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SUMMARY

The 17 Sustainable Development Goals laid out by the United Nations include numer-

ous targets as well as indicators of progress towards sustainable development. Decision-

makers tasked with meeting these targets must frequently propose upfront plans or policies

made up of many discrete actions, such as choosing a subset of locations where man-

agement actions must be taken to maximize the utility of the actions. These types of re-

source allocation problems involve combinatorial choices and tradeoffs between multiple

outcomes of interest, all in the context of complex, dynamic systems and environments.

The computational requirements for solving these problems bring together elements of

discrete optimization, large-scale spatiotemporal modeling and prediction, and stochastic

models.

This dissertation leverages network models as a flexible family of computational tools

for building prediction and optimization models in three sustainability-related domain ar-

eas: 1) minimizing stochastic network cascades in the context of invasive species man-

agement; 2) maximizing deterministic demand-weighted pairwise reachability in the con-

text of flood resilient road infrastructure planning; and 3) maximizing vertex-weighted and

edge-weighted connectivity in wildlife reserve design. We use spatially explicit network

models to capture the underlying system dynamics of interest in each setting, and contribute

discrete optimization problem formulations for maximizing sustainability objectives with

finite resources. While there is a long history of research on optimizing flows, cascades and

connectivity in networks, these decision problems in the emerging field of computational

sustainability involve novel objectives, new combinatorial structure, or new types of inter-

vention actions. In particular, we formulate a new type of discrete intervention in stochastic

network cascades modeled with multivariate Hawkes processes. In conjunction, we derive

an exact optimization approach for the proposed intervention based on closed-form expres-

sions of the objective functions, which is applicable in a broad swath of domains beyond

xv



invasive species, such as social networks and disease contagion. We also formulate a new

variant of Steiner Forest network design, called the budget-constrained prize-collecting

Steiner forest, and prove that this optimization problem possesses a specific combinatorial

structure, restricted supermodularity, that allows us to design highly effective algorithms.

In each of the domains, the optimization problem is defined over aspects that need to be

predicted, hence we also demonstrate improved machine learning approaches for each.
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CHAPTER 1

INTRODUCTION

1.1 Dissertation Overview

Sustainable development, a notion defined in 1987 by the World Commission on Environ-

ment and Development [1], aims to ”meet the needs and aspirations of the present without

compromising the ability to meet those of the future”. In 2015 the United Nations put for-

ward a comprehensive set of 17 Sustainable Development Goals (SDGs) and accompany-

ing targets to serve as guidelines for securing socioeconomic prosperity and environmental

protection. The SDGs also specify indicators for measuring progress towards each tar-

get that in many cases can serve directly as quantitative objectives for guiding policy and

decision-making. For instance, SDG 11 (sustainable cities and communities) prescribes

taking action to reduce ”disaster damage to critical infrastructure” in Target 11.5.2. SDG

15 (life on land) directs countries to increase the proportion of important biodiversity sites

covered by protected areas (Targets 15.1.2 and 15.4.1) and to allocate adequate resources

towards the control of invasive alien species (Target 15.8.1).

Designing effective policies or plans for achieving these sustainability objectives often

translates to solving resource allocation problems in systems with complex underlying spa-

tial or spatiotemporal dynamics. As a first step, we must acquire data or models that capture

these dynamics well enough to inform the optimization step; then, we must design plans

that are optimized against the available data or models [2]. Network models lend them-

selves to both of these steps. Networks or graphs are highly flexible structures made up of

a discrete set of objects (vertices) in which some pairs of objects have connections (edges),

and are a common choice for modeling geospatial phenomena in which vertices have lo-

cations and edges have lengths or weights. A wide variety of dynamics can be described

1



as deterministic flows or stochastic cascades between vertices along edges. Concurrently,

there is a long history of research on optimizing flows, cascades and connectivity in net-

works, e.g. by selecting a subgraph over which the dynamics of interest are optimized; or

by modifying vertex or edge properties or network topology [3, 4, 5] in order to manipulate

the flows or cascades over the whole network. However, decision problems in the emerging

field of computational sustainability involve novel objectives, new combinatorial structure,

or new types of intervention actions.

This dissertation studies three sustainability-related application domains as sources of

compelling new computational problems at the junction of large-scale spatiotemporal

modeling and prediction and discrete optimization in networks: 1) limiting the spread

of invasive alien species; 2) improving the climate resilience of critical infrastructure; and

3) protecting ecologically important sites in wildlife reserves. We use spatially explicit

network models to capture the underlying system dynamics of interest in each setting,

and contribute discrete optimization problem formulations for maximizing sustainability

objectives with finite resources.

1.2 Research Contributions

1.2.1 Minimizing Stochastic Network Cascades

Chapter 2 of this dissertation studies minimizing stochastic network cascades with a focus

on the application domain of invasive species management. The spread of invasive species

to new areas disrupts ecosystem processes and causes crop loss, posing major threats to

biodiversity and food security. According to the International Union for Conservation of

Nature (IUCN), invasive species undermine progress towards 10 out of 17 of the the UN

SDGs. Eradication efforts are typically costly and labor-intensive, so there is a great deal of

interest in optimizing the allocation of control efforts in order to curb the invasion process

as effectively as possible. Our work addresses the problem of strategically selecting land

parcels in which to conduct invasive species eradications within a fixed budget, with the

2



objectives of minimizing either the population growth rate or the total population size of

the invasive species at the end of a finite time horizon. Using our proposed modeling

and optimization approaches, we are able to obtain eradication plans that may be nearly as

effective as completely eradicating invasive plants from the landscape, but at only a fraction

of the cost. This directly contributes towards addressing objectives in SDG 15 (life on land)

as well as SDG 2 (zero hunger). Our work makes the following contributions in particular:

Contributions to Network Cascade Modeling: Multivariate Hawkes processes have

been used to model self- and mutually-exciting activity in a wide variety of settings, in-

cluding the occurrence of earthquakes and aftershocks and the spread of posts in social

networks. We demonstrate for the first time that multivariate Hawkes processes can also

describe the spatiotemporal spread dynamics of invasive plant species. We also propose

a novel intervention for limiting stochastic event cascades in networks: history deletion.

Prior literature on activity shaping in multivariate Hawkes processes has focused on in-

creasing the continuous background rate of events at selected vertices. In contrast, our

proposed discrete intervention modifies selected vertices by clearing past events at those

vertices, thereby removing the self-exciting or mutually-exciting effect of those events to

activity in the network. In the context of invasive species management, this intervention

corresponds to eradicating invasive individuals in selected land parcels, but the proposed

intervention is of high relevance in many other applications as well, such as containing

disease contagion by treating patients in selected areas, or minimizing the spread of misin-

formation in social networks by hiding or making unshareable posts under select accounts

that create misleading posts.

Contributions to Cascade Optimization: To address intervention optimization in the

context of multivariate Hawkes processes, we derive novel analytical formulas for two

control objectives of interest after history deletion at selected vertices: 1) the expected rate

of activity in the network at the end of the planning horizon, and 2) the expected total ac-

3



tivity in the network up to the end of the planning horizon. These analytical results are an

important contribution, as they unlock two key algorithmic benefits for optimizing diffu-

sion in networks. The first advantage comes from the fact that our analytical expressions

directly compute the control objectives in expectation over all possible realizations of the

stochastic process. This avoids the need to estimate the objective functions empirically as

is often necessary in stochastic optimization, for instance by simulating multiple realiza-

tions of random cascades and computing the sample average of objective function values

resulting from a given strategy. Another key aspect of our analytical expressions is that

each of the objective functions can be expressed as a linear function of binary decision

variables encoding which vertices are selected for history deletion. Combined with linear

budget constraints, this allows us to formulate our optimization problems as integer lin-

ear programs (ILPs) and correspondingly leverage powerful commercial solvers to obtain

optimal solutions, or solutions with known optimality gaps.

Contributions to Invasive Species Control: We add multivariate Hawkes processes to

the family of models applicable to invasive species. We demonstrate that, relative to other

point process-based models of invasive species dynamics, the multivariate Hawkes process

model provides a better fit to the data when evaluated on a real-world dataset recording

the invasion of conifer trees into a meadow ecosystem. Furthermore, our Hawkes process

optimization approach generates intervention plans that outperform several intervention de-

cision practices currently used to identify land parcels to prioritize for invasive species erad-

ication. Our intervention optimization approach has the potential to significantly improve

the efficacy of invasive species removal efforts, especially in highly resource-constrained

settings.

Most alternate models for invasion dynamics rely on agent-based simulations, making

them challenging to integrate into intervention optimization schemes. In contrast, while the

Hawkes process model is also able to produce simulated cascades based on the learned pa-
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rameters, it facilitates the derivation of the aforementioned analytical expressions and sub-

sequent optimization models for real-world management objectives. This offers a greater

synergy between model-building and decision-making stages in data- and learning-driven

decision-making.

1.2.2 Maximizing Deterministic Demand-Weighted Pairwise Reachability

Chapter 3 of this dissertation studies maximizing demand-weighted connectivity in net-

works in the context of transportation infrastructure resilience to flooding. Flood disasters

are the most widespread, frequent, and expensive natural disasters affecting humankind

today, and have the capacity to cause large-scale and long-term disruptions to road-based

mobility. In order to minimize the overall negative impacts of these disasters, government

agencies are interested in strategically upgrading key components of these critical infras-

tructures. Our work addresses the question of determining which set of roads should be

fortified in order to protect the feasibility of as many trips as possible with a finite budget

for fortifications. In contrast to our work on stochastic cascades over networks where the

network topology was fixed and the goal was to minimize activity in the network as a whole

by intervening at specific vertices; here, our goal is to choose a subgraph in our network

by selecting edges within a fixed budget such that deterministic flows between connected

pairs of vertices in the subgraph are maximized. By focusing on preserving the large-scale,

normal functioning of road networks after flood disasters, we address an understudied

problem in climate adaptation that also links to a relatively understudied network de-

sign problem in computer science. This work was awarded a prize by the United Nations

Global Pulse and was presented at the 2017 United Nations Climate Change Conference

(COP 23). In addition, our work furthers progress towards several SDGs, including SDG

13 (climate action), SDG 11 (sustainable cities and communities), and SDG 9 (industry,

innovation and infrastructure). More specifically, we make contributions to the following

areas:
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Contributions to Network Design: We establish that our network design problem is in

fact an instance of the budget-constrained prize-collecting Steiner forest (Budget-PCSF)

problem, a previously understudied Steiner problem variant. We analyze the objective

function of Budget-PCSF and discover a novel discrete structural property—restricted su-

permodularity. Seen as a set function over edges, the Budget-PCSF objective function ex-

hibits compounding gains as edges are successively added to a set, as long as the subgraph

induced by the edges in the set remains acyclic. In addition to modeling a real-world net-

work design problem of high social impact, this characterization is also a novel category

of optimization functions, as prior work has only considered purely supermodular func-

tions or restricted submodular functions. In order to maximize our restricted supermodular

function over the graph matroid subject to our budget constraint, we extend recent work

on using semigradient ascent to maximize supermodular functions subject to budget con-

straints. Our proposed suite of semigradient-based heuristic algorithms are shown to find

solutions with dramatically better objective function value than a baseline greedy heuristic.

It is worth highlighting that our algorithms can be applied directly to any problem involv-

ing the maximization of a restricted supermodular function over the graph matroid subject

to a knapsack constraint.

Contributions to Flood Resilient Road Infrastructure: Our work details a framework

for coupling travel demand and flood prediction models to quantify the impacts of floods in

terms of mobility. We combine flood depth rasters with origin-destination travel volumes in

order to estimate the mobility impacts of floods in terms of the satisfiability of typical travel

demand patterns. Origin-destination (OD) travel volume data between pairs of zones is thus

vital for transportation resilience planning, but in fact these flows are rarely measured. In

the United States, OD travel volumes between census blocks due to commutes to work are

collected by the Census Bureau as part of their Longitudinal Employer–Household Dy-

namics (LEHD) survey, but trips taken for other reasons are not captured. Overall travel
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volume patterns can be mined from call detail records if, for instance, cell phone data for

a sufficiently large randomized sample of the population in the study is available. This is

the methodology we use in Section 3.2 to estimate OD flows in Senegal, although unfortu-

nately, call detail record data are also not widely available for use.

There is a great deal of active research on predicting OD flows based on spatial, de-

mographic, economic and geographic features, although most traditional and machine

learning-based approaches for travel flow prediction train and test on data from the same

study area (by splitting zones into disjoint train and test sets). In Section 3.3, we highlight

recent results showing for the first time that mobility flow prediction models can generalize

to unseen study areas. We study the decision error of these predicted flows in the context

of informing road upgrades, by comparing the number of ground truth flows made feasible

under the upgrade plans obtained using either predicted or ground truth travel flows as data

inputs to the optimization procedure. We show that travel flow prediction models trained

on data from other study areas capture generalizable mobility patterns that are sufficient

to guide strategic road fortification efforts. This is promising as it enables the application

of our mobility resilience analysis and optimization framework to be applied beyond only

those areas with ground truth travel flow data.

1.2.3 Maximizing Vertex-Weighted and Edge-Weighted Connectivity

Chapter 4 of this dissertation studies maximizing demand-weighted connectivity in net-

works. This is a similar goal to the problem domain in Chapter 3: both aim to find a

subgraph over which accessibility between pairs of vertices is maximized for as many indi-

viduals as possible. However, there are some important differences that distinguish the two

network design problems. In Chapter 3 the solution subgraph is induced by selecting edges,

whereas in Chapter 4 the solution subgraph is induced by selecting vertices. In Chapter 3,

we consider flows only between vertex pairs that are reachable via selected edges. In con-

trast, in Chapter 4 we consider flows between pairs of selected vertices, where the connec-
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tivity between them is a static function of the shortest path distance between them using

any edges in the graph. We motivate this graph optimization problem through its applica-

bility to designing effective protected areas for biodiversity. One of the Aichi biodiversity

targets established in 2010 by the Convention on Biological Diversity was to conserve at

least 17% of terrestrial natural areas by 2020 through well-connected reserve systems that

should support the long-term persistence of species. Both population size and functional

landscape connectivity are important factors contributing to persistence. We address the

problem of strategically purchasing land parcels with a fixed budget to create protected

areas or wildlife reserves, with the objectives of maximizing the number of target species

individuals protected by the reserve as well as maximizing the landscape connectivity be-

tween protected land parcels. Our work contributes towards addressing objectives in SDG

15 (life on land). We make the following contributions:

Contributions to Reserve Design Optimization: Our work formally connects reserve

design with landscape metrics derived from spatial capture-recapture (SCR) models. SCR

models are a state-of-the-art hierarchical latent variable model gaining popularity in land-

scape ecology. The models are fit to animal observations from a set of spatially distributed

detectors, such as motion- or thermally-activated cameras or camera traps. The SCR model

provides spatially-explicit estimates of animal population density as well as landscape con-

nectivity metrics that describe the capacity of individuals to move through the landscape,

with implications for important ecological functions like foraging, dispersal and migra-

tion. Despite the utility of these density and connectivity estimates, there is still relatively

limited work that directly integrates SCR model outputs into systematic conservation plan-

ning. We derive ILPs formulating budget-constrained reserve site selection with objec-

tives maximizing estimated density within the reserve or estimated functional connectivity

between reserve sites. We also provide an ILP formulation for maximizing a recently-

proposed landscape metric—density-weighted connectivity—which combines population
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density and landscape connectivity in an ecologically meaningful manner. This contributes

to the growing body of work on reserve design using exact optimization methods via mixed

integer linear programs. Furthermore, while most previous research on reserve design op-

timization focuses exclusively on either maximizing habitat or species density, or alterna-

tively on maximizing reserve spatial contiguity, our hybrid density-weighted connectivity

objective incorporates both properties without requiring multiobjective optimization tech-

niques. Finally, to the best of our knowledge, ours is also the first piece of work that in-

corporates the resource requirements of individual animals into the reserve design process,

which we achieve by adding home range constraints to the optimization problem.

Contributions to Species Distribution Modeling: Species distribution models in gen-

eral and spatial capture-recapture models in particular rely on aggregating detections of

species or individual animals during wildlife surveys. As mentioned before, these sur-

veys are increasingly conducted by deploying camera traps at a set of locations to collect

image data whenever animals encounter the traps. Typically, these images are manually

reviewed by ecologists to identify species of interest. In order to accelerate this tedious and

time-consuming process, machine learning and computer vision researchers have recently

attempted to build deep neural network models for classifying species in camera trap im-

ages, with especial focus on strategies for learning with limited labeled data. In Chapter 5

of this dissertation, we explore semi-supervised learning as one such strategy, and propose

a novel deep learning loss function based on Gaussian mixture model (GMM) likelihood.

Coupled with a supervised loss function, the unsupervised GMM loss reduces the tendency

of the model to overfit to the small labeled training points. In a different direction, we

survey a wide range of active learning query strategies to gain insight into how to train

a classifier with limited labels. Active learning can be considered as another example of

resource constrained optimization, in which the limited resource is time or labeling effort

from human experts, and the objective is to choose the subset of samples to label that will
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Figure 1.1: Framework for data- and learning-driven policy-making applied to three
sustainability-related settings. While computing and artificial intelligence can be leveraged
in all stages of this framework, this dissertation makes contributions to the components in
bold.

most improve the classifier’s performance.

1.2.4 Overall Research Contributions and Published Papers

Altogether, this dissertation presents several instances of novel modeling and decision prob-

lems in real-world settings. We present new scalable discrete optimization, network mod-

eling and deep learning methodology to address these settings, thereby contributing to the

overall workflow of implementing data-driven decision making in sustainable development

Figure 1.1.
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CHAPTER 2

BUDGET-CONSTRAINED COMBINATORIAL OPTIMIZATION FOR

NETWORK FLOWS: INVASIVE SPECIES MANAGEMENT

2.1 Introduction

Network diffusion models are a powerful tool for studying processes like the spread of

influence and information through social networks [6, 7, 8], the dispersal of species through

a landscape [4], and disease contagion in populations [9].The ability to model the dynamics

of these diffusion processes enables the development of strategies for steering them towards

desirable outcomes. For instance, one might selectively add nodes to an existing network

to facilitate diffusion [4], or one can strategically block transmission along a set of links [3,

5] to limit it.

Two of the most studied network diffusion models are the independent cascade (IC)

model and the linear threshold (LT) model [6]. In both, the spreading process is modeled

as an activation of nodes over discrete time steps. Each node in the network is in a binary

state (active or not), and nodes are activated by their active neighbors. In both the IC and

LT models, once a node is active it remains so for the rest of the diffusion process, an

assumption that is appropriate for modeling the spread of irreversible phenomena, e.g. the

adoption of a product or infection by a disease that confers permanent immunity.

However, many network diffusion processes exhibit non-progressive cascades where an

active node can become inactive probabilistically at each time step, so that the state of a

node fluctuates over time. For example, in species dispersal, a previously occupied habitat

patch may become unoccupied [4], or in infectious disease a patient may recover but be

susceptible to reinfection. In this setting, repeated exposure to activation events plays an

important role in continuing the diffusion process by reactivating nodes that have become
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inactive. Sometimes, exposure to multiple activations can also cause a node to become

“more” active, e.g. the posting frequency of an individual social media user can increase

due to high activity in their network. In these cases, it is more fitting to model the state

of a node as a time-varying, real- or continuous-valued function rather than binary states.

Moreover, activation events typically arrive continuously rather than in discrete time steps,

warranting the diffusion process to be modeled in continuous time. Other network models

like Susceptible-Infected-Recovered (SIR) can encompass some of these characteristics

and have been shown to have a close connection to point process models [10], which are

more flexible and intuitive and easily allow the node activities to be modeled according to

observed/assumed principles (e.g. mutual-excitation).

Temporal point processes offer a framework for modeling diffusion processes with both

continuous activity states and continuous time. The activity of a node can be characterized

by a parameter λ representing the rate at which the node stochastically generates events.

This λ parameter itself can be responsive to activations arriving at the node, thereby captur-

ing self-exciting behavior in the diffusion process. Temporal point processes have recently

been applied to modeling several diffusion processes like the activity of Twitter users [11]

and the spread of avian flu [12]. In the context of invasive species, [13] use a spatiotem-

poral point process model to characterize the spread of an invasive banana plant, although

they do not consider any control.

In terms of controlling diffusion processes, a variety of intervention actions have been

analyzed in the discrete-time, binary-state setting, such as selecting source nodes for ini-

tiating cascades [6] and modifying network connectivity to guide the diffusion by adding

or removing nodes [4] and edges [3, 5] or modifying edge weights [14]. In contrast, there

has been relatively little work on controlling dynamics in network temporal point processes.

One possible control action is to manipulate the activity rate parameters λ at specific nodes,

e.g. by incentivizing social media users to post more frequently. Steering user activity in

this manner was first considered in [11], and was used to develop a multistage strategy for
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mitigating fake news [15]. Recent work has also applied methods from stochastic differen-

tial equations to find the best intensity for information guiding [16] and achieving highest

visibility [17]. In our work, a discrete intervention for network point processes is consid-

ered for the first time that, unlike the above, modifies the activity rate parameter at select

nodes by deleting the history of the point process.

Our work is motivated by the invasive species management problem in biodiversity

conservation. The spread of non-native species to new areas is a cause of major concern,

because they harm native species by disrupting food webs and ecosystem processes. These

adverse effects have generated significant interest in limiting their spread. Management is

often performed by eradicating invasive species individuals, but their removal can be pro-

hibitively costly. In light of this, a common objective is to optimize the location of control

efforts in order to maximize the efficacy of the intervention. We derive a novel approach

for finding an optimal set of locations at which to remove species given a fixed budget.

Although our work is motivated by a critical problem in environmental sustainability, the

novel computational problem it poses appears in other domains that can be modeled using

temporal point processes, such as mitigating the spread of infectious diseases using vacci-

nation or active screening programs. The computational approach we develop here can be

generalized to these broader applications.

2.2 Problem Statement

In the invasive species management problem, the goal is to identify locations at which

to eradicate invasive individuals in order to minimize the spread of the species through

the landscape. Let L be a set of n distinct land parcels corresponding to basic units of

management. An invasive species is observed to be proliferating and dispersing through

the landscape until a given time τ , when an intervention is performed by eliminating all

invasive individuals present before τ in a set of land units U ⊆ L. Each land unit i ∈ L

has an associated cost ci reflecting economic land management costs or effort needed to

14



eradicate the invasive individuals, and the total cost of the intervention cannot exceed a

given budget B. A feasible intervention plan is therefore a set of land units U with total

intervention cost within B. After the intervention, the invasive species continues to spread

until time T > τ , but without the proliferative influence of the individuals eradicated at

time τ . Our goal is to find a feasible intervention plan that minimizes the degree to which

the landscape is affected by the invasion.

2.3 Background: Multivariate Hawkes Processes

A multivariate Hawkes process can be thought of as a spatiotemporal point process, a ran-

dom collection of points representing the time and location of events. An n-dimensional

point process can be described by a counting process N (t) = (N1(t), · · · ,Nn(t))> where

Ni(t) is the number of events occurring at location i before time t. The behavior of the

process is characterized by the conditional intensity λ(t). Given the history of the process

up to time t,Ht−, the expected number of events in a small time window [t, t+ dt) is given

by E [dN (t)|Ht−] = λ(t)dt.

Hawkes processes model self-exciting phenomena in which the occurrence of events

causes additional events to be more likely, such as social media posts spurring reposts

[11], earthquake aftershocks inducing further aftershocks [18],and in this work, an invasive

species individual causing another individual to appear at the same or other nodes. This

self-exciting behavior is modeled using a history-dependent intensity of the form:

λi(t) = µi(t) +
∑
e:te<t

φije(t, te) (2.1)

= µi(t) +
n∑
j=1

∫ t

0

φij(t, s)dNj(s) (2.2)

φij(t, s) is called the impact function and captures the temporal influence of an event at

location j at time s on the occurrence of events at location i at time t ≥ s. Here, the first
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term µi(t) is the exogenous event intensity, from outside the network and independent of

the history, and the second term
∑

e:te<t
φije(t, te) is the endogenous event intensity, mod-

eling influence and interaction within the network. Defining Φ(t, s) = [φij(t, s)]i,j=1...n,

λ(t) = (λ1(t), . . . , λn(t))>, and µ(t) = (µ1(t), . . . , µn(t))>, we can compactly rewrite

Eq (Equation 2.1) in matrix form:

λ(t) = µ(t) +

∫ t

0

Φ(t, s)dN (s) (2.3)

A common choice of impact function is the truncated exponential function Φ(t, s) =

Ae−ω(t−s) · 1≥0(t − s) where φij(t, s) = aije
−ω(t−s) · 1≥0(t − s). The coefficient aij rep-

resents the strength of the influence of j on i, and the influence of an event that occurs at

time s is 0 before s and decays off after s (e.g. a social media post becomes less relevant,

an infected person becomes less contagious, or an invasive species becomes less likely to

survive and reproduce).

2.4 Predicting Invasive Species Spread with Hawkes Processes

Traditionally, the spread of invasive species is modeled using a combination of differential

equations describing the population dynamics and a dispersal kernel describing the dis-

placement of individuals [19], or their stochastic counterparts [20]. More recently, studies

have demonstrated the potential of point process models [13, 21] for characterizing the

spatial distribution of invasive plant species.

We present a multivariate Hawkes process model for the dynamics of invasive species

spread. To formulate it as a network diffusion process, we model the n land units in land-

scape L as nodes V in a directed graph, with edges between nodes that are close enough for

dispersal to occur between the corresponding land units. The appearance of a new invasive

individual in node i at time s is denoted by the invasion event (i, s). Indexing invasion

events by e, the history of the network diffusion process up to immediately before some
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time t is the set of eventsHt− := {(ie, se)|se < t}.

Invasive species can be introduced at any time by carriers like wind, animals or humans.

These arrivals are called exogenous invasions, and their rate can vary spatially depending

on landscape features or human activity. The instantaneous rate at which individuals are

introduced to node i at time t is denoted by µi(t), and represents the probability of an

exogenous invasion event in a small time window [t, t+ dt). Once an invasive individual

has become established, it survives for an average lifetime β. Since many invasive species

mature early and have short life expectancy [22], we assume an individual born at se faces

a constant risk of death ω = 1
β

, so that the probability of the individual surviving until time

t is given by the survival function e−ω(t−se). While the individual survives, it initiates en-

dogenous invasions, e.g. by releasing offspring. The likelihood of an individual appearing

at location i due to the dispersal of the offspring of an individual at location j depends on

edge weight aij between the two nodes, which can be, e.g., a decaying function of distance

between them [23].

All these effects together influence the rate at which new individuals appear in a given

node i at time t, or the intensity λi(t). This represents the conditional probability of ob-

serving an invasion event in a small time window [t, t+ dt) given the historyHt−.

λi(t) = µi(t) +
∑

(je,se)∈Ht−

aije · e−w(t−se) (2.4)

The first term µi(t) is the rate of exogenous invasion events at node i, and the summa-

tion term captures the contribution of past invasion events (je, se) in the network towards

endogenous invasions in node i at time t.

We have verified the applicability of this modeling framework using data about the en-

croachment of A. grandis trees into montane meadows at Bunchgrass Ridge in Oregon [24].

Notably, we find that a Hawkes model explains the observed data better than a Poisson pro-

cess (Figure 2.1), suggesting that there are excitatory interactions in the invasion process.
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(a) QQ-plot (b) Prediction task results.

Figure 2.1: (a) Residual analysis for randomly chosen location in Bunchgrass Ridge. The
events are better fit by a Hawkes process (slope closer to 1) than a Poisson process. (b)
Hawkes process model has lower error when predicting the location of the next invasion.

2.4.1 Control Objectives

Given the graph representing our landscape and the invasion process dynamics described

above, we can quantify the degree to which the landscape is affected by the invasive species

spread at the end of our planning horizon T in a number of ways. One reasonable goal is

to minimize the rate of invasions at time T subject to an intervention u at time τ , captured

by λ(t;u). Since λ(t;u) depends on events that will stochastically occur between τ and

t, it will vary across different realizations of the stochastic process, so instead we aim

to minimize the total expected intensity at time T . Let ηi(t;u) = E [λi(t;u)], where the

expectation is taken over all possible realizations of the process.

Given: A graph G(V,E) representing landscape L, edge weights A with aij = 0 for

(i, j) /∈ E and aij > 0 for (i, j) ∈ E, intervention time τ and finite time horizon T ,

intervention costs ci for each node i ∈ V and budget B.

Find: A feasible intervention plan consisting of nodes U ⊆ V such that
∑

i∈U ci ≤ B,

that minimizes
∑

i∈V ηi(T ;u).
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Figure 2.2: A sample network and event history up to τ . Each event contributes to the
intensities at the event’s node and its neighbors. If the event at node 1 is deleted at τ , its
contribution to intensities for t > τ disappears.

Another plausible goal is to minimize the total expected number of invasions that occur

until time T , since the ecological damage resulting from invasions is often a function of

the population size. We cannot affect the process until τ , so this amounts to minimizing

the number of invasions in the interval [τ, T ). We store the number of invasion events at

each node over time using an n-dimensional counting process where Ni(t;u) represents

the number of invasive species individuals that have appeared in cell i by time t. Then,

given the same inputs as before,

Find: A feasible intervention plan consisting of nodes U ⊆ V such that
∑

i∈U ci ≤ B,

that minimizes
∑

i∈V E [Ni(T )].

2.5 Discrete Interventions in Hawkes Processes

Given a network diffusion process starting at time t0 = 0, suppose we plan to perform a

management action at time τ > t0 to steer the diffusion process over the network towards

some objective at an arbitrary time T > τ .

Since the intensity at any time t′ only depends on the history of events up to time t′, we

can also define the state at any time t′ as y(t′) :=
∫ t′

0
e−ω(t′−s) dN (s), capturing the current

effect of all events that have happened at each node up to time t′. Then considering the
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time of intervention τ ,

λ(t) = µ(t) + Ay(t) = µ(t) +

∫ t

0

Ae−ω(t−s)dN (s)

= µ(t) +

∫ τ

0

Ae−ω(t−s)dN (s)︸ ︷︷ ︸
events before τ

+

∫ t

τ

Ae−ω(t−s)dN (s)︸ ︷︷ ︸
events after τ

= µ(t) + Ae−ω(t−τ)y(τ) +

∫ t

τ

Ae−ω(t−s)dN (s)

Our management action entails the deletion of all events at a given set of nodes U (see

Figure 2.2). This can alternatively be thought of as resetting the state of those locations to

0 at time τ . Therefore, for t > τ we have the intervention-dependent intensity:

λ(t;u) = µ(t) + Ae−ω(t−τ)(u ◦ y(τ))

+

∫ t

τ

Ae−ω(t−s) dN (s;u)
(2.5)

where ◦ denotes element-wise product. Vector u encodes our management action (inter-

vention) where ui = 0 indicates removing the history at node i and ui = 1 means not

intervening at i.

2.5.1 Expected Behavior After Intervention

We now derive closed-form expressions for our control objectives in terms of the expected

intervention-dependent intensity η(t;u). The first objective of interest is to minimize the

sum of expected rate of events at our target time:
∑

i ηi(T ;u).

By the superposition theorem of point processes, the process N (t;u) is decomposed

into two independent processes:

N (t;u) = Ne(t;u) +Nh(t;u)

Ne(t, u) is the counting process for events caused by the exogenous intensity from τ to t,
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and Nh(t;u) comprises the events generated due to the effect of previous events (history)

before τ . Each of these processes have associated intensities λe(t;u) and λh(t, u):

λe(t;u) = µ+

∫ t

τ

Ae−ω(t−s) dNe(s;u)︸ ︷︷ ︸
from new events generated by µ

(2.6)

λh(t;u) = Ae−ω(t−τ)(u ◦ y)︸ ︷︷ ︸
from events before τ

+

∫ t

τ

Ae−ω(t−s) dNh(s;u)︸ ︷︷ ︸
from new events generated by history

(2.7)

Correspondingly, we have their expected values ηe(t;u) = E[λe(t;u)] and ηh(t;u) = E[λh(t;u)].

For ηe(t;u), we can write:

ηe(t;u) = µ+ E
[∫ t

τ

Ae−ω(t−s) dNe(s;u)

]
(2.8)

= µ+

∫ t

τ

Ae−ω(t−s) ηe(s;u)ds (2.9)

Using Theorem 1 from [15], ηe(t;u) = Ψ(t)µ is a solution to Equation Equation 2.9 if

and only if Ψ(t) = I +
∫ t

0
Ae−ω(t−s)Ψ(s)ds. For our choice of impact function:

Ψ(t) = I + A(A− ωI)−1(e(A−ωI)t − I) (2.10)

Intuitively, Ψ(t) is a matrix function indexed by i, j which are nodes. Ψi,j(t) can be inter-

preted as the total contribution of possible invasions at node i at time t from events at j at

any time before t (directly and indirectly).

Additionally, according to Theorem 3 in [15], by using integration by parts and the

Laplace transform of point processes from [11], we can show that ηh(t;u) = Ξ(t−τ)A(u◦

y) where Ξ(t) = e(A−ωI)t. Putting these two together we have the analytical form for our

first objective:

E[λ(t;u)] = Ψ(t)µ+ Ξ(t− τ)A(u ◦ y) (2.11)
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For the second objective we aim to minimize the total expected number of events in all

nodes,
∑

i E[Ni(T ;u)]:

E[Ni(T ;u)] = E[

∫ T

0

dNi(s;u)] =

∫ T

0

η(s;u)ds (2.12)

Therefore, if we define Γ(t) =
∫ t

0
Ψ(s)ds and Υ(t) =

∫ t
0

Ξ(s)ds we have:

E[N (t;u)] = Γ(t)µ+ Υ(t− τ)A(u ◦ y). (2.13)

Intuitively, Γi,j(t) is the cumulative invasion from i to j up to time t.

In summary we have;

E[λ(T ;u)] = Ψ(T )µ+ Ξ(T − τ)A(u ◦ y)) (2.14)

E[N (T ;u)] = Γ(T )µ+ Υ(T − τ)A(u ◦ y) (2.15)

where

Ξ(t) = e(A−ωI)t (2.16)

Ψ(t) = I + A(A− ωI)−1(e(A−ωI)t − I) (2.17)

Υ(t) = (A− ωI)−1(e(A−ωI)t − I) (2.18)

Γ(t) = It+ A(A− ωI)−1(Υ(t)− It) (2.19)
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2.5.2 Optimization Formulations

Given the closed forms we have derived for the expected behavior of the network diffusion

process after intervention, we can define our first optimization problem as:

minimize
u

∑
i

Ψ(T )µ+ Ξ(T − τ)A(u ◦ y)

subject to:
∑
i

(1− ui)ci ≤ B,

ui = {0, 1}∀i ∈ {1, 2, . . . , n}

(2.20)

where ci and B are defined as before.

Similarly, our second objective is:

minimize
u

Γ(T )µ+ Υ(T − τ)A(u ◦ y)

subject to:
∑
i

(1− ui)ci ≤ B,

ui = {0, 1}∀i ∈ {1, 2, . . . , n}

(2.21)

The dependence on our control variable, u, is linear and we can incorporate effective bi-

nary optimization techniques to find the optimal intervention plan. We used the mixed in-

teger linear programming solver offered through the intlinprog function in MATLAB

2016b.

2.5.3 Heuristic Interventions

Besides the optimized recommendations for intervention nodes, it is also possible to choose

nodes on the basis of a number of heuristics that are very natural to multivariate Hawkes

process models. In each case, nodes are considered in decreasing order of a heuristic

criterion, and we greedily build a set of intervention nodes U by adding each successive

node as long as there are events to remove there and the cost of intervening at the node can

be covered with our remaining budget. We consider the following heuristic criteria:
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• Exogenous intensity (µi): nodes with the highest rate of exogenous events.

• Number of events until τ (Ni(τ)): nodes with the highest number of events in the

observation window.

• Intensity due to global events at τ (λi(τ)): nodes with the highest intensity at the

intervention time due to both local events and events in neighboring nodes.

• Intensity due to local events (state) (yi(τ)): nodes with the highest intensity due to only

local events.

Interestingly, many of these criteria have analogs in invasion biology and control strate-

gies based on them have been proposed. For example, exogenous intensity is comparable

to “propagule pressure”, which is believed to be an important determinant of whether non-

native species successfully invade new habitats [25]. Density-based eradication (related to

Ni(τ)) and strategies that balance the density and fecundity of the population (related to

yi(τ)) have also been widely studied [26].

2.6 Experiments

We validate our discrete intervention methodology by testing the behavior of our analytical

expressions on simulated ground-truth Hawkes process cascades, and analyze the runtime

performance of our intervention optimization approach. We then apply our methodology to

compare strategies for controlling the spread of a real invasive species through a landscape.

2.6.1 Validation of Analytical Expressions & Scalability

To verify our derived closed-form expressions against some ground-truth network diffusion

processes and to test the scalability of our optimization approach, we generate synthetic

networks with known parameters. The exogenous intensity at each node µi is constant over

time and is a uniformly distributed random variable in [0, µmax] with µmax = 0.02. A small
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Figure 2.3: Simulated event cascades after an optimal intervention with B = 0.20 · Ball on
a synthetic network compared to analytically computed intensity and number of events for
the optimal plans.

number of nodes have a higher exogenous intensity and act as seed points in the diffusion

process. We assign the mutually-exciting parameters aij to be values in the range [0, amax],

with amax = 0.05. Finally, we set the influence decay rate ω = 0.15 and a finite time

horizon of T = 100.

First, we empirically evaluate the closed-form expressions for our intervention objec-

tives E [λ(T )] and E [N (T )]. To do this, we simulate a single realization of an invasion

cascade up to time τ = 50, implement a fixed intervention u and simulate many realiza-

tions of the subsequent cascade from time τ to T with which we compute the empirical

mean intensity and number of invasions at each time τ < t ≤ T . We compare these to the

theoretical expected intensity and number of invasions computed using Equations Equa-

tion 2.14 and Equation 2.15, following the same intervention u. The results are shown in

Figure 2.3. The theoretically computed values closely match the observed empirical mean

values for both quantities.

Next, we test our discrete intervention optimization approach on networks of increasing
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Figure 2.4: Runtime of ILP versus network size, compared to the time taken to compute
intervention locations using a heuristic. The reported time is the average over 20 randomly
simulated cascades.

size. The intervention cost ci at each node is set to a fixed unit cost plus a cost proportional

to the number of events there at time τ . We simulate multiple realizations of event cascades

from t = 0 to τ and in each case compute Ball the cost of removing all events that have

appeared in the network by t = τ . We set the intervention budgets B as fixed percentages

of Ball to allow comparisons between the different realizations. Due to the closed-form

expressions for the expected effect of an intervention action, the optimization problems

in Equations Equation 2.20 and Equation 2.21 take the form of knapsack problems, for

which MIP solvers are highly effective. Figure 2.4 shows that these integer programs are

surprisingly fast to solve and scale relatively well for the network sizes we consider here.

2.6.2 Invasives Management with a Limited Budget

We apply our discrete intervention optimization for multivariate Hawkes processes in a

real-world setting to model the potential impact of different management strategies on A.

grandis encroachment in Bunchgrass Ridge. We find that a multivariate Hawkes process

is able to explain the invasive spread of this species better than a homogeneous Poisson

process model. We use a Hawkes process model fit to these data and assign intervention

costs for each land parcel in the same manner as in the synthetic networks to examine

alternatives for budget-constrained invasive species control.
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Figure 2.5: Reduction in invasion intensity and number of new invasions wrt to no inter-
vention for Bunchgrass Ridge. The maximum possible reduction is obtained by intervening
at all locations with invasions at time τ .

In order to study the impact of budget restrictions on the effectiveness of invasive

species management, we vary the intervention budget B available from 20% to 80% of

Ball. Results are shown in Figure 2.5. We observe that the optimized plans attain close

to the same level of control as eradicating all individuals at time τ , but at only 60-80% of

the cost, indicating that our method for optimal invasive management has the potential to

deliver significant cost savings.

Our analytical expressions allow us to compute the expected benefit of different hypo-

thetical management actions, including the ones proposed by the heuristic strategies. Hav-

ing our optimal solutions as a baseline, the results in Figure 2.5 indicate that the heuristic

approaches considered here are highly sub-optimal, especially in low-budget settings. Fig-

ure 2.6 shows the % optimality gap of the heuristic management strategies relative to the

optimal plan. The best performing heuristic approach for minimizing both the rate and the

number of new invasions was the one based on the exogenous intensity µi, suggesting that

monitoring the processes by which A. grandis is introduced to the Bunchgrass Ridge region

could be an effective approach to curb its invasive spread.

By visualizing the spatial distribution of intervention locations (omitted), we find that

the optimal intervention plans for minimizing each objective are different from one another.

In particular, it appears that minimizing intensity focuses intervention effort at relatively
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Figure 2.6: Mean optimality gap % for the heuristic strategies.

few core invasion hotspots whereas minimizing the total number of invasions targets more

peripheral locations. This suggests there are possible trade-offs that may be of interest to

conservation planners developing long-term strategies for invasive species management.

2.7 Conclusions

We develop a method for characterizing the effect of a novel discrete intervention in the

context of spatiotemporal Hawkes processes. This intervention consists of removing the

effect of selected events in the history of the Hawkes process. We derive closed-form

expressions for the effect of such an intervention action on the expected intensity and ex-

pected number of events in the network at the end of a finite time horizon T . We build

on this framework to obtain optimal intervention plans employing this type of intervention

mechanism, and apply this approach to the problem of controlling the spread of invasive

species through a landscape. Our results on a real-world tree invasion dataset suggest that

optimized intervention plans obtained using our approach can achieve cost-effective con-

trol, and also provide a benchmark against which other intervention plans that are used in

practice can be evaluated.

The proposed model showcases the potential of Hawkes process in managing invasive

species propagation, and it can be extended in many ways to further cope with realistic

settings. It can be easily generalized to handle multiple intervention points and combined

with Markov Decision Processes for sequential decision making. Moreover, in practice all
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species may not be successfully removed after an intervention, with success probability

depending potentially on the location, the species itself, budget, or time. This will add

a thinning process layer to the Hawkes process. In addition, the methodologies we have

developed for the invasive species management problem can be applied to other problem

domains, such as in limiting the spread of disease or misinformation in social networks.
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CHAPTER 3

BUDGET-CONSTRAINED COMBINATORIAL OPTIMIZATION FOR

NETWORK FLOWS: DISASTER-RESILIENT ROAD INFRASTRUCTURE

3.1 Introduction

Developing and maintaining resilient infrastructure systems is a key strategy for several

UN sustainable development goals. Goal 13 (Climate Action) calls on countries to prepare

for climate-related hazards through national strategies and planning. Even more explicitly,

Goal 11 (Sustainable Cities and Communities) emphasizes that transportation and other

basic services should be expanded following policies aimed at “resource efficiency, mit-

igation and adaptation to climate change” [27] in order to reduce deaths and economic

losses caused by disasters, especially water-related disasters. These appeals are not with-

out justification. Numerous recent studies have assessed how extreme weather, rising sea

levels and altered temperature and precipitation regimes can damage essential infrastruc-

tures such as transportation [28], power [29], water [30] and sewage, or cause cascading

failures across these systems [31]. In fact, the cost of damages to infrastructure due to

disasters is expected to increase dramatically–e.g. tenfold in the European Union by the

end of this century [32]–in part due to changing climate patterns but also largely driven by

population and GDP growth [33].

Among all natural disasters, floods are the most frequent, widespread, and expensive.

Direct flood damages in the US average $9bn each year [34], including critical public in-

frastructures such as highways, roads, bridges, and utilities. Floods affect road infrastruc-

ture by: inundating roads, causing traffic stagnation and stoppage; depositing silt or other

material on roads that must be cleared; destabilizing road foundations, requiring repair;

and in extreme cases completely destroying roads which must then be rebuilt [35]. These
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impacts are of particular concern not only due to the key role mobility plays in evacuation,

emergency response and disaster relief distribution, but also due to its importance to normal

socioeconomic activity. For example, roads between the Mozambican capital Maputo and

the rest of the country remained unusable for nearly a year after devastating floods in 2000,

causing economic growth to come to a halt [28].

In order to avoid such severe outcomes, decision-makers must be able to first assess how

flooding threatens road-based transportation. Spatial flood risk assessments conventionally

take account of three components of risk [36]:

• hazard: the location, severity and frequency of flood events

• exposure: the populations and assets present where flooding occurs

• vulnerability: the degree to which losses are suffered as a result of exposure to the

hazard

Several recent studies have examined how flood hazard and exposure interact to jeopardize

road infrastructure by spatially intersecting flood hazard maps with road networks and re-

porting the total length of roadways within flood zones [37, 38, 39]. Although this gives

us a measure of the potential for direct damages to roadways, this metric does not capture

the degree of functional loss the road network may see in terms of reduced connectivity

between locations [40]. The potential for functional losses partly depends on the network’s

topology: graph theoretic indicators such as edge or node centrality [41] can be used to

identify key road segments or junctions, and metrics like graph clustering coefficients can

quantify overall network connectivity [42]. However, the magnitude of impact on mobil-

ity also depends on the travel volume along the roads exposed to flooding. If data about

the volume of trips taken between different origins and destinations is available, the im-

pacts of road closures on mobility can be estimated, e.g. in terms of the percentage of

attempted trips that can be successfully completed. In Section 3.2, we present an evalua-

tion pipeline for quantifying the mobility impacts of flooding, using mobility data gleaned
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from call detail records and from traffic simulations between traffic analysis zones (TAZs).

Unfortunately in practice, comprehensive data on origin-destination flows are not widely

available, calling for the use of predictive models for trip generation and distribution in

disaster-resilient infrastructure planning. In Section 3.3, we briefly introduce some predic-

tive models for origin-destination flow volumes that can be used when mobility data are

unavailable.

Once decision-makers are able to anticipate which road network components may be

inundated or damaged and how the unavailability of these road segments will impact mo-

bility, they must then develop cost-effective strategies for allocating resources towards mit-

igating these threats. The associated network design, planning and scheduling problems

have also inspired AI researchers to develop effective and scalable techniques that can be

applied to these critical, real-world problems. There has been a great deal of research

on variations of the pre-disaster transportation network preparation problem [43], e.g. to

strategically upgrade roads such that evacuation paths are protected [44], or such that the

average travel time of emergency response vehicles to service points is minimized [45].

There is also a growing body of work in post-disaster road network restoration, where the

goal is to optimize the order in which to clear roads and the positioning of equipment to

enable evacuations [46] or distribute emergency supplies [47]. However, relatively little

work has tackled the goal of fortifying road networks such that normal travel flows remain

feasible. In Section 3.4 address this gap in the transportation resilience literature and focus

on the problem of finding a pre-disaster road fortification plan that ensures that a regional

population’s typical travel needs are still met as much as possible under likely disaster

scenarios.

3.2 Data-Driven Vulnerability Analysis for Road Networks

Floods are the most frequent, widespread, and expensive natural disasters in the United

States [48]. [33] estimate that $5.5 trillion of built assets in the contiguous USA currently
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face exposure to a 1-in-100 year flood, and [38] identify cities like Key Biscayne, FL,

Hoboken, NJ, Redwood City, CA and Cambridge, MA as likely to experience sudden in-

creases in road flooding in the next few decades. In the following sections, we analyze

potential flooding impacts on mobility in 3 major metropolitan areas in the United States

that face significant flood risk: Washington D.C., Chicago, and Seattle.

At the same time, flood damage to infrastructure is also a serious concern for developing

countries, where investment in energy, water, communication and transport infrastructure

is central to socioeconomic development. For instance, the estimated costs of road repair

and maintenance across Africa under current climate change projections exceed $150 bil-

lion, which will significantly divert funding from initiatives for expansion and growth [49].

Thus, climate change will exacerbate existing socioeconomic vulnerabilities and threaten

the success of crucial development schemes unless steps are taken to proactively mitigate

these costs. In the following sections, we also assess flood mobility impacts in Senegal,

where nearly every year major flood events result in the displacement of hundreds of thou-

sands of people.

3.2.1 Data

The first step in a framework for making investment recommendations for climate-resilient

road infrastructure is analyzing the exposure of roads to flooding, and the impacts flooding

will have on population mobility. In order to do so, we require three main pieces of data:

1. A GIS representation of the road network

2. A spatially-explicit model of flood risk

3. Mobility data describing travel demand between different regions

Fortuitously, geospatial data made available by projects like OpenStreetMap [50] can

be freely used to obtain graph representations for road networks across the globe. It is
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(a) Frederick County, MD. (b) Pierce County, WA. (c) Lake County, IN.

Figure 3.1: OpenStreetMap road networks for focal counties near Washington D.C., Seat-
tle, and Chicago.

(a) Frederick County, MD. (b) Pierce County, WA. (c) Lake County, IN.

Figure 3.2: FEMA flood zones for for focal counties near Washington D.C., Seattle, and
Chicago.
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(a) Chicago (b) Seattle (c) Washington D.C.

Figure 3.3: Number of outgoing trips from a single origin census tract (yellow) to every
other census tract in each study area; black census tracts have no population.

much more challenging to obtain publicly available flood maps. For locations within the

United States of America, the Federal Emergency Management Agency provides shapefiles

specifying flood zones and their types [51]. The Fathom Global dataset [52, 53] provides

flooding data for the entire globe at the resolution of approximately 90m2. Specifically, this

dataset provides flood depth rasters for floods of different severities characterized by return

period λ, which is the estimated time interval between flooding events of a similar intensity.

Intuitively, a 500-year flood is more severe and less likely to occur than a 100-year flood.

Given a return period λ, the value of each cell of the flood depth raster is the maximum

flood depth estimated by a hydrodynamic model for a flood of the specified severity. There

are alternative freely-available data sources for flood mapping. For example, the NASA

MODIS near real-time global flood mapping project [54] also provides flood data with

global extent, although at lower spatial resolution compared to the Fathom Global dataset.

Travel demand data can also be challenging to obtain. For some geographies, mobility

data are available in the form of origin-destination matrices storing the average number

of trips between different traffic analysis zones (TAZs), which are special spatial units

used by transportation officials to track traffic-related data. We obtain publicly available

TAZ shapefiles for Chicago, Seattle, and Washington D.C. [55, 56, 57], as well as OD

matrices containing the number of trips from each TAZ to every other TAZ in a given day.

Geospatial data analyses more commonly use census tracts or blocks as the geographic

units of analyses, so we resample the OD flow data between TAZs to estimate OD flows

35



between census tracts (Figure 3.3) using the following formula:

Tij =
∑
a

∑
b

Tabp(a, i)p(b, j) (3.1)

where a, b are TAZs, i, j are census tracts, and p(a, i) denotes the proportion of area of

TAZ a that overlaps with census tract i, and p(b, j) similarly. In other words, the trips to

and from a TAZ are assumed to be evenly distributed across its area.

Call detail record (CDR) data, consisting of time-indexed sequences of cell towers used

by anonymized users, is an excellent source of ground-truth human mobility data. We

obtained CDR data for Senegal provided by Orange [58], the biggest mobile provider in

Senegal with N = 1, 666 cell towers across the country, through the UN Data for Climate

Action Challenge [59]. Since CDR data record user locations only in terms of cell towers

used, we use the approximate latitude-longitude locations of the N cell towers to construct

“cell tower zones”, Voronoi regions containing all locations that are closer to a given cell

tower than to any other tower (Figure 3.4(c)). Given the sequence of cell tower zones

visited by each user in the dataset, e.g. {l1, l2, · · · , lK} for a customer that moves through

K zones, we consider each consecutive pair of cell tower zones (lk, lk+1) to be a trip from

zone lk to zone lk+1. We obtain the inter-zone travel demand by constructing an N × N

origin-destination (OD) zone trip matrix T whose (i, j)-th entry represents the total number

of trips taken from cell tower zone i to zone j by all users in the dataset.

3.2.2 Vulnerability Analysis

We first construct an undirected graph representation of the road network, with edges E

representing road segments and vertices V representing intersections or endpoints of these

road segments. Each edge has a distance property representing the length of the corre-

sponding road segment.

To estimate the exposure of each road segment to flooding in a given return period sce-
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(a) Senegal roadway system. (b) 100-year flood depths. (c) Outbound trips per zone.

Figure 3.4: Data sources for estimating infrastructure exposure to flooding and potential
impacts on mobility.

Figure 3.5: Impacts of the λ = 100 flooding scenario and threshold θ = 1m. The left figure
shows the road network of Senegal, with red links indicating roads that are impassable due
to flooding. The right figure shows the estimated number of outgoing trips per zone that
cannot be completed due to the damages in the road network.

nario, we first apply a threshold θ to the flood depth raster and then obtain the geometric

intersection of roads with those raster cells with flood depth value ≥ θ. Edges correspond-

ing to road segments that pass through any such cells form a subset Eλ
F ⊆ E of flooded

roads. For each edge in this set we compute the flooded distance to estimate the length

of the road segment that would need to be upgraded to make the road segment traversable

again. We also obtain an unflooded subgraph Gλ
U = (V,Eλ

U) consisting of the original

set of vertices V and any edges corresponding to road segments not affected by flooding,

representing the parts of the road network that are still traversable. Note, the two edge sets

have no edges in common (i.e. Eλ
F ∩ Eλ

U = ∅) and Eλ
F ∪ Eλ

U = E.
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In order to connect the flooding effects on the road network to the zone-to-zone demand

data, we assume that trips between pairs of zones occur between random origin nodes and

destination nodes within each zone. Specifically, for each zone i, we calculate Zi, the

set of vertices from the road network that are within its boundaries. Then, we assume

that a trip leaving zone i and arriving at zone j is equally likely to start from any ver-

tex within Zi, and similarly equally likely to end at any vertex in zone Zj . For a given

road network Gλ = (V,Eλ
U), we compute two N × N matrices C0(Gλ) and C1(Gλ). In

C1(Gλ) entry (i, j) stores the number of pairs of vertices (u, v) with u ∈ Zi and v ∈ Zj

between which a path exists in graph Gλ. Similarly, in C0(Gλ) the (i, j)-th entry stores

the number of pairs of vertices (u, v) between which there is no path in graph Gλ. Then,

based on our assumptions, the fraction of unsuccessful trips from zone i to j is given by

C0
ij(G

λ)/
(
C0
ij(G

λ) + C1
ij(G

λ)
)
. Then, we let

I(Gλ) =
N∑
i=1

N∑
j=1

TijC
0
ij(G

λ)

C0
ij(G

λ) + C1
ij(G

λ)

be the number of infeasible trips. In other words, the number of infeasible trips between an

origin i and destination j is counted as the total number of trips from i to j, multiplied the

fraction of infeasible paths between the two zones.

Figure 3.6: Graphs showing the effect of floods of increasing severity on the number of un-
flooded road segments (left), total length of flooded roads (center), and estimated percent
of infeasible trips over the road network (right). Three flooding thresholds, 0.5, 1m, and
1.5m are shown.
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3.3 Predicting Mobility for Vulnerability Analysis in Road Networks

In the absence of TAZ or CDR data, analytical or predictive models of human mobility can

be used to approximate zone-to-zone trips. There has been a great deal of research on travel

flow prediction, or estimating the number of trips taken between pairs of locations [60]

given demographic, socioeconomic and/or geographic information about each location.

Models developed for this purpose range from simple traditional ones with few parameters

to complex ones capable of learning complex interactions from a large set of variables

in order to more accurately capture the structure of mobility patterns [61, 62, 60]. The

estimated origin-destination (OD) flows produced from such travel demand models can

help decision-makers understand the use of road infrastructure and plan for its future.

Recent work by [63] evaluates several travel demand prediction models in terms of their

capacity to capture census-tract-level urban travel demand patterns in the context of their

suitability for informing road network resilience planning. Modeling these flows is often

split into two parts: trip generation or production, which estimates the total number of trips

leaving from or arriving at a given zone; and trip distribution, which characterizes what

proportion of the trips generated for a given zone go to or come from each other zone. In

other words, trip distribution models characterize the conditional probability P (j|i) that a

trip starting in zone i ends in zone j, based on features of the origin and destination zones

and various assumptions about what other factors impact human mobility [64]. An estimate

of the number of trips from zone i to zone j, Tij , is given by

T̃ij = TiP (j|i), (3.2)

where Ti is the number of trips leaving zone i. Ti is often estimated by a production function

T̃i = λmi where λ is a parameter that can be fitted. Historically, dozens models have been

proposed for this task, but many of these fall into two major categories of approaches.
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3.3.1 Gravity Models

Gravity models [65, 66, 67] assume the probability Pij that a trip begins in zone i and

ends in zone j is proportional to the product of populations of the two zones, and inversely

proportional to an exponential or power function of the distance dij between the zones,

where dij can be the great-circle distance, Euclidean distance or travel distance between

two zones.

Pij ∝
mimj

eβdij
(3.3)

Pij ∝
mimj

dβij
(3.4)

where β is a parameter that can be adjusted, and Pij is normalized so that
∑

i

∑
j Pij = 1.

We adopt the common practice of ignoring trips within a zone, i.e., for any i, Pii = 0.

3.3.2 Intervening Opportunities Models

The second main family of human mobility models encompasses different variants of inter-

vening opportunities models [68]. The number of intervening opportunities between zone

i and zone j, sij , refers to the total number of jobs located closer to zone i than zone j is.

We approximate this quantity with total number of jobs in all zones that are closer to zone

i than zone j:

sij =
∑

k:dik<dij

sk (3.5)

where sk is the number of jobs in zone k. The number of jobs in a zone is sometimes

estimated by the population of the zone, a convention we also adopt in this work.

Intervening opportunities trip distribution models approximate P (j|i), the conditional

probability that a trip leaving from zone i will go to zone j. Note that P (j|i) =
Pij∑
j Pij

.

Different intervening opportunities models include:
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• Schneider’s intervening opportunities model [69]:

P (j|i) = e−γsij − e−γ(sij+mj), (3.6)

• Radiation model [70]:

P (j|i) =
mimj

(mi + sij)(mi +mj + sij)
, (3.7)

• Extended Radiation model [71]:

P (j|i) =
[(mi +mj + sij)

α − (mi + sij)
α](mα

i + 1)

[(mi + sij)α + 1][(mi +mj + sij)α + 1]
(3.8)

3.3.3 Learning-Based Travel Demand Models

One drawback of the traditional models is that the α, β, γ and λ parameters that are fit

to reflect travel demand patterns in one region do not generalize well to other regions due

to the rigid functional forms of the models and reliance on a small set of features. Here,

we present two models that incorporate a wider set of features and capture more varied

functional relationships between those features and the travel demand. Specifically, given

data consisting of a set of census tracts (zones), features F for each zone, joint features J

between pairs of zones, and ground truth pairwise OD flows between zones over some time

horizon, our goal is to learn a function f(Fi, Fj, Jij) = T̃ij for predicting the OD flows for

new areas in which we do not know the ground truth.

• Extended Gravity Model: This model generalizes the gravity model to incorporate

a much wider set of features[72]. This extended gravity model adds power laws of

additional features to the original gravity model, expressed as

T̃ij = β
∏
l

φαl
l (i)

∏
m

φαm
m (j)

∏
n

φαn
n (i, j)f(dij) (3.9)
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where φl are features of the origin tract, φm are features of the destination tract, and

φn are features related to both the origin and the destination (except the distance,

which is included in the decay function f(d)). f(d) can have either the power form

or the exponential form. The bias β, and α coefficients are variables to be fit. A

simpler form of the extended gravity model was proposed by Lowry [73, 74], which

also considers employment status and income level as features which can be propor-

tional or inversely proportional to travel demand. Earlier work by Alonso [75] also

established a power-decay gravity model where the population values are replaced

by power laws of population values.

• Random Forest: We also use a random forest model, which is one of the most

accurate predictors used in a recent study [61] on predicting travel demand between

cities based on socioeconomic features. Compared to the aforementioned models,

random forest is a black-box model that is computationally more complex and more

challenging to interpret.

3.3.4 Experiments

[63] evaluate the proposed travel demand prediction models in Washington D.C., Chicago

and Seattle. They use geographic and socioeconomic features at the census-tract level to

fit our travel demand models (Table 3.1). The census tract extents and indices are those

used in the 2010 U.S. census, clipped to the TAZ-based study area for each city. Numerical

features pertaining to population, land cover, employment, per capita income etc. for each

census tract are obtained from the American Community Survey, the 2011 Environmental

Summaries, and the 2015 Longitudinal Employer-Household Dynamics datasets on Social

Explorer. For each pair of origin census tract i and destination census tract j, we have

13 zone-based features Fi relating to the origin, 13 zone-based features Fj relating to the

destination, and 5 joint features Jij .

For each of the learning-based models, the OD flows from 2 of the 3 study areas are
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Table 3.1: Feature set for the machine learning methods.

Feature Category Zone-based Feature Origin-Destination Pair Feature
Population Population Intervening population

Population density
Geographic Area Euclidean distance

Open space area Shortest-path travel distance
Low intensity development area
Medium intensity development area
High intensity development area
Forested area

Work Employed population Intervening jobs
Unemployed population Intervening income
Average commute time
Number of jobs
Per capita income

used as a training set and the trained models are tested on the OD flows of the third held-

out study area. This process is repeated in 3 folds, corresponding to all 3 combinations of

pairs of study areas. Only inter-zone trips are predicted: for any i, T̃ii = 0. 4 evaluation

metrics are considered to measure the prediction performance of the travel demand models

in terms of the agreement between the off-diagonal entries of the ground truth and predicted

origin-destination travel demand matrices (Table 3.2). We report the normalized root mean

square error (NRMSE) and coefficient of determination (r2) which are commonly used

evaluation metrics for regression models. In addition, we use two variants of the common

part of commuters metric (CPC) [76, 62] widely used in travel prediction:

CPC(T, T̃ ) =
2
∑n

i,j=1 min(Tij, T̃ij)∑n
i,j=1 Tij +

∑n
i,j=1 T̃ij

(3.10)

The greater the agreement between the predicted travel flow volumes and the ground truth

values, the closer the CPC is to 1. [64] recently proposed the common part of commuters

according to distance CPCd, which measures how well a model predicts the distribution of

travel distance, disregarding specific origins and destinations. If Nk is the number of trips
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Table 3.2: Average prediction performance. For the traditional trip distribution models,
evaluation metrics are computed for a model fit to each of the 3 study areas and then aver-
aged. For the learning-based models, the average is taken over the 3-fold tests. Higher is
better for all metrics except for NRMSE.

Category Method CPC CPCd NRMSE r2

Traditional models

Gravity, exponential decay, euclidean distance 0.583±0.032 0.860±0.063 6.099±2.854 0.338±0.118
Gravity, exponential decay, travel distance 0.590±0.039 0.865±0.061 6.197±2.881 0.316±0.116
Gravity, power decay, euclidean distance 0.552±0.070 0.790±0.081 6.993±3.711 0.155±0.257
Gravity, power decay, travel distance 0.552±0.078 0.781±0.077 7.427±4.039 0.051±0.318
Schneider’s model 0.533±0.021 0.841±0.032 6.036±2.553 0.344±0.057
Radiation model 0.297±0.046 0.430±0.036 17.660±7.619 -4.612±0.545
Extended radiation model 0.553±0.064 0.799±0.081 6.692±3.239 0.211±0.160

Learning based models
Random Forest 0.654±0.068 0.907±0.084 5.287±2.529 0.506±0.095
Extended gravity, exponential decay 0.658±0.067 0.879±0.134 5.597±3.260 0.462±0.221
Extended gravity, power decay 0.629±0.060 0.826±0.160 6.216±3.606 0.340±0.269

with distance between 2k − 2 and 2k km, and Ñk is the corresponding prediction:

CPCd(T, T̃ ) =

∑∞
k=1 min(Nk, Ñk)∑n

i,j=1 Tij
(3.11)

which equals to 1 if, for every distance bin, the ground truth and the prediction have the

same number of trips within the range; it equals to 0 if every trip from the ground truth data

is within a different distance bin than all predicted trips.

The intervening opportunities models generally had poorer performance for predicting

census-tract-level travel flows around a city. Among the gravity models, those using an

exponentially decaying function of distance outperformed those using a power decay func-

tion. The learning-based travel flow prediction models outperformed all of the traditional

models in all evaluation metrics. Random forest was the best performing model overall

in terms of CPCd, NRMSE and r2, while the extended gravity model with exponential

decay was the best according to the CPC metrics. Note that the extended gravity model

generally is much less time- and space-demanding than random forest.

3.4 Optimizing Satisfiable Travel Demand on Road Networks

Now, we are in a position to address the problem of deciding which roads to fortify in

order to ensure that the number of trips that can be completed in a given flood scenario
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is maximized. We model this problem as an instance of Budget-Prize-Collecting Steiner

Forest (Budget-PCSF): given a graph, pairs of vertices that need to be connected and travel

demand between them, and edge repair costs, we select a subset of edges to repair in or-

der to maximize the satisfied travel demand while respecting a budget constraint1. In the

regular Prize-Collecting Steiner Forest (PCSF) problem [77], the goal is to minimize the

combination of edge purchasing costs and incurred penalties for failing to connect desig-

nated pairs of vertices. However, in the disaster preparedness setting, it may be undesirable

to combine the financial costs of upgrading roads and the socioeconomic costs of failing to

connect certain location pairs into a single optimization objective. Moreover, government

agencies and development initiatives typically must operate within strict budget plans, and

hence it is necessary to include a hard budget constraint.

3.4.1 Budget Prize-Collecting Steiner Forest

We are given an undirected, uncapacitated graph G = (V,E), where edges represent road

segments, and vertices represent junctions or endpoints of the road segments. We also have

an OD matrix whose entries (i, j) contain the expected number of trips from vertex i to

vertex j over the road network, which we refer to as the travel demand from i to j. Travel

demands need not be symmetric, and we assume that as long as a path exists in the network

between vertices i and j, the travel demand between them in both directions is satisfied.

This constitutes a profit function p(u, v) : V ×V → R+ for connecting pairs of vertices. We

emphasize that in our formulation of Budget-PCSF, we use these demands to set pairwise

profits on vertices to be maximized, rather than setting penalties to be minimized as is

typical in the PCSF problem. We are also given a cost function c : E → R+ on the edges,

and a fixed budgetB. These edge costs reflect the projected cost of satisfactorily upgrading

a given road segment to ensure it withstands a given flood scenario. The planner’s task is

to decide which road segments to upgrade through the allocation of the budget B, such that

1https://github.com/amritagupta/budget-pcsf-semigradient-ascent.
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the maximum travel demand is satisfied. This leads to the following problem:

Given: Graph G = (V,E), a non-negative edge cost function c : E → R+, a budget B,

pairs of vertices P = {(u1, v1), (u2, v2), . . . , (uk, vk)} to be connected, and a non-

negative profit function p : P → R+ for successfully connecting vertex pairs in

P

Find: A forest F ⊆ E such that
∑

e∈F c(e) ≤ B and
∑

(u,v)∈Q p(u, v) is maximized,

where Q ⊆ P is the set of vertex pairs connected by edges in F .

We specify that the selected road segments should form an acyclic subgraph (a forest).

Although a cyclic subgraph would be a feasible solution with respect to our goal of max-

imizing satisfied travel demand, we note that the presence of cycles in the solution means

there are multiple edge-disjoint paths between the same pairs of vertices, providing no

benefit in terms of additional connectivity but consuming more of the budget than needed.

Hence, we can restrict our search to solutions that form a forest in G.

3.4.2 Related Work

Closely related to our graph optimization problem, the prize-collecting Steiner forest (PCSF)

problem asks the following question: given an undirected graph G = (V,E), a non-

negative edge cost function c : E → R+, pairs of verticesP = {(u1, v1), (u2, v2), . . . , (uk, vk)},

and a non-negative penalty function π : P → R+, which subgraph F of G minimizes the

cost of edges in F plus the sum of penalties for pairs in P that are not connected by F ?

This problem has been studied extensively and applied in domains as diverse as molecular

biology for discovering signaling pathways in a cellular interactome [78], and backbone

discovery in transportation networks [79]. The PCSF problem was shown to be APX-hard

[80], and has a 3-approximation algorithm based on the primal-dual method [77]. [81]

devised an O(|V |2/3 · 2 · log|V |)-approximation algorithm for the Quota-PCSF with uni-

form profits, where the goal is to find a minimum cost forest such that the satisfied demand
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Figure 3.7: Restricted supermodularity. f(S ∪ {eBC}) − f(S) ≤ f(T ∪ {eBC}) − f(T ),
showing compounding gains. However, f(T ∪{eAC})−f(T ) � f(U∪{eAC})−f(U)= 0,
showing restricted supermodularity.

is at least Q. However, despite the practical relevance of the budget-constrained variant

of PCSF, it has received relatively little attention, and there is no known approximation

algorithm for Budget-PCSF known to the authors.

Existing approaches for solving Budget-PCSF largely rely on computationally heavy

approaches. [82, 83] propose mixed integer programming formulations for this problem

and demonstrate results on a graph with 23 vertices and 34 edges representing the Ohio in-

terstate system. [84] propose a bi-objective integer programming model to solve a closely

related problem to Budget-PCSF, in which the goal is to maximize the satisfied demand

(where demand at an origin is satisfied if a path exists to at least one of a set of predefined

destinations) while minimizing travel time between origin-destination pairs as a second ob-

jective with application to retrofitting bridges along critical routes for earthquake response.

In contrast, we consider the setting in which the demand is specified between each pair of

vertices. In general, flow-based integer programming formulations are known to encounter

challenges when scaling to larger instances of these families of network design problems

and can be particularly sensitive to the number of OD-pair flow variables. Instead, in this

work we focus on developing scalable heuristic approaches. For example, in [39] the au-

thors employed a simple greedy algorithm to solve Budget-PCSF.

3.4.3 Restricted Supermodularity

In recent work, results about the modularity of objective functions have played an instru-

mental role in designing effective algorithmic approaches to solving network design prob-
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lems in domains such as robotic motion control [85] and sensor placement [86]. We now

turn our attention to an analysis of the objective function in Budget-PCSF, and specifically

prove that it is restricted supermodular over subsets of edges that form forests. A set func-

tion f(S) : 2E → R is supermodular if it exhibits the property of compounding gains, or

formally if ∀S ⊂ T ⊂ E and ∀e ∈ E \ T :

f(S ∪ {e})− f(S) ≤ f(T ∪ {e})− f(T ) (3.12)

However, when the above property holds only over a collection of subsets ofE, f is referred

to as a restricted supermodular function. The analogous property of restricted submodular-

ity for functions with diminishing returns was first described by [87] who used it to analyze

a greedy algorithm for the Steiner tree problem.

Let S ⊆ 2E denote a set of edges selected from graph G. We aim to maximize the

following objective function subject to a knapsack (budget) constraint:

f(S) =
∑

(u,v)∈Q

p(u, v) (3.13)

where Q ⊆ P is the set of vertex pairs connected by edges in G(S), the graph induced by

edges in the set S, and p(u, v) is the profit function described earlier.

Proposition 1:f(S) is monotone non-decreasing.

This is trivial since augmenting the set S with another element (edge) can never reduce the

number of pairs of vertices connected in G; and the profit function p is non-negative.

Proposition 2: f(S) is supermodular when restricted to the set of forests F on G (the

graph matroid).

A first intuition regarding the relationship between f and the structure of subsets on which

it is defined, is that there must exist a set S that maximizes f and contains no cycles–

i.e. G(S) is a forest. As described earlier, any solution containing a cycle would contain
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multiple edge-disjoint paths between the same pair of vertices, providing no additional

connectivity but consuming more of the budget than strictly necessary. Therefore, we can

restrict our search to forests.

A second intuitive notion is that connectivity builds upon itself. See, for instance, the

graph in Figure 3.7. If edge A–B is restored, then demand between A and B can be satisfied.

The same holds for edge B–C. However, when both A–B and B–C are restored, in addition

to restoring connectivity between A and B and between B and C, we get the extra benefit of

connecting A and C. This phenomenon of compounding gains or increasing differences is

the characteristic feature of supermodular functions, and has been observed and leveraged

in various other settings, such as influence maximization under the linear threshold model

with edge addition [5]. Figure 3.7 also illustrates the concept of restricted supermodularity.

When attempting to augment set U by adding edge eAC that forms a cycle with respect to

the other edges already in U , we have f(U ∪ {eAC} − f(U) = 0, although adding eAC to

a subset of U could have strictly increased f ; in this case the gain associated with eAC was

diminished, violating the requirement for general supermodularity. A formal proof that f

is restricted supermodular function follows.

Proof. For notational convenience, let Let G(u;S) be the connected component in G(S),

the subgraph induced by edges in the set S, that contains vertex u. Let fG(u;S) be the total

profit between pairs of vertices in the connected component G(u;S). Consider a subset

of edges S ⊂ E and two different edges e1 = (ue1 , ve1) and e2 = (ue2 , ve2) in E\S. Let

∆ef(S) := f(S∪{e})−f(S). We want to show that ∆e2f(S∪{e1}) ≥ ∆e2f(S) whenever

G(S ∪ {e1, e2}) contains no cycles. (We already provided a counterexample in Figure 3.7

showing that this is not true when S contains a cycle.) There are 3 possible cases:
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1. e2 has no endpoints in G(S ∪ {e1}). Then e2 also has no endpoints in G(S), so

∆e2f(S) = f(S ∪ {e2})− f(S)

= fG(ue2 ;S ∪ {e2})− fG(ue2 ;S)

= fG(ue2 ;S ∪ {e2})− 0 = fG(ue2 ; {e2})

∆e2f(S ∪ {e1}) = f(S ∪ {e1, e2})− f(S ∪ {e1})

= fG(ue2 ;S ∪ {e1, e2})− fG(ue2 ;S ∪ {e1})

= fG(ue2 ;S ∪ {e1, e2})− 0

= fG(ue2 ; {e2}) = ∆e2f(S)

2. e2 has exactly 1 endpoint in G(S ∪ {e1}). Let ue2 be the endpoint of e2 in G(S ∪

{e1}). Either ue2 is in the same connected component as the endpoints of e1, or it is in a

different connected component of G(S ∪ {e1}). If ue2 ∈ G(ue1 ;S ∪ {e1}), there are two

possibilities–either ue2 is a vertex in G(S) or ue2 = ve1 . In the former case:

∆e2f(S) = f(S ∪ {e2})− f(S)

= f(ue2 ;S ∪ {e2})− f(ue2 ;S)

= {flow G(S)↔ ve2}

∆e2f(S ∪ {e1}) = f(S ∪ {e1, e2})− f(S ∪ {e1})

= fG(ue2 ;S ∪ {e1, e2})− fG(ue2 ;S ∪ {e1})

= {flow G(S)↔ ve2}+ {flow ve1 ↔ ve2}

≥ {flow G(S)↔ ve2} = ∆e2f(S)
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In the latter case:

∆e2f(S) = fG(ue2 ;S ∪ {e2})− fG(ue2 ;S)

= {flow ue2 ↔ ve2}

∆e2f(S ∪ {e1}) = fG(ue2 ;S ∪ {e1, e2})− fG(ue2 ;S ∪ {e1})

= {flow G(ue1 ;S ∪ {e1})↔ ve2}

≥ {flow ue2 ↔ ve2} = ∆e2f(S)

If, on the other hand, ue2 /∈ G(ue1 ;S ∪ {e1}) then:

∆e2f(S) = f(S ∪ {e2})− f(S)

= fG(ue2 ;S ∪ {e2})− fG(ue2 ;S)

∆e2f(S ∪ {e1}) = f(S ∪ {e1, e2})− f(S ∪ {e1})

= fG(ue2 ;S ∪ {e1, e2})− fG(ue2 ;S ∪ {e1})

= fG(ue2 ;S ∪ {e2})− fG(ue2 ;S) = ∆e2f(S)

3.e2 has both endpoints in G(S ∪ {e1}). Since we restrict ourselves to subsets ofE that

do not form cycles, the endpoints of e2 must be in two separate connected components both

in G(S) and G(S ∪ {e1}). Either e2 links two connected components that do not contain

the endpoints of e1—in this case ∆e2f(S ∪ {e1}) = ∆e2f(S). Otherwise, e2 links one

connected component containing the endpoints of e1 with another connected component–

in this case ∆e2f(S ∪ {e1}) ≥ ∆e2f(S).
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3.4.4 Budget-Constrained Restricted Supermodular Maximization

With the results of the previous secion, we can approach Budget-PCSF as maximizing a

monotone non-decreasing, restricted supermodular function over the independent sets of a

graph matroid, subject to a knapsack constraint. There is very limited work to date on max-

imizing restricted submodular or supermodular functions subject to additional constraints.

In [87], the authors studied the implications of restricted submodularity over forests for a

greedy algorithm for the minimum Steiner tree problem, in which there are no cardinal-

ity or knapsack constraints for acquiring edges. In [88], the authors studied maximizing a

function that is submodular when restricted to the set of solutions satisfying a cardinality

constraint. In contrast to these works, in Budget-PCSF the supermodularity of the objective

function holds over the independent sets of a matroid, while there is an additional, separate

knapsack constraint on edge selection.

In this work, we treat both the graph matroid structural restrictions and the knapsack

constraint as hard constraints. Even though a solution violating the matroid restriction is

not strictly infeasible, the violations degrade the supermodularity property that serves as

the basis of our algorithm design. Therefore, we aim to maximize a supermodular function

subject to a knapsack and a matroid constraint. [89] provide bounds for maximizing a su-

permodular function subject to a cardinality constraint (equivalent to knapsack constraints

with unit or uniform edge costs) or a matroid constraint, but not both. They showed that

a simple greedy algorithm that adds items in order of maximum benefit with respect to

the current set achieves a (1 − κf ) approximation bound, where κf is the supermodular

curvature of function f . It is unclear whether the same bound holds for maximizing super-

modular functions subject to a knapsack constraint, rather than a cardinality constraint; or

for the combination of a knapsack and a matroid constraint, as we have here. [39] employed

a similar greedy algorithm to [89] to solve Budget-PCSF, in which items are selected in or-

der of benefit-cost ratio. However, as we will show, this greedy algorithm scales poorly

with problem size.
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Modular Lower Bounds for Restricted Supermodular Functions

Instead of relying on a simple cost-benefit greedy criterion, we implement an iterative

heuristic based on semigradient ascent [90], which is based on computing modular lower

bounds (MLB) for the objective function f and then efficiently maximizing the MLB. This

theoretical framework was recently adapted by [5] to supermodular maximization with a

cardinality constraint for influence maximization in graphs using edge addition.

Supermodular functions have discrete subdifferentials that can be used to construct tight

MLBs [89]. Given a set function f and a set S, the subdifferentials of f at S are all vectors

y such that f(S) − y(S) + y(S ′) ≤ f(S ′) ∀S ′ ∈ E; a subgradient is one such vector y.

Therefore, a subgradient essentially provides a lower bound for the function f evaluated

on set S ′. In [89], the following two discrete subgradients for supermodular functions are

proposed:

y̌(j) =


f(j|S \ {j}), if j ∈ S

f(j|∅), otherwise
(3.14)

and,

ŷ(j) =


f(j|E \ {j}), if j ∈ S

f(j|S), otherwise
(3.15)

These lead to the following two modular lower bounds for the function f at a new

solution S ′ using current solution S:

m̌S(S ′) = f(S)−
∑
j∈S\S′

f(j|S \ j) +
∑
j∈S′\S

f(j|∅) ≤ f(S ′) (3.16)

m̂S(S ′) = f(S)−
∑
j∈S\S′

f(j|E \ j) +
∑
j∈S′\S

f(j|S) ≤ f(S ′) (3.17)

The terms f(j|S \ j) and f(j|S) depend on the current solution S and thus need to

be computed on the fly through calls to a function evaluator for f . However, f(j|∅) in
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Eq. Equation 3.16 is simply the travel demand between the endpoints of edge j, so this

term can be looked up from the demand matrix.

For general supermodular functions, the f(j|E \ j) terms in Eq. Equation 3.17 can be

precomputed for each j ∈ E. These terms quantify the largest reduction in objective value

that could occur as a result of removing element j from the current solution. However, for

our restricted supermodular function, we need to find maxS∈C f(j|S \ j), where C is the

collection of sets over which the supermodularity property holds, or the graph matroid in

our case. The largest objective value reduction for removing a given edge j occurs when

S is a specific spanning tree on G such that j is the cut-set for a weighted max-cut on the

spanning tree. We adopt a sampling approach to evaluate the maximum possible impact of

each edge j, sampling a set Tj of N random spanning trees of G in which j is a member

and setting f(j|E \ j) ≈ maxT ∈Tj {f(j|T \ j)}.

Another simple modular lower bound that was successfully used for constrained sub-

modular maximization [5] is the following:

∑
j∈S′

f(j|∅) ≤ f(S ′) (3.18)

where f(j|∅) is again the demand between the endpoints of edge j. Eq. Equation 3.18 does

not require a current solution or any expensive function evaluations to compute, and is in

fact equivalent to Eq. Equation 3.16 or Eq. Equation 3.17 when the initial solution S is the

empty set.

Semigradient Ascent

The modular lower bounds in Eqs. Equation 3.16 and Equation 3.17 are computed with

respect to a solution S, and can be used to iteratively find solutions of increasing objec-

tive value using Algorithm Algorithm 1 proposed in [90] and adapted to our restricted

supermodularity setting. A current solution to Budget-PCSF (Eadd) is used to compute the

54



coefficients for one of the subgradient-based modular lower bounds (lines 9 and 12). Then,

we find a new solution that maximizes this modular lower bound subject to budget and

matroid constraints (lines 10 and 13). We alternate between the two bounds, terminating

when no further changes to the solution are made under either of them.

Algorithm 1 SEMIGRADIENT-ASCENT

1: function SEMIGRAD(E, c, B, p, ε)
2: current mlb← m̌
3: m̌ converged←False
4: m̂ converged←False
5: converged←False
6: Eadd ← ∅
7: while not converged do
8: if current mlb = m̌ then
9: m̌Eadd(·)←GETMLBCOEFFS(Eadd)

10: E ′add ← arg maxS∈C m̌Eadd(S)
11: else
12: m̂Eadd(·)←GETMLBCOEFFS(Eadd)
13: E ′add ← arg maxS∈C m̂Eadd(S)

14: if E ′add = Eadd then
15: if current mlb=m̌ then
16: m̌ converged←True
17: current mlb← m̂
18: Eadd ← E ′add
19: else
20: m̂ converged←True
21: current mlb← m̌
22: Eadd ← E ′add

23: if m̌ converged and m̂ converged then
24: converged←True
25: else
26: Eadd ← E ′add
27: m̌ not converged←True
28: m̂ not converged←True
29: return Eadd
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Maximizing Modular Lower Bounds

Maximizing any of the above modular lower bounds corresponds to maximizing a modular

function subject to both a knapsack and a matroid constraint. There is relatively little work

on solving the 0-1 knapsack problem (whose objective is the modular sum of the item val-

ues), subject to additional constraints beyond the budget constraint. However, maximizing

submodular functions subject to combinations of different numbers and types of constraints

is an active area of research. We leverage these approaches based on the fact that modular

functions are in fact submodular (as well as supermodular), with the inequality satisfied

with equality.

Maximizing a monotone submodular function subject to a knapsack and a matroid con-

straint is NP-hard to approximate to within a factor better than 1− 1
e

[91], and only a handful

of relatively recent works have proposed algorithmic techniques for addressing this prob-

lem. One of the first approaches for submodular maximization suitable for a combination of

matroid and knapsack constraints was the randomized swap rounding algorithm proposed

by [92]. More recently, [91] presented a simpler 1−e−2

2
-approximation algorithm that also

handles the simultaneous application of a matroid constraint and k knapsack constraints.

The algorithm proceeds by greedily building the solution set by considering local search

moves (either adding a single element or by swapping a previously added element for a

new one) that respect the matroid constraints. The best move is chosen greedily according

to benefit-cost ratio. Despite the attractive guarantees regarding the quality of this solution

set, the algorithm is not guaranteed to terminate in polynomial time.

We adopt simpler heuristic strategies for maximizing the modular lower bounds sub-

ject to the knapsack and matroid constraints. Our first approach, GreedyMLB is similar

to [91] in that edges are chosen in order of benefit-cost ratio, but swaps are not allowed.

Each edge is added to the solution only if it can be purchased with the remaining budget

and if it does not introduce a cycle into the solution. We also propose a second algo-

rithm, Knapsack-Repair, shown in Algorithm Algorithm 2. This algorithm alternates
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Algorithm 2 KNAPSACK-REPAIR

1: function KR(E, c, B, p, ε)
2: add edges←True
3: Eadd ← ∅
4: while add edges do
5: EK ←KNAPSACKILP(E, c, B, p, ε)
6: Eadd ← Eadd ∪ EK

7: Eprune ←REPAIR(Eadd, c)
8: Eadd ← Eadd\Eprune

9: B ← B −
∑

e∈Eadd
p(eu, ev)

10: E ← E\ (Eadd ∪ Eprune)
11: if B < min {c(e)}e∈E OR E = ∅ then
12: add edges←False
13: return Eadd

14: function REPAIR(Eadd, c)
15: cycles fixed←False
16: Eprune ← ∅
17: Ecycles ← FINDEDGESINCYCES(Eadd)
18: if Ecycles = ∅ then
19: cycles fixed←True
20: while not cycles fixed do
21: eexpensive ← arg maxe∈Ecycles c(e)
22: Eprune ← Eprune ∪ {eexpensive}
23: Ecycles ←FINDEDGESINCYCES(Eadd)
24: if Ecycles = ∅ then
25: cycles fixed←True
26: return Eprune
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between phases of edge addition, in which an integer linear program for the 0-1 knap-

sack problem is solved to allocate the available budget towards edges, and repair, in which

matroid constraint violations are corrected by greedily removing the most expensive edge

participating in a cycle in the solution, recovering the cost of the edge, and continuing until

all cycles are repaired. The algorithm alternates between the knapsack and repair phases

until either the budget is exhausted or all edges have been either added or discarded.

In both GreedyMLB and Knapsack-Repair, each edge is added to the solution

at most once (rather than allowing edges to be swapped out and then potentially swapped

back in), and so the algorithms terminate quickly and are good candidates for solving the

subproblems in lines 10 and 13 of Algorithm Algorithm 1.

3.4.5 Experiments and Results

We compare the performance of four algorithms: 1) a baseline Greedy algorithm that it-

eratively constructs a solution by adding the edge with the best benefit to cost ratio without

violating the knapsack and matroid constraints ([39], implemented with lazy evaluation);

2) KR maximizing f by applying Knapsack-Repair (Algorithm Algorithm 2) to the

modular lower bound in Eq. Equation 3.18; 3) Semigrad-GreedyMLB (Algorithm Al-

gorithm 1) where at each iteration the modular lower bound is optimized greedily; and 4)

Semigrad-KR (Algorithm Algorithm 1) where at each iteration the modular lower bound

is optimized by calling Knapsack-Repair. We report results on a real road network

from Senegal, a country where flood resilience is of particular concern, and on synthetic

instances to more fully characterize the algorithms’ performance. For each problem in-

stance, we compute the cost of the minimum spanning tree (MST), which is the minimum

cost at which all the available profit can be obtained. We then vary the budget allocated for

Budget-PCSF as a fraction of the MST cost. The knapsack ILPs within KR were solved

using Gurobi v8.0. All experiments were run on a cluster of five 32-core machines with

2.10GHz processors and 256GB of RAM.
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Synthetic Instances

Figure 3.8: Solution quality relative to Greedy versus budget level on random
planar graphs of different sizes; KR is on average as good as Greedy, while
Semigrad-GreedyMLB and Semigrad-KR find solutions 3-15 times better than
Greedy.

We synthetically generate instances of Budget-PCSF on which to evaluate our proposed

methods. Specifically, we generate random planar graphs with mean degree close to 3.8,

the mean degree of the Senegal road network retrofitting instance under the 50-year flood

scenario. We vary the size of the instances parameterized by number of edges, generating

20 random instances of each graph size. We also created a similar dataset with random

Erdos-Renyi graphs, for which results can be found on our GitHub page. We generated

costs for edges and demand between pairs of vertices following a random uniform distri-

bution.

Figure 3.9: Mean runtime versus budget level for Greedy, KR, Semigrad-GreedyMLB
and Semigrad-KR on random planar graphs of 3 sizes; Knapsack-Repair (KR) is
extremely fast across all instance sizes and budget levels.

Figure 3.8 shows the relative quality of solutions found by KR, Semigrad-GreedyMLB

and Semigrad-KR compared to the Greedy method at different budget levels for in-

stances varying from 500 to 1500 edges. Solution quality is reported as % improvement in

objective value compared to the Greedy baseline. The results show that for budget frac-

59



tions 0.1-0.2 and 0.7-0.9, all 3 algorithms achieve results on par with the Greedy baseline.

At intermediate budget levels, the two iterative semigradient ascent-based methods deliver

dramatic improvements over the Greedy solutions.

Figure 3.9 shows the mean runtime for each algorithm for Budget-PCSF at different

budget levels and instance sizes. KR is the fastest method by far, with runtimes under 1

second in nearly all cases. This means that KR can provide solutions with quality on par

with Greedy with a speed-up of 100 to 5000 times. The runtimes for the two semigra-

dient ascent-based methods also include the time taken to estimate the maximum value of

each edge in the graph instance, as described in subsubsection 3.4.4. Semigradient-based

methods are typically faster than Greedy across different budgets; hence, at intermediate

budget levels, semigradient-based methods beat Greedy in both solution quality and time.

Road Upgrades for Flood Resilience in Senegal

Road infrastructure plays a key role in socioeconomic development, and consequently in-

frastructure expansion initiatives are a core focus of many countries’ economic plans. How-

ever, extreme weather events cause damage to essential infrastructure, costing billions of

dollars to repair and potentially setting back economic development and exacerbating the

existing vulnerabilities faced by the population. Flooding is of major concern in Senegal,

due to both a recent increase in severe floods and the susceptibility of the largely unpaved

road network to damage from precipitation. Preserving connectivity via the national and

regional road network in the event of frequently-occurring (e.g. 5- or 10-year) floods is an

important goal towards enabling recovery efforts as well as normal activity to continue in

the face of these risks.

We apply the Budget-PCSF problem to retrofitting the Senegal regional road network

against 5, 10, 20 and 50-year flooding scenarios. The full road network consists of 6917

vertices corresponding to road intersections or endpoints and 7175 edges corresponding to
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Table 3.3: Budget-PCSF instance sizes resulting from floods of different return periods on
the Senegal road network.

Return Period Vertices Edges MST Cost (km)
5 161 178 60.399

10 285 321 122.593
20 444 518 211.250
50 654 758 353.884

road segments forming a single connected component. The flood risk of each road can be

estimated from predicted or historical flood data. The costs of the edges are assumed to be

proportional to the length of the flooded portion of the road segment, which would need

to be fortified. We construct a compact representation of the flooded road network, where

each vertex represents a connected component and each edge is the least cost edge between

a pair of connected components. The Budget-PCSF graph sizes resulting from the 4 flood

scenarios are summarized in Table 3.3. Travel demand over the network can be estimated

from population data, or from fine-grained mobility data mined from call detail records, for

example [39]. Unlike our synthetic instances with random uniform demands, the pairwise

travel demands between vertices in the Senegal road network graphs were highly skewed,

with very low travel demand between all but a few vertex pairs.

We compare the performance of the Greedy algorithm, KR, Semigrad-GreedyMLB

and Semigrad-KR with a budget of B = 0.1 ×MST cost in Table 3.4. The four meth-

ods perform more similarly compared to our experiments on synthetic instances; this is

due to the fact that the highly skewed pairwise demands enable the Greedy baseline to

perform reasonably well. Nevertheless, KR still produces solutions as good as or better

than Greedy in a fraction of the time, providing a 140× speedup on the smallest instance

(5-year flood scenario) and a > 8000× speedup on the largest instance (50-year flood

scenario). The semigradient-ascent based methods improve solution quality beyond either

Greedy or KRwhile still being 5 to 20 times faster than Greedy. Although the higher ob-

jective values attained by Semigrad-GreedyMLB and Semigrad-KR come at the cost

of more iterations and longer runtime compared to KR, these algorithms terminate within a
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few seconds on the real-world road instances, e.g. in under 3 minutes on even the largest

instance corresponding to the 50-year flood scenario.

3.5 Predict then Optimize: Combining Predicted Travel Flows with Optimizing Budget-

PCSF

While there has been considerable prior work on predicting ground truth travel flows, there

has been little to no assessment of how prediction errors might propagate and impact down-

stream decision making. Motivated by this important, real-world use case of travel flow

prediction models, we propose an evaluation pipeline for assessing a travel flow model’s

ability to guide infrastructure investments for disaster mitigation planning in urban areas.

We use the predicted travel flows as inputs to our semigradient ascent-based procedure for

road network fortification planning, and assess the quality of the obtained plans with re-

spect to the ground truth mobility flows. By examining whether the resulting recommended

fortification plans are sensitive to errors in the predictions of the proposed travel demand

models, we evaluate the travel demand prediction models on the basis of their suitability

for use in such a decision pipeline.

We employ the semigradient ascent algorithm to select which road segments to up-

grade [93]. Then, we assess the quality of each plan by using the ground truth OD flows to

evaluate the number of remaining infeasible trips with the recommended upgrades in place.

Figure 3.10 shows the result of using OD flows predicted by the random-forest model, the

gravity model with exponential decay and travel distances, and ground truth data to inform

the decision process. At the low budget levels shown, only a few critical road segments

can be chosen for flood resilience upgrades and so segments that restore the most mobility

must be correctly identified. In terms of the realized reduction in infeasible trips, both the

random forest and the simple gravity model perform comparably to the upgrade plans de-

signed with the ground-truth OD data itself. The predictive error of the models impacted

the downstream decision task by over- or underestimating the quality of the road upgrade
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Figure 3.10: Predicted and realized recovery of infeasible trips in Frederick County, MD
using ground truth travel demand data and predicted travel demand from random forest and
gravity models.

plans based on the predicted travel flows. Nevertheless, these results give a strong indica-

tion that indeed predictive models for OD flows can be used in guiding urban transportation

mitigation planning.

3.6 Conclusions

We address the problem of strategically fortifying edges in an infrastructure network against

failures in order to maximize satisfied demand between vertices in the network. Unlike

previous work on network design that relies on integer programming-based methods, we

show that our optimization objective exhibits the property of restricted supermodularity,

connecting budget-constrained prize-collecting Steiner forest to the vast literature on sub-

modular/supermodular optimization. We demonstrate how to extend recent work on con-

strained supermodular maximization to our restricted supermodular setting. We also pro-

pose a novel, fast algorithm for maximizing modular functions subject to a knapsack and
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a budget constraint. Empirically, we show that our proposed algorithms perform as well

as a greedy baseline on both synthetic and real-world networks, while typically being sig-

nificantly faster. Importantly, we show that supermodularity-based algorithms have the

potential to scale well to solve large practical network design problems in this family.
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CHAPTER 4

BUDGET-CONSTRAINED COMBINATORIAL OPTIMIZATION FOR

NETWORK FLOWS: WILDLIFE RESERVE DESIGN

4.1 Background on Spatial Capture-Recapture Models

Population density and functional landscape connectivity are both central to population

persistence [94, 95]. Moreover, methods that simultaneously estimate local densities and

resistance to individual movement, such as the ecological distance parametrization of spa-

tial capture-recapture models (SCR) [96], capture interdependencies between density and

connectivity that could ultimately affect population viability [95]. Specifically, SCR-based

landscape connectivity metrics [97, 98, 99] describe the capacity of individuals to move

through the landscape with respect to their distribution across the landscape and thus are

valuable objectives for a reserve-design optimization framework. For example, density-

weighted connectivity [97, 98], which can be derived from population densities and func-

tional connectivity estimated from SCR models, was recently used as an optimization ob-

jective in landscape conservation [100]. These metrics provide an alternative to traditional

reserve-design approaches in which species abundance and connectivity are decoupled and

treated as separate objectives [101].

Following [96], we assume that each individual in the target species population has an

activity center, which depends on the biology of the species, but can be regarded as the

centroid of an animal’s home range or the centroid of an individual’s activities during the

time of sampling. We represented the landscape as a raster or grid network of G pixels

of unit area indexed by g or s, where s is a pixel containing an activity center. The real-

ized population density N(s) of pixel s is then the number of individuals whose activity

centers are located within that pixel. Each pixel g also has an associated movement cost
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eα2z(g) related to the local resistance caused by pixel-specific landscape covariate values

z(g), where α2 parametrizes the extent to which landscape structure increases resistance to

animal movement. The ecological distance decol(g, s) between a pair of pixels is measured

as the sum of movement costs along the least-cost path between them [96, 97]. The prob-

ability that a pixel g is used by an individual whose activity center is in pixel s is modeled

using a Gaussian kernel:

Pr(g, s) = exp
[
−α1d

2
ecol(g, s)

]
(4.1)

where α1 is 1
2θ2

and θ is the radius of a home range and the distance at which an indi-

vidual could be detected from their activity center. Thus, Pr(g, s) describes the probability

of use for pixels based on their distance from an individual’s activity center (α1) and the

resistance to movement across pixels characterized by α2, resulting in an asymmetrical

home-range kernel representing how individuals utilize space around their activity centers.

Further details on SCR model assumptions and estimation can be found in [96] and [97].

4.2 Optimal Wildlife Reserve Design

Given a fixed budget, the purchasing cost of each pixel, and pixel-wise estimated local pop-

ulation densities and use probabilities, the goal of the budget-constrained reserve design

optimization problem is to select a set of pixels to purchase that has the greatest conser-

vation value. We formulated this problem as an integer linear program in which decisions

about selecting pixels are encoded in binary variables, the limited budget is expressed as

a mathematical constraint, and the value of a set of purchasing decisions is quantified in

terms of the number of protected individuals and functional connectivity of the resulting

reserve.

We defined a binary decision variable xg for each pixel g in the landscape to encode the

decision of whether or it is purchased for the reserve (i.e., if pixel g is selected, xg = 1;
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otherwise, xg = 0). Given the purchasing cost of each pixel cg, we also required that

the total cost of the selected pixels not exceed the budget B. A feasible solution to the

reserve design ILP is an assignment of binary values to each xg variable such that the total

purchasing cost of those pixels with xg = 1 is within the budget B.

We expressed our conservation goals as optimization objectives to be maximized. Our

first conservation objective was to maximize the number of individuals protected by the

reserve design. This is similar to the maximum coverage site selection problem [102] in

which the goal is to protect as many conservation targets as possible with finite resources.

The full ILP for maximizing the number of individuals within the reserve, given by the

protected realized density (RD) objective is:

max
∑
g∈G

xg ·N(g) (4.2)

s.t.
∑
g∈G

xg · cg ≤ B (4.3)

xg ∈ {0, 1} ∀g ∈ G (4.4)

The expression in Equation Equation 4.2 sums the estimated local population density

over purchased pixels g indicated by xg = 1, excluding density from unpurchased pixels

with xg = 0. This is based on the assumption that purchasing a pixel g is sufficient to

protect the N(g) individuals with activity centers located within that pixel. The constraint

in Equation Equation 4.3 ensures the cost of the purchased pixels is within budget B.

Equation Equation 4.4 constrains the xg variables to binary values.

Another objective was to maximize the extent to which conserved individuals can

access the purchased pixels. Reserve-design approaches that minimize functional dis-

tance between conserved sites often use least-cost path modeling [103], which provides

a way to characterize the impact of landscape features on animal movements and resulting

population-level attributes, such as genetic differentiation [104]. We used potential con-
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nectivity (PC) [97, 98] as a landscape-scale measure of functional connectivity. We define

the protected potential connectivity (PC) objective as:

max
∑
g∈G

∑
s∈G

Pr(g, s) · xg · xs (4.5)

This objective maximizes the accessibility of the reserve sites (for which xg = 1) to in-

dividuals inhabiting protected pixels (for which xs = 1). The full ILP for maximizing

PC combines the above objective function with the constraints in Equations Equation 4.3

and Equation 4.4. Although Equation Equation 4.5 is an accurate formulation of the PC

optimization objective, the expression involves products of decision variables xg and xs, vi-

olating the requirements of a linear program, but the objective can be easily linearized. This

allows us to leverage state-of-the-art linear programming solvers such as CPLEX, Gurobi

or SCIP, that can solve problems with thousands of decision variables efficiently thanks to

decades of algorithmic enhancements.

It may be preferable to evaluate a density-weighted variant of connectivity, which favors

conserving areas that are highly accessible from sites with high local abundance. This can

be quantified by density-weighted connectivity (DWC) [97, 98]. We defined the protected

density-weighted connectivity (DWC) objective as:

max
∑
g∈G

∑
s∈G

Pr(g, s) · xg · xs ·N(s) (4.6)

In other words, this objective maximizes the probability of selected pixels (for which

xg = 1) being used by individuals in the reserve (for which xs = 1) and is weighted

by the estimated local population density N(s). We linearized the objective in Equation

Equation 4.6 with the same strategy we used for the PC objective.
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4.2.1 Home Ranges and Individual Resource Needs

In the above formulations, individuals were considered protected by a reserve design if

their activity centers fell within a purchased pixel. However, in finer-resolution landscapes,

the pixel containing an individual’s activity center might encompass only a fraction of the

area utilized by the individual to meet daily and seasonal requirements for survival. If

pixels outside the reserve become inaccessible or undergo land-use change, individuals

relying on those areas for resources may face increased mortality risk, even if their activity

centers are located within the reserve. Thus, it may be advantageous to explicitly enforce

the protection of activity centers as well as the surrounding high-use pixels to ensure that

individual resource requirements are comprehensively met.

One mechanism for modeling space use by individuals is the concept of home ranges.

The size and geometry of an individual’s home range are directly determined by its move-

ments about its activity center and thus depend on resistance to movement exerted by the

surrounding landscape features. Thus, use probabilities (Equation Equation 4.1) provide

a means of delineating the home ranges of individuals based on how they utilize space.

Following [97], given an activity center in pixel s, we referred to the corresponding H%

home range kernel as the set of pixels g such that the use probability Pr(g, s) ≥ 1 − H
100

.

The 95% home range is commonly reported as delineating the entire home range of an

individual [105], and we assumed that protecting the entire home range would meet all of

an individual’s needs to survive and persist.

We augmented our optimization model to indicate whether the full home range of an

individual is protected by a set of purchased pixels. We used A95%(s) to denote the set of

pixels belonging to the 95% home range with activity center at s, comprising any pixels

used by individuals at s with probability at least 0.05. We also defined another binary

decision variable hs for each pixel s in the landscape representing whether the home range

centered at pixel s is protected by the reserve design. Then, if the pixels belonging to the

set A95%(s) are all purchased, the full 95% home range centered at pixel s is conserved and
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we set hs = 1; otherwise, hs = 0.

Under the assumption that only individuals whose full home range is within the reserve

can be considered protected, the full ILP for maximizing the protected realized density

objective with home-range constraints (RD-H) becomes:

max
∑
s∈G

hs ·N(s) (4.7)

s.t.
∑
g∈G

xc · cg ≤ B (4.8)

xg ≥ hs ∀g ∈ A95%(s), ∀s ∈ G (4.9)

xg ∈ {0, 1} ∀g ∈ G (4.10)

hs ∈ {0, 1} ∀s ∈ G (4.11)

Equation Equation 4.9 ensures that for any protected home range (hs = 1), all pixels

g in that home range are purchased (xg = 1). Equation Equation 4.11 ensures that the

decision variables hs take only binary values. We added these constraints to the protected

potential connectivity and protected density-weighted connectivity maximization problems

as well to get the home-range constrained versions (PC-H and DWC-H), whose objective

functions are as follows:

max
∑
g∈G

∑
s∈G

Pr(g, s) · xg · hs (4.12)

max
∑
g∈G

∑
s∈G

Pr(g, s) · xg · hs ·N(s) (4.13)

4.2.2 Simulated Landscape Experiments and Evaluating Reserve Designs

We created simulated landscapes with the type of estimated population density and land-

scape resistance data that would be used in practice as inputs to the reserve design problem.

We created 2, 40 × 40 pixel gridded landscapes over which we simulated a continuous
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landscape covariate at 2 levels of habitat fragmentation (low or high) (Figure 4.1) approx-

imating levels of fragmentation found for protected areas in the literature. We kept total

amount of habitat constant. We simulated data for a population of N = 100 individuals

distributed over the landscape according to an inhomogeneous point process; low values of

the covariate corresponded to greater local population densities. We modeled animal move-

ment in our landscapes after the SCR model [96, 97] in which the movement cost through

a pixel g with covariate z(g) is given by eα2z(g) and the ecological distance between pixels

g and g′ is calculated by least-cost path. We set α2 = 2.25 [98]. The use probabilities are

related to ecological distance (Equation 1) with parameter α1 = 2.85 and α1 = 1.36 for the

low and high fragmentation landscapes respectively, resulting in mean home range sizes of

89 and 95 pixels for a hypothetical species. We simulated spatial capture-recapture data

with a fixed detector array and then estimated pixel-wise realized densities N̂(s) and use

probabilities P̂ r(g, s) with the SCR ecological distance model [96].

For each landscape, we formulated ILPs as described above based on the 3 objective

functions (RD, PC, and DWC) with and without home-range constraints (95% home range

or only activity center respectively). All pixels were assigned unit costs, although these

could be generalized to reflect different land values or pixel availabilities. We varied the

available budget from 0 to 1600 land units in increments of 100, resulting in 204 opti-

mization problems. The resulting ILPs were solved using IBM ILOG CPLEX Studio

version 12.6 in ¡5 minutes per problem. We evaluated each solution in terms of the de-

sign’s protected realized density, potential connectivity, and density-weighted connectiv-

ity. Additionally, we evaluated the designs optimized without the home-range constraints

against the 95% home-range area requirement to determine how disregarding home-range

requirements might compromise reserve design quality. For example, we recomputed the

protected realized density of the design obtained by maximizing RD without home-range

constraints, but in this case only included individuals with complete home-range coverage

when calculating protected realized density. This yields a more conservative estimate of
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Figure 4.1: Simulated landscapes showing (a) high and (b) low habitat fragmentation,
where higher values of covariate z(g) correspond to areas with less favorable habitat for
a hypothetical species.

the protected density than the objective value for maximizing RD without home-range con-

straints by incorporating the assumption that individuals whose 95% home ranges are not

fully protected by the reserve are not adequately protected by the design. Finally, we com-

pared the spatial composition of the designs in terms of percent overlap between designs

obtained by maximizing different objectives and by calculating the number of patches and

aggregation index of the designs with the SDMTools R package [106].

4.3 Results

4.3.1 Conservation Objectives and Outcomes

We obtained optimal solutions for all 204 optimization problems. This meant each reserve

quality measure was greatest when the corresponding objective was maximized (Figure 4.2)

; for example, protected realized density was greater for designs maximizing RD than

for those maximizing PC or DWC. Without imposing home-range constraints, the purely

density-driven reserve designs had the lowest protected potential connectivity, whereas the

purely connectivity-driven reserve designs protected the lowest realized density out of solu-

tions obtained using the 3 objectives. Meanwhile, maximizing the DWC objective resulted
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in a compromise between maximizing the number of protected individuals and maximizing

the potential connectivity between the purchased pixels.

The spatial configuration of reserves obtained by different optimization objectives was

dramatically different. Maximizing RD produced reserves with the lowest aggregation in-

dex and the greatest number of patches (Table 4.1, Figure 4.3). Reserves maximizing PC

always had the highest aggregation index and typically had the lowest number of patches

(Table 4.1). Maximizing the DWC objective yielded reserves with intermediate aggregation

index values and a comparable number of patches to the PC-optimal reserves (Table 4.1).

The different objectives also prioritized different parts of the landscape for protection. Re-

serves maximizing RD had relatively little overlap with those maximizing PC, despite the

existence of a positive correlation between high-density and high-connectivity areas within

our simulated dataset. The DWC-optimal reserves overlapped significantly with both RD-

optimal and PC-optimal reserves, partly by protecting nearly all of the pixels important to

both RD and PC.

4.3.2 Individual Resource Requirements

We compared reserves obtained assuming that purchasing the activity center is adequate to

protect an individual with those obtained with the 95% home-range requirements. Adding

home-range constraints created more aggregated reserve designs by requiring the incorpo-

ration of pixels surrounding activity centers into the design. This was especially evident

in reserves maximizing the RD objective: without 95% home-range constraints these de-

signs were patchy because there is nothing inherent in density that naturally provides for

connectivity or aggregates designs. With home-range constraints, the designs had far fewer

patches (Figure 4.3). Moreover, maximizing density through the RD objective and includ-

ing 95% home-range constraints achieved very different designs from combining density

and connectivity by using the DWC objective alone (without home-range requirements).

Imposing home-range constraints on the reserve-design process made it more challeng-
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Figure 4.2: Protected realized density (a and b), protected potential connectivity (c and d)
and protected density-weighted connectivity (e and f) of reserves obtained by maximizing
either realized density (RD), potential connectivity (PC), or density-weighted connectivity
(DWC) with different land-unit budgets. Results are for a simulated landscape with high
habitat fragmentation and a simulated landscape with low habitat fragmentation.
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Figure 4.3: Reserve designs for simulated landscapes with high and low fragmentation
obtained by maximizing the protected realized density (RD) in terms of total number of
protected target species individuals in the reserve (a–d), potential connectivity (PC) of the
reserve (e–h), and density-weighted connectivity (DWC) of the reserve (i–l) with a budget
of 400 land units and either no home-range constraints or 95% home-range constraints.
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ing to achieve reserve designs with high objective value scores, reflecting the increased cost

of protecting each individual’s home range compared to just their activity center. For any

given budget level, the optimal reserve design objective value (for RD, PC and DWC) was

lower with home-range constraints than without them (Figure 4.4, 95% versus activity cen-

ter) because only the density or connectivity from fully-conserved 95% home ranges counts

toward the objective when home-range requirements are considered. When reevaluating the

reserve designs obtained without the home-range constraints in terms of their objective val-

ues when the 95% home range was used as the criterion for protection, designs obtained

without home-range constraints had drastically lower protected RD, PC, and DWC over

only the fully-protected home ranges, particularly at low budget values (Figure 4.4, activ-

ity center reevaluated with 95% versus activity center). The reduction in reserve-quality

measures was substantially greater compared with when home-range area constraints were

incorporated in the optimization (Figure 4.4, activity center reevaluated with 95% versus

95%).

4.4 Conclusions

Given the high economic and political costs associated with designing reserves, it is impor-

tant to test sensible reserve design objectives that are related to population persistence. Our

reserve designs considered both local population density and connectivity objectives with

the goal of designing reserves that protect individuals and provide functional connectivity

for those individuals. Aspects of species behavior such as resource selection and movement

determine how individual animals interact with the surrounding landscape and thus influ-

ence both short-term survival of individuals and long-term persistence of the population.

Our results showed that designing reserves based solely on population density can result

in fragmented, patchy designs with low connectivity between reserve parcels, whereas de-

signs that maximize only functional connectivity may achieve a small protected population

size. Greater amounts of patch isolation can deter long distance dispersal [107, 108] and
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Figure 4.4: Protected realized density (a and b), protected potential connectivity (c and
d), and protected density-weighted connectivity (e and f) of reserves obtained with differ-
ent land-unit budgets by maximizing protected realized density (RD), potential connectiv-
ity (PC), or density weighted-connectivity (DWC) respectively without home-range con-
straints (activity center), with 95% home-range constraints (95%), or without home-range
constraints and reevaluating RD, PC or DWC in terms of only the full home ranges in the
design (activity center reevaluated with 95%).

79



result in decreased population sizes, inbreeding, and genetic drift when both immigration

and emigration are limited [109]. This is of particular concern when areas excluded from

the reserve could undergo land-use changes that could further increase resistance to move-

ment. While resistance to dispersal may differ from resistance to daily home range move-

ments [110], failed dispersal attempts through a dangerous matrix may alter the learned or

evolved behavior of future dispersers, effectively reducing the connectivity or magnifying

the isolation of a reserve network over time [111]. Instead, maximizing an objective that

combines both density and connectivity or preemptively imposing home-range constraints

on the reserve design are 2 ecologically meaningful strategies that yield reserves composed

of spatially compact sets of parcels covering high-density areas in the landscape with high

functional connectivity between them.

Density-weighted connectivity fuses functional connectivity with local population den-

sities in an ecologically meaningful manner, rather than treating density and connectivity

as 2 separate objectives in a reserve-design optimization framework. Using DWC as a

conservation objective ensures that the resulting reserved parcels offer the most utility to

the target population or that the probability of the conserved areas being used by protected

individuals is maximized. Density-weighted connectivity is similar to the “realized connec-

tivity” quantity described by [112], which has been linked to metapopulation persistence.

Although we do not explicitly consider population dynamics or dispersal distances in this

work, the DWC objective could easily be extended to this setting, for instance, by only

counting connectivity between protected sites that are close enough in ecological distance

for dispersal. Additionally, both the connectivity-based objectives in our model naturally

result in compact reserves by maximizing the total probability of species moving between

selected sites or equivalently minimizing the functional distance between selected sites

[103]. When the stronger condition of contiguity is required for, say, a terrestrial species,

the potential connectivity and density-weighted connectivity metrics can be modified to

count only connectivity between sites that have a fully-protected path between them [113,
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114].

Our model allowed us to examine the impact of designing reserves with or without

explicit provisions for individual resource needs. In early reserve-design models, species

occurrence was largely treated as static and the patches or sites under consideration were

much larger than average home ranges [115]. To estimate landscape resistance from indi-

vidual movement using SCR, we used relatively fine-resolution landscapes in which it is

more realistic to model individuals as using multiple sites. Our model can accommodate

varying the area or fraction of the home range to use more or less conservative thresholds

(for example, 95% versus 85% home-range extents) for whether or not an individual is con-

sidered protected by the reserve design. This can be a useful framework for conservation

policy makers tasked with deciding how much habitat to protect in order to support a given

population. Reserves designed with home-range constraints exchange the capacity to cover

a large population for potentially greater certainty that a smaller population will persist.

However, reserves designed without these constraints could overestimate their conserva-

tion value, which could be undesirable for a risk-averse planner. Our approach makes these

trade-offs clear and thus helps decision makers compare a range of alternatives that can be

obtained by varying the home-range-extent requirement. Conceivably, then, the framework

we proposed could be implemented as part of a study focused on an umbrella species.

Our approach could potentially be extended to encompass more varied reserve design

goals. For example, one can address the design of reserves for multiple species using

techniques from multiobjective optimization. Given estimated pixel-wise densities and

pixel-to-pixel use probabilities for several target species within the landscape of interest,

one can assess the objective value (such as DWC) of a given reserve design for each species

separately, as we did for our single hypothetical target species. Optimizing the reserve

design for multiple species simultaneously requires a weighting or ranking of target species

in order of conservation priority. For a relatively small number of target species, one can

construct an optimization objective as a weighted sum of objectives for each species [116].
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With linear objectives and constraints, the same powerful ILP solver tools can be applied

to this modified problem. Alternatively, spatial contiguity [114] could be incorporated in

addition to home-range constraints. Our framework for reserve design provides decision

makers with a tool for obtaining optimal designs that protect ecologically significant space-

use patterns at the individual and landscape scales.
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CHAPTER 5

DEEP LEARNING FOR CAMERA TRAP IMAGE CLASSIFICATION

Motion-activated cameras are gaining popularity as tools for conducting effective, large-

scale automated biodiversity surveys [117]. Camera trap projects generate hundreds of

thousands to millions of images per deployment [118] that are then reviewed by expert ecol-

ogists or a community of volunteers to detect and identify species. This takes a great deal

of human annotation effort; for example, the Snapshot Serengeti project attracted 30,000

volunteers to collectively donate over 14 years of 40 h/week effort to label 5.5 million

images [119].

In order to ease the burden of reviewing these data, machine learning researchers have

proposed to use deep learning-based models to automatically detect and classify species

from camera trap images [120]. However, there are several challenges to achieving this

in practice. Deep neural networks typically require large amounts of labeled data to train,

so significant annotation effort is still necessary. Moreover, image classification models

typically do not generalize well to images taken in new environments [121], even when

there are shared classes between the training and target datasets. This means that at present,

new camera trap projects cannot directly apply pre-trained models to identify species, and

must invest additional labeling effort towards training a custom model.

There are several machine learning subfields focused on developing learning strategies

with smaller amounts of data with supervised information [122]. One such subfield is

transfer learning, which aims to leverage knowledge in the form of examples or model

parameters from a previously learned (source) task where training data was abundant to a

new, related (target) task with limited training data. A common deep transfer learning strat-

egy is to pre-train a model on a large, labeled source dataset to automatically learn useful

feature embeddings for classification. Then, the pre-trained model is used as a feature ex-
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tractor for training a new shallow model for the target task, or fine-tuned by freezing all but

the final few layers of the neural network and retraining with a set of labeled samples from

the target task. Another subfield is semi-supervised learning, which learns from a small

number of labeled samples along with a large number of unlabeled samples. Active learn-

ing selects which samples should be labeled based on how informative they are anticipated

to be for the learner.

In this chapter, we will explore several of these strategies in the context of training

a classifier for identifying species from camera trap images. Since there are initially no

labeled data from a new camera trap deployment and obtaining labels is a labor-intensive

process, our goal is to minimize the number of samples that need labeling to train a

model for the target task to high accuracy.

5.1 Few-Shot Learning via Representation Learning

5.1.1 Problem Statement

We are interested in classifying animals appearing in image crops from a new deployment

of camera traps. These image crops can be thought of as samples from the space of all pos-

sible images drawn from some distribution. Formally, a domain D is a tuple (X , P (X))

composed of a feature space X and a marginal distribution P (X) over a set of instances

X = {xi|xi ∈ X , i = 1, . . . , n}. Hence, camera trap images from one project can be con-

sidered as one image domain. To build a classifier on these images, we must build a func-

tion that maps samples from the domain distribution to species names or classes. A task T

is a tuple (Y , f) composed of a label space Y and a decision function f : X → Y learned

from the sample data X . As is common when working with image domains, we consider

training a convolutional neural network for our task. In other words, we consider f to be

a feed-forward neural network f(x; θ, φ) , h(g(x; θ);φ) consisting of a feature extractor

g(·; θ) that maps an input x to a d-dimensional vector embedding, and a classifier h(·;φ)

that maps g(x; θ) to a label in Y .
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Increasingly, researchers and organizations are making pre-trained neural network mod-

els with a wide variety of architectures available for use by others directly or through trans-

fer learning. This refers to the setting in which information learned from one or more source

domains and corresponding source tasks {(DSi
, TSi

)|i = 1, . . . ,mS} is exploited to im-

prove performance on one or more target tasks in their target domains
{

(DTj , TTj)|j = 1, . . . ,mT

}
.

One of the most common workflows for transfer learning with deep neural networks is to

freeze layers from a model trained on the source domain(s) and task(s), append some new

trainable layers, and train these on the target domain(s) and task(s). In other words, a

feature extractor gS(·; θS) trained on the source task(s) is composed with the transforma-

tion gT (·; θT ) applied by the appended layers to obtain inputs gT (g(Sx; θS); θT ) to the final

prediction function hT (·;φT ).

Our goal is to learn parameters θT and φT (and possibly fine-tune parameters θS) such

that the accuracy of classifier hT (gT (gS(x; θS); θT );φT ) on the target task of classifying

species from a new camera trap project is maximized while the number of labeled samples

from the target domain is minimized.

Related Work

Unsupervised and Self-Supervised Representation Learning: Given the abundance of

unlabeled image data in the real world coupled with the difficulty of obtaining labels for

these data for supervised learning, there has been a great deal of recent work on learning

useful feature representations in a fully unsupervised manner, or alternatively by training

on algorithmically generated pretext tasks with known labels for self-supervision. Our pro-

posed work is more closely related to the former, in particular to recent work on deep clus-

tering models such as [123, 124]. These works suggest that learning patterns in the distri-

bution of inputs can prove useful for downstream predictive tasks. In particular, [123] show

that even representations learned based on clustering inputs can improve performance on

transfer tasks. We explore the potential of Gaussian mixture models, a density estimation
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model commonly used for clustering, for unsupervised and semi-supervised representation

learning.

Semi-Supervised Representation Learning: Semi-supervised learning deals with train-

ing models using a small number of labeled samples combined with relatively abundant

unlabeled samples [125]. It aims to combine supervised learning, in which the goal is to

learn a functional mapping between points X and their corresponding labels Y , and un-

supervised learning, in which data consist of only points X and one aims to learn some

underlying structure in these points. Recent work by [126] illustrates the potential for

semi-supervised training for deep neural networks to learn generalizable representations

from limited data.

5.1.2 Gaussian Mixture Negative Log-Likelihood as a Loss

Gaussian Mixture Model Preliminaries

A Gaussian Mixture Model (GMM) is a probabilistic model for data drawn i.i.d. from

K multivariate Gaussian components. Each data point xi ∈ Rd belongs to one of the K

components, and we represent the component that data point xi belongs to by the latent

variable zi ∈ {1, . . . , K}. The data are assumed to be generated by first sampling zi ∼

Multinomial(π, 1), where π = (π1, . . . , πK) represents the probability of selecting each

component, and then sampling xi|zi = k ∼ N (xi;µk,Σk), where µk ∈ Rd and Σk ∈ Rd×d

are the mean and covariance matrix of component k respectively. The joint probability of
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data point xi and latent variable zi is given by:

p(xi, zi = k) = p(zi = k) · p(xi|zi = k)

= πk · N (xi;µk,Σk)

= πk ·
1

(2π)d/2|Σk|1/2
exp

[
−1

2
(xi − µk)>Σ−1

k (xi − µk)
]

= exp

[
log

{
πk ·

1

(2π)d/2|Σk|1/2
exp

[
−1

2
(xi − µk)>Σ−1

k (xi − µk)
]}]

= exp

[
log πk −

d

2
log(2π)− 1

2
log(|Σk|)−

1

2
(xi − µk)>Σ−1

k (xi − µk)
]

(5.1)

The GMM thus represents a distribution with density over x given by:

p(xi) =
K∑
k=1

p(zi = k) · p(xi|zi = k) (5.2)

and the negative log-likelihood of a single point xi is then:

−log p(xi) = −log
K∑
k=1

p(zi = k) · p(xi|zi = k) (5.3)

= −log
K∑
k=1

πk · N (xi;µk,Σk) (5.4)

Minimizing the GMM Negative Log-Likelihood

Given a neural network, f with feature extractor g(·; θ) that takes as input a minibatch of

N samples {xi|i = 1, . . . , N} and generates a d-dimensional embedding for each input

{g(xi; θ)|i = 1, . . . , N}. We suppose we have a GMM with K components and fixed pa-

rameters µ ∈ RK×d, Σ ∈ RK×d×d, and π ∈ RK . For conciseness, the GMM parameters

are collectively referred to by the symbol φ. We first propose to use the negative log-

likelihood of this GMM as an unsupervised loss for training the neural network. That is,

we will update the parameters θ of the feature extractor such that the log-likelihood of the
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resulting dataset embedding under the given fixed GMM is maximized. The unsupervised

GMM loss over the minibatch of N embedded data points, {z1, . . . , zN}, is therefore:

LGMMNLL = − 1

N

N∑
i=1

log p(g(xi; θ)). (5.5)

We then can update the parameters of the network in a standard way with stochastic

gradient descent and backpropagation. For illustration, this will start by computing the

partial derivative of the loss with respect to an individual embedded point g(xi) (dropping

the dependence on θ in notation for brevity):

∂LGMMNLL

∂g(xi)
= − 1

N

1∑K
k=1 πk · N (g(xi);µk,Σk)

K∑
j=1

πjN (g(xi);µj,Σj) · Σ−1
j (g(xi)− µj)

(5.6)

Note that for a single point xi, there are stationary points when g(xi) = µj for any j.

This highlights a tendency for the training to adapt the embedding in such a way as to

move points closer to the predefined GMM component means. In fact, the embedding with

the lowest negative log-likelihood would collapse all the samples onto the mean of the

component with the largest value of πk
|Σk|1/2

.

If our goal is to learn an embedding such that the density of dataset samples is modeled

well by the given GMM, this behavior is undesirable. This type of degeneracy is a common

problem in unsupervised loss functions. For example, [123] observe similar behavior when

trying to simultaneously learn embedding features and clustering model parameters, and

incorporate algorithmic mechanisms to prevent learning empty clusters and failing to learn

clusters with few samples. To avoid this, we add a regularization term to Equation Equa-

tion 5.5 to encourage the network to embed points such that their resulting membership

of points across GMM components closely matches the distribution defined by the given

mixture weights π = (π1, . . . , πK). For a minibatch of points, we let γ = (γ1, . . . , γK)

where γk =
∑N

i=1
1
N
p(zi = k|g(xi)). The vector γ describes how the points in the batch
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are distributed between the K components. The regularization term is defined based on the

cross entropy between these two discrete probability distributions:

Lreg = H(π,γ)

= −
K∑
k=1

πklogγk
(5.7)

Finally, we can write the unsupervised GMM loss for the minibatch as a weighted sum of

the negative log-likelihood and the regularization term:

L(X) = λ1LGMMNLL + λ2Lreg (5.8)

Alternatively, suppose we have a frozen neural network f with fixed feature extrac-

tor g(·; θ), and are interested in learning GMM parameters φ to fit the dataset embed-

ding produced by the network. Traditionally, these parameters are fit using expectation-

maximization (EM), but it is nevertheless possible to learn the parameters through gradient

descent (Figure 5.1).

∂LGMMNLL

∂µk
=

1

N

N∑
i=1

πk · N (g(xi);µk,Σk)∑K
j=1 πj · N (g(xi);µj,Σj)

Σ−1
k (g(xi)− µk) (5.9)

∂L

∂Σ−1
k

= − 1

2N

N∑
i=1

πk · N (g(xi);µk,Σk)∑K
j=1 πj · N (g(xi);µj,Σj)

·
{

Σ−1
k − Σ−1

k (g(xi)− µk)(g(xi)− µk)>Σ−1
k

}
(5.10)

∂LGMMNLL

∂πk
=

1

N

N∑
i=1

N (g(xi);µk,Σk)∑K
j=1 πj · N (g(xi);µj,Σj)

(5.11)

The learnable parameters corresponding to the GMM are unconstrained. Since π must

be positive and sum to one, we employ the softmax function to transform the unconstrained

parameters corresponding to mixture weights into the realized values. Similarly, the co-

variance matrices must be symmetric and positive definite. We use GMMs with diagonal

covariance matrices only, which are by design symmetric; to ensure positive definiteness,
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Figure 5.1: Predicted component membership and log-liklihood after fitting GMM means,
covariances and mixture weights by gradient descent for a toy dataset.

we take the square of the unconstrained parameters to obtain only positive values for the

diagonal elements of the covariance matrices.

5.1.3 Semi-Supervised Representation Learning with GMM Loss

(a) Before fine-tuning. (b) Fine-tuned on 200 points. (c) Fine-tuned on 2000 points.

(d) Errors before fine-tuning.
(e) Errors after fine-tuning on
200 points.

(f) Errors after fine-tuning on
2000 points.

Figure 5.2: t-SNE projections of embedding showing labeled and unlabeled points before
fine-tuning (a), after fine-tuning with 200 points (b), and after fine-tuning with 2000 points
(c), using cross-entropy loss for 50 epochs. In each embedding, correct (green) versus
incorrect (red) predictions made by a k-nearest neighbor classifier trained on the labeled
points are shown (d-f).

Deep neural networks are prone to overfitting, especially when trained using supervised

learning methods on relatively small amounts of labeled data [126]. This can also occur

when an existing model trained on a large source dataset is adapted to a small target dataset
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[127]. To illustrate, consider fine-tuning a convolutional neural network (ResNet-50) pre-

trained on a large camera trap image database—eMammal [128]—to a much smaller cam-

era trap dataset—Missouri Camera Traps [129]—by freezing most of the network backbone

and training only the weights of a shallow head network. The head is trained using cross-

entropy loss on a small set of labeled samples from the target dataset that are chosen at

random, so that before training the labeled samples are distributed similarly to the unla-

beled points in the head network embedding (Figure 5.2a). After training the network for

50 epochs with 200 labeled points, the labeled points from each class are tightly clustered

in the learned embedding even though the unlabeled points are not distributed in this way.

Using more labeled points to train the network mitigates this effect. Fine-tuning the same

network with 2000 labeled points results in a learned embedding in which the high-density

regions corresponding to clusters of labeled points are also densely populated by unlabeled

points (Figure 5.2c). Importantly, differences in the distribution of labeled and unlabeled

points in the learned embedding can have consequences for performance on the target task.

Classifiers trained on the labeled points in the learned embedding may be prone to making

errors on unlabeled points falling in parts of the learned embedding space where there are

no seen training points (Figure 5.2e), since the unlabeled points are now significantly dif-

ferent from those used to fit the classifier. This motivates us to fine-tune the head such that

it learns an embedding that is discriminative with respect to the classes in the training set

but also ensures that the distribution of the labeled training points remains similar to the

distribution of the unlabeled test points.

Proposed Method

We propose to leverage the Gaussian Mixture Model negative log-likelihood loss described

earlier to limit the degree to which the distribution of the labeled points diverges from that

of the unlabeled points in the embedding representation that is learned while training the

network to separate classes. Given a target density p(g(x; θ)) for the embedding layer de-
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Figure 5.3: The network consists of a feature extractor with learnable parameters θ, a
cross-entropy head with 1 hidden layer with learnable parameters ψ, and a GMM head
with learnable weights φ.

fined by a fixed Gaussian mixture model, we can use Equation Equation 5.8 to maximize

the likelihood of both the labeled and unlabeled data under the GMM. This can be consid-

ered a form of density-based regularization, which has recently been explored as a means

for improving generalization in deep metric learning [130]. At the same time, we employ

supervised learning to train the network to separate classes.

We employ an alternating training procedure involving supervised and semisupervised

training phases. In the supervised training phase, a loss such as cross-entropy is used to

train the network using only the labeled points L for a fixed number of epochs Esemisup.

During this phase, the training procedure is free to update the embedding in order to sep-

arate the classes in the labeled set, even if this update results in the density distribution of

labeled points shifting away from that of the unlabeled points. In the semisupervised train-

ing phase, we readjust the embedding such that the labeled points and the unlabeled points

together maximize the likelihood of a single target Gaussian mixture density. Specifically,

for Lsemisup in Algorithm Algorithm 3, we use the regularized negative log likelihood in

Equation Equation 5.8, which we evaluate with respect to fixed GMM parameters φ, and

minimize by updating the parameters θ of the feature extractor.
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Algorithm 3 Semi-supervised network training procedure
Input ModelM, labeled samples L, unlabeled samples U

1: for e = 1, . . . , E do
2: for e1 = 1, . . . , Esup do
3: TrainM with Lsup(L)

4: for e2 = 1, . . . , Esemisup do
5: TrainM with Lsemisup(L ∪ U)

Experiments

Data: We use data from two camera trap datasets: Missouri Camera Traps [129] and

Caltech Camera Traps [121]. The images are preprocessed by generating crops from high-

confidence bounding boxes from a pre-trained object detector. This processing pipeline

allows us to also use images with multiple species or individuals of the same species; such

images result in multiple bounding boxes and subsequent cropped inputs that we add to our

dataset. Missouri Camera Traps contains 20 classes, while Caltech Camera Traps is filtered

to remove examples annotated as ”unknown” to obtain 13 classes. Both these target datasets

exhibit significant class imbalance.

Table 5.1: Properties of camera trap datasets used as target classification tasks.

Missouri Camera Traps Caltech Camera Traps

Number of Images 24675 244584
Number of Crops 33137 91219
Number of Classes 20 13
Number of Locations Unknown 140

Network Architecture: We use a ResNet-50 architecture pretrained on eMammal [128],

a large annotated dataset of camera trap images. The network is frozen up to the second

block of the 4th layer of ResNet-50, and the remainder of the network is replaced with 3

fully-connected layers with final layer output dimensionality 10. The outputs of the frozen

ResNet backbone are of size 2048x7x7, and are first compressed using average pooling to

produce 2048-dimensional vector inputs for the shallow feedforward network.
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Baseline Methods: Following [131], we use two common, purely supervised methods

for training neural networks to learn helpful embedding representations. The first way is by

training the network to classify the labeled samples with cross-entropy loss. This requires

the addition of a prediction layer to map the learned feature embeddings to class member-

ship probabilities for each class in the target dataset. The second way is by training the

network explicitly to move samples from the same class closer together in the learned em-

bedding space than samples from different classes via metric learning. Triplet loss [132] is

one of the most widely-used metric learning losses, and operates directly on the embedding

features and therefore does not require any further modifications to the network architec-

ture. We also employ a semi-supervised metric learning loss called neighbor embedding

[126] specifically aimed at leveraging unlabeled data to improve the generalization error of

a classifier trained with a small labeled dataset. This method draws on the cluster assump-

tion of semi-supervised learning [125], which states that data points belonging to the same

cluster should belong to the same class, or alternatively that the decision boundaries of a

classifier should pass through low-density parts of the feature space.

Evaluation: For each dataset, we randomly select 200 samples to use as labeled data

and the rest of the samples are treated as unlabeled samples available at training time.

The learned representations are then used to train a k-nearest neighbor classifier (n =

5) using the initial 200 samples. This classifier is used to generate predictions on the

unlabeled samples, which are used to compute the test accuracy Table 5.2. We also evaluate

the normalized mutual information (NMI) of clusters in the learned dataset embeddings,

by fitting a GMM to the dataset embeddings and assigning each point to the cluster with

highest responsibility.
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Table 5.2: Evaluation metrics for fine-tuning with 200 labeled samples.

Missouri Camera Traps Caltech Camera Traps

Method Accuracy NMI Accuracy NMI

Cross-Entropy 0.5516 0.4111 0.4654 0.2612
Triplet 0.5528 0.4244 0.4772 0.2812
Neighbor Embedding 0.5091 0.4027 0.4420 0.2638
Cross-Entropy-GMM 0.5271 0.4303 0.4514 0.2646
Triplet-GMM 0.5702 0.4518 0.4636 0.2760

Table 5.3: Evaluation metrics for fine-tuning with 500 labeled samples.

Missouri Camera Traps Caltech Camera Traps

Method Accuracy NMI Accuracy NMI

Cross-Entropy 0.6503 0.5216 0.5769 0.3529
Triplet 0.6615 0.5193 0.5855 0.3679
Neighbor Embedding 0.6361 0.4964 0.5628 0.3549
Cross-Entropy-GMM 0.6406 0.5045 0.5586 0.3535
Triplet-GMM 0.6567 0.5269 0.5948 0.3701

Results

Our proposed semi-supervised training procedure outperforms the other semi-supervised

embedding training procedure (neighbor embedding) on both of our target camera trap

datasets both in terms of test accuracy and in terms of cluster purity as measured by NMI.

However, the purely supervised baselines achieved the highest test accuracies. Numerous

studies have reported performance degradation from the introduction of unlabelled data in

the training procedure, and it is impossible to determine a priori whether semi-supervised

learning will help or harm task performance[125].

5.2 Few-Shot Learning via Active Learning

Active learning has also been explored as a strategy for improving species classification

from camera trap images, in conjunction with representation learning. Here we build upon

the comparison of active learning query strategies in [131].
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There have been numerous categorizations proposed for active learning query meth-

ods. One distinction that can be made is between exploitation- versus exploration-bases

strategies [133]. A commonly used framework for designing queries is based on uncer-

tainty sampling: here a classifier trained on a set of labeled points can generate predictions

as well as uncertainty scores for the unlabeled points, and query those points with the

highest uncertainty. For example, confidence sampling queries points for which the clas-

sifier’s predictions have low probability. Margin sampling queries points for which the

difference between the most probable and next most probable class is slim, prioritizing de-

cision boundaries between pairs of classes. Entropy sampling prioritizes querying points

for which the classifier does not predict as belonging to any one class more than the oth-

ers. All of these strategies rely exclusively on the classifier’s predictions in order to inform

labeling, or can be thought of as exploiting the classifier and trying to refine its decision

boundaries. However, a major limitation of these approaches is the possibility that the

learner never discovers points for which the classifier is highly confident but still incorrect.

This motivates the use of exploration-based query strategies, in which samples are chosen

based on how representative they are of unlabeled points. The k-center query strategy [134]

is an example of a purely exploration-based approach.

Table 5.4: Categorization of batch active learning query strategies.

Exploitation-based Mixed Exploration-based

Myopic
Confidence - -

Margin - -
Triplet Embedding - -

Batch-Aware - AL2 K-Center

Another aspect that distinguishes the commonly-used uncertainty sampling strategies

mentioned above from the k-center strategy in the context of pool-based batch active learn-

ing is the potential for redundancy in a batch of queried samples. In the uncertainty sam-

pling methods, individual points are ranked in terms of the chosen uncertainty score and
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(a) Missouri Camera Traps. (b) Caltech Camera Traps.

Figure 5.4: Commonly-used active learning query strategies coupled with embedding fine-
tuning with triplet loss.

points are myopically added to construct a batch of queries without attention to the impact

that labeling any one point could have on the uncertainty of the rest of the points in the

batch. For example, it is possible that all of the points in the batch are very similar to one

another, and after labeling just one of the points the uncertainty in the remaining query

points is largely resolved. In contrast, the k-center query strategy is batch-aware in the

sense that the query batch is designed to collectively provide the best coverage over the

remaining unlabeled points.

Experiments

We compare these purely exploration- and exploitation-based query strategies on the same

two camera trap target datasets described earlier (Figure 5.4). Following [131], we also

periodically finetune our embedding network using triplet loss. Among these strategies,

margin uncertainty sampling results in the highest test accuracy across both datasets. Inter-

estingly, confidence uncertainty sampling is a far less effective query strategy. The margin

uncertainty sampling aids the classifier by resolving uncertainty around decision bound-

aries between pairs of classes. These points may additionally aid the construction of hard

triplets during the embedding retraining phase, since around decision boundaries there are

nearby points belonging to different classes.
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(a) Missouri Camera Traps. (b) Caltech Camera Traps.

Figure 5.5: Effect of adapting confidence uncertainty sampling to a batch-aware alternative
(AL2).

Another interesting empirical finding of our analyses is that the purely exploration-

driven k-center query strategy is not the best active learning method out of the set of

commonly-used methods shown here. This is agreement with the findings of [131], where

although k-center was the leading query method after approximately 30,000 queries, in the

range of query budgets we consider here (5000) it was not as effective as margin uncertainty

sampling, but more effective than confidence or random sampling.

In addition to the commonly-used query strategies described so far, we also analyze

the performance of some more sophisticated query methods. The first is AL2 [135], a

batch-aware query strategy that combines elements of exploration- and exploitation-based

sampling. AL2 uses features such as proximity to other points and agreement among neigh-

boring labeled samples to train a regression model for the classifier’s confidence score.

This enables the construction of a query batch that collectively resolves uncertainty about

the rest of the unlabeled points. The performance boost of AL2 relative to confidence sam-

pling shown in Figure 5.5 confirms the hypothesis that the myopic confidence sampling

strategy selects redundant points, and that adapting the query strategy to choose a set of

points can improve the value of information in the queried batch.

Finally, we propose a query strategy aimed at improving classifier performance indi-

rectly via improving the effectiveness of embedding finetuning by triplet loss, which we
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(a) Missouri Camera Traps. (b) Caltech Camera Traps.

Figure 5.6: Comparison of AL2 and triplet embedding against the best-performing baseline
active learning query methods.

refer to as “triplet embedding”. We design a query strategy that aims to select samples that

result in the construction of hard triplets. The classifier is used to assign a pseudolabel of

the most likely class to each unlabeled point. Then, the samples are used to mine hard

triplets, and each unlabeled sample is scored according to the total loss of all mined triplets

in which the sample participates. This is also a myopic, exploitation-based strategy. How-

ever, in contrast to the uncertainty sampling methods discussed earlier, triplet embedding

falls into to a less common family of active learning query strategies based on expected

model change [136].

Figure 5.6 compares the performance of AL2 and triplet embedding to k-center and

margin sampling (random and confidence sampling are the worst performing methods and

are omitted for clarity). Despite its simplicity, margin-based sampling is consistently the

most effective active learning strategy for training a classifier with few labeled samples.

Given that margin sampling is also a myopic strategy, it is possible that it could be further

improved by adapting to the batch active learning setting, similar to the performance gains

of AL2 relative to confidence sampling.
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CHAPTER 6

CONCLUSIONS

In this dissertation we study three sustainability-related application domains as sources

of compelling new computational problems at the junction of large-scale spatiotemporal

modeling and prediction and discrete optimization in networks: 1) limiting the spread of

invasive alien species; 2) improving the climate resilience of critical infrastructure; and

3) protecting ecologically important sites in wildlife reserves. We use spatially explicit

network models to capture the underlying system dynamics of interest in each setting,

and contribute discrete optimization problem formulations for maximizing sustainability

objectives with finite resources.

In all three problem domains, a natural extension of our work on proposing upfront

optimized plans is to instead optimize actions taken over multiple time steps. This brings

significant algorithmic and scalability challenges. For instance, it is unrealistic to expect

that an optimized road fortification plan can be implemented at once, and more likely the

upgrades will be conducted in stages. This generates the alternate optimization problem of

finding the optimal schedule for implementing the plan, requiring novel solutions involving

sequential decision-making. Another practical consideration in settings when actions are

unrolled over time is the potential for the underlying system dynamics to change between

actions. This motivates the need to develop adaptive management approaches or policies

leveraging models such as Markov Decision Processes.

Another important direction for future work has to do with the fact that the optimization

problems in each setting rely on data from predictive models, driving the need to explore

the impacts of errors or uncertainty in the predictions on decision-making. For example, a

decision-maker may wish to take account of a discrete set of predicted scenarios to develop

an optimized plan that has the best outcomes in expectation. Alternatively, one might model
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the system uncertainty by allowing each model parameter to take values within a given

range or interval, and the goal may be to find the plan with the best worst-case outcome,

by drawing on algorithmic design approaches from the field of robust optimization. A

different and increasingly popular direction for improving the performance of optimization

algorithms that use model predictions as inputs is to directly train the predictive model in

such a way that its predictions lead to good decision outcomes. This is a new area of study

known as decision-focused learning [137, 138, 139, 140] and can be especially useful for

guiding the predictive model building stage given the limited data to train models.

A final group of future directions that apply to all the methods developed in this disserta-

tion has to do with facilitating the adoption of these computational techniques by end-users.

There is a growing interest in building trust in artificial intelligence and machine learning

approaches. One straightforward way to build trust in predictive models is to validate

them on more case studies as additional data becomes available. Trust in machine learn-

ing models can also be increased by improving their interpretability and explainability, for

example by analyzing relative feature importances or by using a simpler model to approx-

imate the behavior of a more complicated one. Similar efforts are needed to improve the

explainability of optimization model outputs, which will require require contributions from

optimization researchers, problem domain experts, and human-computer interaction scien-

tists. Finally, in order for these computational advances to truly have real-world impact,

they must also be embedded into tools and interfaces that are accessible to the practitioners

and decision-makers targeted as end users of this technology.
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