for the
worst case scenario becomes smaller. From these two observations, we can conclude
that adding a strong relative dwell time modulation restriction to the (LD) model
yields solutions with robust penalty values. However, the results in Figure 9.1b
show that a strong modulation restriction yields a decrease in the D90%(PTV). The
decrease in theD90%(PTV) for patient 1 does not result in insufficient target coverage,
but for patients 2 and 3 it drops below the minimum desired level of 100% (Figures
9.7b and 9.7c of the supplementary data). The standard deviation decreases slightly,
but the D90%(PTV) for worst case scenario strongly decreases. We can thus conclude
that DTMR-R does not yield robustness of the D90% for the PTV, and leads to
compromised target coverage.
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Figure 9.1 – Graphs for patient 1 showing: (a) penalty and (b) D90%(PTV)
generated by (LD) extended with DTMR-R. The solid lines represent mini-
mum, mean and maximum values, and the dotted line is the pre-plan value.
The grey area denotes values at most one standard deviation from the mean.

The results for the remaining DVH parameters for PTV as well as those for
the OARs can be found in 9.A of the supplementary data. From these figures, we
conclude that a strong restriction on the relative dwell time differences results in a
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large reduction of V100%, and a slight reduction of V150% and V200%. Also rectum D2cc

and D10%, whereas urethra D0.1cc and D10% stay at the same level.
High-dose volumes are the second feature under consideration. Figure 9.2a shows

that for patient 1, DHI is optimal for the weakest as well as strongest DTMR. For
patients 2 and 3, the highest DHI is obtained for a strong modulation restriction
(Figures 9.4b and 9.4c). From Figure 9.2b, one can see that the strongest DTMR
yields the best DVHc. The same conclusion can be drawn for patients 2 and 3
(Figures 9.5b and 9.5c). Note that this is a trivial consequence from the decrease in
D90%.
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Figure 9.2 – Graphs for patient 1 showing: high-dose volume performance
indicators (a) DHI and (b) DVHc generated by (LD) extended with DTMR-R.
The solid lines in graph (a) represent minimum, mean and maximum values,
and the dotted line is the pre-plan value. The grey area denotes values at most
one standard deviation from the mean.

From the above we conclude that including DMTR-R in (LD) can result in un-
desirable treatment plans when considering the D90% for the PTV. Furthermore, it
does result in robustness of the penalty, but not in robustness of the D90% for the
PTV. A strong DMTR-R slightly improves high-dose subvolumes according to the
DHI and DVHc, but this is a trivial consequence of an undesirably low D90%.

9.3.2 General results
For (LD) extended with DTMR-A or DTMR-Q, the results are similar to those ob-
tained from (LD) extended with DTMR-R and do not need a separate discussion.
For the (LDV) model extended with DTMR-R and DTMR-A the DTMRs did not
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provide treatment plans with improved high-dose volume indicator values, and some-
times even worse high-dose volume indicator values were found. Furthermore, our
DTMRs often yield lower values for the D90% of the PTV. Detailed results can be
found in the supplementary data.

9.4 Discussion
The effects of DTMRs were assessed in several other papers as well. In their work,
Baltas et al. (2009) and Mavroidis et al. (2010) used data from 12 clinical implants in
combination with the HIPO algorithm. The dosimetric quality of these implants was
assessed for plans optimised with and without DTMR, such that DVH parameters
of their protocol were completely fulfilled. This resulted in almost equivalent DVHs
for the prostate and a more pronounced sparing of the OARs, especially urethra
and bladder. However, our work does not support this conclusion. We observed a
decrease in target coverage when using a DTMR.

Baltas et al. (2009) and Mavroidis et al. (2010) have found a lower mean dwell time
per implant and a mean total dwell time reduction of 1.4%, that both were proven to
be statistically significant. In our opinion, part of the reduction in total dwell time
for the plan with DTMR can be explained by the average observed reduction in D90%

for the prostate. Using (LD) extended with one of the three DTMRs, we observed
a mean total dwell time reduction of 3-5%. For DTMR-Q the reduction takes place
only when dwell times are forced to be equal within the same catheter, while a more
gradual reduction was observed for the other two DTMRs as the restriction became
stronger. For (LDV) there were no differences in mean total dwell time between the
plans with and without DTMR.

Both Baltas et al. (2009) and Mavroidis et al. (2010) use radiobiological models to
assess the expected treatment outcome in terms of the probabilities of benefit, injury
and uncomplicated tumour control. The results of this radiobiological evaluation
supported to a large extend the conclusions derived from the dosimetric comparisons
between plans with and without DTMRs. They concluded that optimisation with a
DTMR can introduce a minor improvement in the effectiveness of the dose distribu-
tion obtained compared to the optimisation without DTMR. We question whether
the parameter values of the radiobiological models, which have been derived from
3D dose distributions delivered with external beam radiotherapy, can be applied to
highly heterogeneous dose distributions delivered with HDR brachytherapy, and thus
whether they give usable results. Furthermore, the parameters of the radiobiological
models are uncertain, and the effect of this uncertainty is not assessed in these pa-
pers. Moreover, in our opinion there is a lack of statistical evidence in assessing the
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significance of the difference in radiobiological indices, and it is unclear for how many
patients the DTMR gives an improvement in any of the radiobiological indices.

The results of the current study show that the DTMR is not suitable for the
development of robust treatment plans. Therefore, these uncertainties need to be
included in the optimisation model in a different way. Examples of methods to
take uncertainties into account are robust optimisation Ben-Tal et al. (2009a) and
stochastic programming Kall and Wallace (1994).

High-dose volume parameters do not show improvements as a result of the DTMR
for the (LDV) model. For the (LD) model, the DTMR can only marginally improve
high-dose volume measures while compromising target coverage. A trade-off between
these two goals thus needs to be made. For patient 1, the decrease in coverage is
not problematic, but for patients 2 and 3 it drops below the desired minimum. The
effects of a DTMR do not only differ among patients, but also among models, which
indicates that the different effects may not depend on the implant quality and patient
characteristics.

A method to improve the homogeneity of the dose distribution is to include the
DHI in the objective, as proposed by Holm et al. (2013a). When comparing the newly
developed model to the original linear penalty model by Alterovitz et al. (2006),
Holm et al. (2013a) found no significant difference in treatment plan quality when
comparing the homogeneity index.

For the assessment of a DTMR’s capabilities of improving robustness against
uncertainties in dwell locations, we took catheter reconstruction errors and the source
positioning inaccuracy of the afterloader into account. According to Pantelis et al.
(2004), such errors hardly affect the dose-volume histogram and corresponding DVH
metrics. However, our results show a variation in D90% and V100% that can be up
to 5%, which corresponds to the magnitude of variation reported by Kirisits et al.
(2014), Table 5. Pantelis et al. (2004) derive DVH metrics from the average dose
to a single calculation point over all sampled catheter locations instead of deriving
DVH metrics for a single sample, and as such ignore the risks occurring in individual
scenarios.

Additional uncertainties arise in various stages of the treatment process. In the
pre-planning stage, where catheter locations are chosen, uncertainties caused by inter-
and intra observer variability, catheter deflection during insertion and organ defor-
mations caused by catheter insertion arise. In addition, uncertainties arise in dose
calculations and after catheters have been inserted (Kirisits et al., 2014, page 207
and Table 5). According to Kirisits et al. (2014), the magnitude of the effects on
dose distribution of these uncertainties are of a similar magnitude as the magnitude
of the errors considered in this work. The effects of uncertainties other than those



202 DTMRs do not necessarily improve treatment plan quality

considered in this article, such as inter- and intra observer variabilities and inter
fractional organ deformations, as well as methods to overcome them are interesting
topics for future research, especially for different catheter configurations.

In our study, we only considered the case where rigid catheters are used. However,
flexible catheters are used in clinics and hospitals where the implant remains in
situ between fractions. When performing a similar study with flexible catheters,
indicating two points on a catheter is insufficient for identification of the complete
catheter location, and uncertainties should be simulated in a different way.

Since we have considered only three patients, we were able to perform the detailed
study that was necessary to address the effects of a DTMR on high-dose subvolumes
and robustness. The results for all three patients were negative, and DTMRs some-
times even showed to result in deterioration of the plan quality. Including more
patients in this study would not change the negative results for these three patients.
Therefore, despite the small number of patients, we can conclude that DTMRs do
not in general improve treatment plan quality, as they were expected to. This does
not imply that a DTMR has negative effects for every patient: patients for whom a
DTMR would have positive effects may exist. In clinical practice, it is thus desir-
able to conduct tests to investigate whether a plan generated with a DTMR would
yield fewer high-dose volumes and more robustness than a plan generated without
a DTMR for a specific patient. However, such a lengthy study would take up too
much time during the treatment.

9.5 Conclusion

Robustness in the penalty of the (LD) model is obtained from all three DTMRs,
however the goal is to achieve robustness in the D90% for the PTV. No improvement
in robustness of the D90% against uncertainty in dwell position measurement and
afterloader precision was obtained by applying any of the three DTMRs for the
(LD) and (LDV) models. Furthermore, these DTMRs do not reduce the high-dose
subvolumes without simultaneously deteriorating D90%. Finally, hardly any sparing
of the OARs is achieved, unless the dose delivered at the PTV is decreased as well.
These conclusions hold for the patients from our institution, though different results
may be obtained in other institutions. Therefore, we recommend other institutions
to perform a similar study in order to see how their treatment plans are influenced
by the use of DTMRs.
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