8,470 research outputs found

    The Impacts of Spatially Variable Demand Patterns on Water Distribution System Design and Operation

    Get PDF
    Open Access articleResilient water distribution systems (WDSs) need to minimize the level of service failure in terms of magnitude and duration over its design life when subject to exceptional conditions. This requires WDS design to consider scenarios as close as possible to real conditions of the WDS to avoid any unexpected level of service failure in future operation (e.g., insufficient pressure, much higher operational cost, water quality issues, etc.). Thus, this research aims at exploring the impacts of design flow scenarios (i.e., spatial-variant demand patterns) on water distribution system design and operation. WDSs are traditionally designed by using a uniform demand pattern for the whole system. Nevertheless, in reality, the patterns are highly related to the number of consumers, service areas, and the duration of peak flows. Thus, water distribution systems are comprised of distribution blocks (communities) organized in a hierarchical structure. As each community may be significantly different from the others in scale and water use, the WDSs have spatially variable demand patterns. Hence, there might be considerable variability of real flow patterns for different parts of the system. Consequently, the system operation might not reach the expected performance determined during the design stage, since all corresponding facilities are commonly tailor-made to serve the design flow scenario instead of the real situation. To quantify the impacts, WDSs’ performances under both uniform and spatial distributed patterns are compared based on case studies. The corresponding impacts on system performances are then quantified based on three major metrics; i.e., capital cost, energy cost, and water quality. This study exemplifies that designing a WDS using spatial distributed demand patterns might result in decreased life-cycle cost (i.e., lower capital cost and nearly the same pump operating cost) and longer water ages. The outcomes of this study provide valuable information regarding design and operation of water supply infrastructures; e.g., assisting the optimal design

    Optimizing resource allocation in computational sustainability: Models, algorithms and tools

    Get PDF
    The 17 Sustainable Development Goals laid out by the United Nations include numerous targets as well as indicators of progress towards sustainable development. Decision-makers tasked with meeting these targets must frequently propose upfront plans or policies made up of many discrete actions, such as choosing a subset of locations where management actions must be taken to maximize the utility of the actions. These types of resource allocation problems involve combinatorial choices and tradeoffs between multiple outcomes of interest, all in the context of complex, dynamic systems and environments. The computational requirements for solving these problems bring together elements of discrete optimization, large-scale spatiotemporal modeling and prediction, and stochastic models. This dissertation leverages network models as a flexible family of computational tools for building prediction and optimization models in three sustainability-related domain areas: 1) minimizing stochastic network cascades in the context of invasive species management; 2) maximizing deterministic demand-weighted pairwise reachability in the context of flood resilient road infrastructure planning; and 3) maximizing vertex-weighted and edge-weighted connectivity in wildlife reserve design. We use spatially explicit network models to capture the underlying system dynamics of interest in each setting, and contribute discrete optimization problem formulations for maximizing sustainability objectives with finite resources. While there is a long history of research on optimizing flows, cascades and connectivity in networks, these decision problems in the emerging field of computational sustainability involve novel objectives, new combinatorial structure, or new types of intervention actions. In particular, we formulate a new type of discrete intervention in stochastic network cascades modeled with multivariate Hawkes processes. In conjunction, we derive an exact optimization approach for the proposed intervention based on closed-form expressions of the objective functions, which is applicable in a broad swath of domains beyond invasive species, such as social networks and disease contagion. We also formulate a new variant of Steiner Forest network design, called the budget-constrained prize-collecting Steiner forest, and prove that this optimization problem possesses a specific combinatorial structure, restricted supermodularity, that allows us to design highly effective algorithms. In each of the domains, the optimization problem is defined over aspects that need to be predicted, hence we also demonstrate improved machine learning approaches for each.Ph.D

    Progressive damage assessment and network recovery after massive failures

    Get PDF
    After a massive scale failure, the assessment of damages to communication networks requires local interventions and remote monitoring. While previous works on network recovery require complete knowledge of damage extent, we address the problem of damage assessment and critical service restoration in a joint manner. We propose a polynomial algorithm called Centrality based Damage Assessment and Recovery (CeDAR) which performs a joint activity of failure monitoring and restoration of network components. CeDAR works under limited availability of recovery resources and optimizes service recovery over time. We modified two existing approaches to the problem of network recovery to make them also able to exploit incremental knowledge of the failure extent. Through simulations we show that CeDAR outperforms the previous approaches in terms of recovery resource utilization and accumulative flow over time of the critical service

    APPROACHES TO VULNERABILITY ANALYSIS FOR DISCOVERING THE CRITICAL ROUTES IN ROADWAY NETWORKS

    Get PDF
    All modes of transportation are vulnerable to disruptions caused by natural disasters and/or man-made events (e.g., accidents), which may have temporary or permanent consequences. Identifying crucial links where failure could have significant effects is an important component of transportation network vulnerability assessments, and the risk of such occurrences cannot be underestimated. The ability to recognize critical segments in a transportation network is essential for designing resilient networks and improving traffic conditions in scenarios like link failures, which can result in partial or full capacity reductions in the system. This study proposes two approaches for identifying critical links for both single and multiple link disruptions. New hybrid link ranking measures are proposed, and their accuracy is compared with the existing traffic-based measures. These new ranking measures integrate aspects of traffic equilibrium and network topology. The numerical study revealed that three of the proposed measures generate valid findings while consuming much less computational power and time than full-scan analysis measures. To cover various disruption possibilities other than single link failure, an optimization model based on a game theory framework and a heuristic algorithm to solve the mathematical formulation is described in the second part of this research. The proposed methodology is able to identify critical sets of links under different disruption scenarios including major and minor interruptions, non-intelligent and intelligent attackers, and the effect of presenting defender. Results were evaluated with both full scan analysis techniques and hybrid ranking measures, and the comparison demonstrated that the proposed model and algorithm are reliable at identifying critical sets of links for random and specially targeted attacks based on the adversary\u27s link selection in both partial and complete link closure scenarios, while significantly reducing computational complexity. The findings indicate that identifying critical sets of links is highly dependent on the adversary\u27s inelegancy, the presence of defenders, and the disruption scenario. Furthermore, this research indicates that in disruptions of multiple links, there is a complex correlation between critical links and simply combining the most critical single links significantly underestimates the network\u27s vulnerability

    A Bi-Objective Programming Model for Reliable Supply Chain Network Design Under Facility Disruption

    Get PDF
    Supply chain networks generally are composed of four main entity types: supplier, production centers, distribution centers and demand zones that consist of facilities whose activities involve the transformation of raw material into finished products that are later delivered from the suppliers to the end customers. Supply chain network design as the most important strategic decision in supply chain management plays an important role in the overall environmental and economic performance of the supply chain. The nature and complexity of today’s supply chains network make them vulnerable to various risks. One of the most important risks is disruption risk. Disruptions are costly and can be caused by internal or external sources to the supply chain, thus it is crucial that managers take appropriate measures of responses to reduce its negative effects. A recovery time of disrupted facilities and return it to the normal condition can be an important factor for members of the supply chain. In this paper, a bi-objective model is developed for reliable supply chain network design under facility disruption. To solve this model, we have applied two approaches, i.e., ε constraint method as an exact method and non- dominated sorting genetic algorithm (NSGAII) as a meta-heuristic method

    An integrated optimisation platform for sustainable resource and infrastructure planning

    Get PDF
    It is crucial for sustainable planning to consider broad environmental and social dimensions and systemic implications of new infrastructure to build more resilient societies, reduce poverty, improve human well-being, mitigate climate change and address other global change processes. This article presents resilience.io, 2 a platform to evaluate new infrastructure projects by assessing their design and effectiveness in meeting growing resource demands, simulated using Agent-Based Modelling due to socio-economic population changes. We then use Mixed-Integer Linear Programming to optimise a multi-objective function to find cost-optimal solutions, inclusive of environmental metrics such as greenhouse gas emissions. The solutions in space and time provide planning guidance for conventional and novel technology selection, changes in network topology, system costs, and can incorporate any material, waste, energy, labour or emissions flow. As an application, a use case is provided for the Water, Sanitation and Hygiene (WASH) sector for a four million people city-region in Ghana

    Combining robustness and recovery in rapid transit network design

    Get PDF
    When designing a transport network, decisions are made according to an expected value for network state variables, such as infrastructure and vehicle conditions, which are uncertain at a planning horizon of up to decades. Because disruptions, such as infrastructure breakdowns, will arise and affect the network on the day of operations, actions must be taken from the network design. Robust network designs may be implemented but they are extremely expensive if disruptions do not realise. In this paper, we propose a novel approach to the network design problem where robustness and recovery are combined. We look for the trade-off between efficiency and robustness accounting for the possibility of recovering from disruptions: recoverable robust network design. Computational experiments drawn from fictitious and realistic networks show how the presented approach reduces the price of robustness and recovery costs as compared to traditional robust and non-robust rapid transit network design approaches

    Two-stage models for flood mitigation of electrical substations

    Full text link
    We compare stochastic programming and robust optimization decision models for informing the deployment of temporary flood mitigation measures to protect electrical substations prior to an imminent and uncertain hurricane. In our models, the first stage captures the deployment of a fixed quantity of flood mitigation resources, and the second stage captures the operation of a potentially degraded power grid with the primary goal of minimizing load shed. To model grid operation, we introduce novel adaptations of the DC and LPAC power flow approximation models that feature relatively complete recourse by way of a blackout indicator variable and relaxed model of power generation. We apply our models to a pair of geographically realistic flooding case studies, one based on Hurricane Harvey and the other on Tropical Storm Imelda. We investigate the effect of the mitigation budget, the choice of power flow model, and the uncertainty perspective on the optimal mitigation strategy. Our results indicate the mitigation budget and uncertainty perspective are impactful whereas the choice of power flow model is of little to no consequence
    • …
    corecore