79,175 research outputs found

    Bimolecular photoabsorption spectroscopy

    Get PDF

    A determination of the molar gas constant R by acoustic thermometry in helium

    Get PDF
    We have determined the acoustic and microwave frequencies of a misaligned spherical resonator maintained near the temperature of the triple point of water and filled with helium with carefully characterized molar mass M = (4.002 6032 ± 0.000 0015) g mol-1, with a relative standard uncertainty ur(M) = 0.37×10-6. From these data and traceable thermometry we estimate the speed of sound in our sample of helium at TTPW = 273.16 K and zero pressure to be u0 2 = (945 710.45 ± 0.85) m2 s-2 and correspondingly deduce the value R = (8.314 4743 ± 0.000 0088) J mol-1 K-1 for the molar gas constant. We estimate the value k = R/NA = (1.380 6508 ± 0.000 0015) × 10-23 J K-1 for the Boltzmann constant using the currently accepted value of the Avogadro constant NA. These estimates of R and k, with a relative standard uncertainty of 1.06 × 10-6, are 1.47 parts in 106 above the values recommended by CODATA in 2010

    Software life cycle dynamic simulation model: The organizational performance submodel

    Get PDF
    The submodel structure of a software life cycle dynamic simulation model is described. The software process is divided into seven phases, each with product, staff, and funding flows. The model is subdivided into an organizational response submodel, a management submodel, a management influence interface, and a model analyst interface. The concentration here is on the organizational response model, which simulates the performance characteristics of a software development subject to external and internal influences. These influences emanate from two sources: the model analyst interface, which configures the model to simulate the response of an implementing organization subject to its own internal influences, and the management submodel that exerts external dynamic control over the production process. A complete characterization is given of the organizational response submodel in the form of parameterized differential equations governing product, staffing, and funding levels. The parameter values and functions are allocated to the two interfaces

    Soil moisture and evapotranspiration predictions using Skylab data

    Get PDF
    The author has identified the following significant results. Multispectral reflectance and emittance data from the Skylab workshop were evaluated for prediction of evapotranspiration and soil moisture for an irrigated region of southern Texas. Wavelengths greater than 2.1 microns were required to spectrally distinguish between wet and dry fallow surfaces. Thermal data provided a better estimate of soil moisture than did data from the reflective bands. Thermal data were dependent on soil moisture but not on the type of agricultural land use. The emittance map, when used in conjunction with existing models, did provide an estimate of evapotranspiration rates. Surveys of areas of high soil moisture can be accomplished with space altitude thermal data. Thermal data will provide a reliable input into irrigation scheduling

    DeSyRe: on-Demand System Reliability

    No full text
    The DeSyRe project builds on-demand adaptive and reliable Systems-on-Chips (SoCs). As fabrication technology scales down, chips are becoming less reliable, thereby incurring increased power and performance costs for fault tolerance. To make matters worse, power density is becoming a significant limiting factor in SoC design, in general. In the face of such changes in the technological landscape, current solutions for fault tolerance are expected to introduce excessive overheads in future systems. Moreover, attempting to design and manufacture a totally defect and fault-free system, would impact heavily, even prohibitively, the design, manufacturing, and testing costs, as well as the system performance and power consumption. In this context, DeSyRe delivers a new generation of systems that are reliable by design at well-balanced power, performance, and design costs. In our attempt to reduce the overheads of fault-tolerance, only a small fraction of the chip is built to be fault-free. This fault-free part is then employed to manage the remaining fault-prone resources of the SoC. The DeSyRe framework is applied to two medical systems with high safety requirements (measured using the IEC 61508 functional safety standard) and tight power and performance constraints
    corecore