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ABSTRACT 

All modes of transportation are vulnerable to disruptions caused by natural disasters and/or 

man-made events (e.g., accidents), which may have temporary or permanent consequences. 

Identifying crucial links where failure could have significant effects is an important component 

of transportation network vulnerability assessments, and the risk of such occurrences cannot be 

underestimated. The ability to recognize critical segments in a transportation network is essential 

for designing resilient networks and improving traffic conditions in scenarios like link failures, 

which can result in partial or full capacity reductions in the system. This study proposes two 

approaches for identifying critical links for both single and multiple link disruptions. New hybrid 

link ranking measures are proposed, and their accuracy is compared with the existing traffic-

based measures. These new ranking measures integrate aspects of traffic equilibrium and 

network topology. The numerical study revealed that three of the proposed measures generate 

valid findings while consuming much less computational power and time than full-scan analysis 

measures. To cover various disruption possibilities other than single link failure, an optimization 

model based on a game theory framework and a heuristic algorithm to solve the mathematical 

formulation is described in the second part of this research. The proposed methodology is able to 

identify critical sets of links under different disruption scenarios including major and minor 

interruptions, non-intelligent and intelligent attackers, and the effect of presenting defender. 

Results were evaluated with both full scan analysis techniques and hybrid ranking measures, and 

the comparison demonstrated that the proposed model and algorithm are reliable at identifying 

critical sets of links for random and specially targeted attacks based on the adversary's link 

selection in both partial and complete link closure scenarios, while significantly reducing 

computational complexity. The findings indicate that identifying critical sets of links is highly 
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dependent on the adversary's inelegancy, the presence of defenders, and the disruption scenario. 

Furthermore, this research indicates that in disruptions of multiple links, there is a complex 

correlation between critical links and simply combining the most critical single links 

significantly underestimates the network's vulnerability.  
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CHAPTER 1 : INTRODUCTION 

Background 

Every society is highly reliant on a variety of critical infrastructures, such as electricity, 

communication networks, water distribution systems, and transportation networks, which are the 

foundations of any country's economic and sustainable development. As these infrastructure 

systems became more complicated and interdependent, their vulnerability has increased as a 

result of technological advancements and improvements in their efficiency (1). By providing the 

means for travel, production logistics, and service delivery in everyday life, a functional and 

efficient transportation infrastructure significantly contributes to economic growth and 

prosperity. Also, a resilient transportation network is critical for rescue and evacuation during 

natural disasters like earthquakes and floods (2). Transportation systems, particularly roadway 

infrastructure, must be functional and resilient to disruptions and disasters in order to provide 

service to people on a daily basis. Additionally, to design infrastructures which can withstand 

such disasters while remaining economically feasible, it is crucial to configure the network in a 

way that sufficient accessibility is maintained when portions of the infrastructure fail.  

Transportation network vulnerability has been extensively studied in recent years and has 

gained even more attention as the number of threats (e.g., climate change, man-made attacks, 

natural disasters, etc.) are increasing. Depending on the type of infrastructure and its 

functionality, vulnerability can be defined differently. In general, vulnerability is defined by two 

components; first is the susceptibility to disruptions, or in other words and according to the 

OXFORD dictionary, “Likely or liable to be influenced or harmed by a certain object,” which is 

a direct feature of the risk. The second component of the vulnerability definition is the degree of 
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performance reduction of the network. The strength and duration of the disruption, as well as the 

readiness of the system to cope with the disruption are the factors that can directly affect the 

performance reduction of the system. 

There are different terminologies close to the vulnerability and identifying them and 

illustrating the relationships and distinctions between them can be extremely beneficial in 

comprehending the concept of vulnerability. The following is a very brief description of these 

concepts, and Figure 1-1 illustrates the boundaries and interactions between these terminologies. 

• Risk is the probability of occurrence of a disruption multiplied by the failure probability 

of the network 

• Reliability is the probability that a network can deliver the standard performance 

• Robustness is the ability of the network for maintaining its originally standard function 

during the disruption 

• Flexibility is the ability to adapt to possible planning changes in the aftermath of 

disruptions.  

• Resilience is the closest concept to vulnerability, and it will be defined as the capability 

of the network for resisting and recovering from the disruption. 

 

Figure 1-1 A schematic of the interactions of vulnerability terminologies. 
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Problem Statement 

The goal of vulnerability and resilience analysis is to evaluate and predict the impact of 

disruptions and identify the important segments in the system. Numerous studies examine 

various techniques to addressing the system's vulnerability and evaluate its components. A 

vulnerability measure value is used to quantify the impact of network disruptions and to assess 

the system's performance. Due to network topological features, the intensity of link usage, or the 

existence of significant destinations, a certain segment of the network may be more important 

than others. In other words, some links are more critical than the others and any damage or in the 

worst-case scenario failure of these links or a group of them may have more severe damage to 

the system and can result, resulting in a significant increase in travel costs. Therefore, identifying 

and ranking the links that have the most significant effects on the overall performance of the 

network disruptions is an important consideration for operators and planners. A single factor 

cannot solely determine the criticality of a link; several factors with various weights determine 

the criticality of a link in different contexts. As a result, given the varying criticality of various 

links and budgetary constraints, strengthening and maintaining transportation network links 

needs to be considered based on a prioritization methodology that incorporates multiple factors 

(3).  

Research Objective 

The primary goal of this research is to present different frameworks for identifying critical 

single links and groups of critical links to assist decision-makers in developing an optimal 

investment strategy that maximizes network resilience to different disruptions. The contribution 

of this research is two folds. First, proposing new link criticality measures and evaluate their 
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accuracy. These measures balance accuracy and computational complexity by combining traffic 

equilibrium and network structure parameters. Second, presenting a methodology based on the 

game theory framework for identifying the most critical set of links in a roadway network under 

minor and major disruptions and evaluate the results. Both presented methodologies are capable 

of being applied to large-scale networks with minimal computational overhead.  

Significance 

Assessing the vulnerability of large-scale roadway networks while taking user behavior into 

account is a computationally intensive process. To propose vulnerability measures, the majority 

of studies either focus exclusively on the topological aspects of the network, which is inaccurate 

for transportation networks, or consider travelers' behavior in all possible scenarios of link 

failure, which requires significant computational power and time which is not always applicable 

to real-world networks. First part of this research proposes a method for considering network 

structure and traffic attributes concurrently without imposing a computational burden on 

planners and decision makers, which can be used as valid ranking measures for rating links in a 

large-scale road network. 

Due to the intricacy and time-consuming nature of the investigation, most current studies on 

roadway vulnerability focus exclusively on single link failure, which does not reveal much about 

the big-picture network vulnerability. In real-world road network circumstances, disruptions 

affect many links. Additionally, the majority of studies have examined only complete disruption 

of the links, which results in an incorrect representation of regular small incidents and everyday 

accidents, such as the closure of many lanes along a path due to car accidents or severe weather. 

The second section of this research proposes an optimization framework that is capable of 



 

5 

 

identifying a crucial set of links in a large roadway network that is subjected to minor and major 

disruptions. Additionally, the presented methodology is capable of evaluating the various 

decision-making budget restrictions involved in improving the network's resilience. 

Dissertation Organization 

The remaining chapters of this dissertation are comprised of two papers. This Introduction is 

the first chapter of the dissertation and discusses the dissertation's primary problem and purpose. 

The remainder of the dissertation is organized as follows. 

Chapter 2: Topological-Based Measures with Flow Attributes to Identify Critical Links in a 

Transportation Network  

This chapter presents new link criticality measures for ranking individual links in roadway 

networks. The presented measures were applied to various case study networks, and the results 

were compared to three previously published vulnerability measures. This chapter includes the 

current literature regarding the various types of ranking measures in vulnerability roadway 

analysis. 

Chapter 3: Identifying Critical Sets of Links in a Roadway Network under Different Disruption 

Scenarios Using the Game Theory Framework 

This chapter introduces an optimization model based on the game theory framework for 

identifying the most critical combination of critical links in a roadway network under various 

disruption scenarios. This was accomplished by defining various attack scenarios and evaluating 

the resulting outcomes using both full scan analysis techniques and hybrid ranking measures on 

the case study network.  This chapter also summarizes the literature of the various approaches in 

vulnerability roadway analysis. 
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Chapter 4 presents the result of implementing proposed methodologies in a real case study 

network to identify the most critical single and multiple critical links in Broward County, 

Florida. 

Chapter 5 is the discussion chapter and summarizes the research approach, lists the main findings 

and conclusions, and provides recommendations for future research. 
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CHAPTER 2 : TOPOLOGICAL-BASED MEASURES WITH 

FLOW ATTRIBUTES TO IDENTIFY CRITICAL LINKS IN A 

TRANSPORTATION NETWORK 

 

An important part of transportation network vulnerability analysis is identifying critical links 

where failure may lead to severe consequences, and the potential of such incidents cannot be 

considered negligible. Existing transportation network vulnerability assessment can be 

categorized as topological, or traffic based. Topological-based assessment identifies the most 

critical components in the network by considering network structure and connectivity. Traffic-

based assessment identifies the most critical components in the network by full-scan analysis and 

takes into consideration effects of link failures to traffic flow assignment. The former approach 

does not consider traffic flow dynamics and fails to capture the non-linearity performance 

function of transport systems while the latter, even though accurate and robust, requires 

significant computational power and time and may not always be feasible for real life size 

networks. The primary objective of this research is to propose new link criticality measures and 

evaluate their accuracy for transportation network vulnerability assessment. These measures 

combine characteristics of traffic equilibrium and network topology to balance accuracy and 

computational complexity. Nine measures are proposed, and their accuracy are compared to 

three existing traffic-based measures using three case study transportation networks from the 

literature. Results indicate that three of the proposed measures show strong correlation to the 

three traffic-based measures while requiring significantly less computational power and time.   
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Abbreviations  

BC Betweenness Centrality 

BC* Flow Weighted Betweenness Centrality 

CCL Common Critical Links 

CSN Chicago Sketch Network 

EMN Eastern Massachusetts Network 

FBC Flow Betweenness Centrality 

FFTT Free Flow Travel Time 

IS Importance Measure 

NRI Network Robustness Index 

NRI* Network Robustness Index, Modified 

SFN Sioux Falls Network 

TFFBC Free Flow Travel Time Betweenness Centrality 

TCBC Congested Travel Time Betweenness Centrality 

TLBC Travel Time Loss Betweenness Centrality 

TFFBC* Flow Weighted Free Flow Travel Time Betweenness Centrality 

TCBC* Flow Weighted Congested Travel Time Betweenness Centrality 

TLBC* Flow Weighted Travel Time Loss Betweenness Centrality 

FBC* Flow Weighted Flow Betweenness Centrality 

UE User Equilibrium 
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Introduction 

Transportation networks form the backbone of economic and sustainable development in a 

society and need to be functional and efficient to provide appropriate services to people during 

their normal daily life (e.g., providing the means for travel, production logistics, and delivery of 

services). These networks should also be robust against disruptions and disasters (2) (e.g., a 

lifeline for emergency services and medical care). Disruptions could be due to a wide variety of 

threats which may originate from inside the road transport systems, such as daily traffic crashes 

or maintenance activities, or could be due to external strains imposed to the system, commonly 

caused by nature (e.g., adverse of weather, earthquake, etc.). 

Transportation network vulnerability studies started after the Tasman Bridge disaster in 

1975, where Lock and Gelling (4) studied the impact of failures or loss of critical components of 

transportation infrastructures. However, while this area was studied in academia for years, it took 

decades for transport modelers to pay attention to this phenomenon. When substantial 

infrastructures were destroyed after the Great Kobe earthquake in 1994, causing more than $150 

billion economic losses, resilience and vulnerability of the transportation infrastructure were 

considered by governments and transportation agencies as interesting and important topics (5). 

Over the last decades, vulnerability emerged as a significant area in transportation planning 

research and received more attention from researchers and planners for two main reasons: first, 

interest in developing the theory behind network vulnerability, and second, applying the new 

methodologies and models to large-scale networks. In the area of transportation systems, 

vulnerability analysis focuses on identifying and ranking infrastructure elements that would have 

the highest effect in case of failure (6). Resilience, on the other hand, reflects the dynamic 

performance of the network after a disruption (7) and is another term with definition and 
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interpretation akin to the term of vulnerability. Resilience encompasses vulnerability and, 

focuses on decision making (operational, tactical, and planning levels for individuals and 

communities) to develop a transportation system that can withstand disruptions, continue to 

operate within an acceptable level of efficiency during and right after a disruption, and return to 

normal operating conditions within the shortest possible time. 

As will be discussed in more detail in the next section of this research, two main types of 

measures (topological and traffic-based) have been developed and presented in the literature to 

evaluate the importance of a link in a transportation network. Topological-based measures do not 

consider traffic flow dynamics and fail to capture the non-linearity performance function on 

transport systems. On the other hand, full-scan analysis (traffic-based measures), where the 

network is evaluated for every possible scenario of link failure, is more accurate and robust, but 

requires significant computational power and time and may not always be applicable to real life 

networks. This research suggests an approach where network structure and traffic attributes are 

jointly considered without the need of a full-scan analysis. The methodology proposed in this 

research extends the use of topological-based measures by incorporating flow characteristics to 

enhance their accuracy and reliability in large scale networks where traffic-based measures are 

expensive to use.  

The remainder of the chapter is as follows: The next section provides a summary of the 

related literature, followed by a section presenting the proposed new measures. The fourth 

section presents and discusses results from a set of numerical experiments using three case study 

networks commonly found in the literature. The last section concludes the chapter, discusses the 

limitations of the proposed measures and future research directions. 
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Literature Review 

An important part of transportation network vulnerability analysis and resilience is the 

identification of critical links where failure may lead to severe consequences for the whole 

network, and where the potential of such incidents cannot be considered negligible (3). 

According to Mattsson et al. (8) vulnerability analysis could be divided into two main groups: 1) 

topological-based analysis, and 2) traffic-based analysis, which based on these approaches, 

numerous measures for identifying critical components in the network have been proposed. 

However, some studies incorporate traffic characteristics into existing topological measures and 

develop hybrid measures for identifying the critical links in transportation network (9). A brief 

discussion of each is provided here in.  

Topological-Based Analysis 

Topological-based analysis considers the network structure and connectivity. It represents 

the transport network in the form of a graph with a set of nodes (vertices) and a set of links 

(edges). It mainly considers two main aspects of the network structure: network efficiency and 

node centrality. This analysis can provide a good understanding of the network structure and its 

connections but fails to account for the behavior of the user. There are several studies that 

evaluate network vulnerability using topological-related factors; however, only a few numbers 

have been published in transportation-focused journals. For example, an accessibility index 

based on distance-only and distance-traffic volume criteria is defined by Sohn (10). Demsar et al. 

(11) studied the urban street network of the Helsinki Metropolitan Area in Finland defining links 

with the high value of betweenness and cut links as more critical ones. By taking into account the 

alternative links, a topological indicator is presented by Knoop et al. (12). In another study, 

degree and betweenness centrality indicators for six real city road networks with simulating 
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attacks with remaining nodes was calculated (13). Table 2-1 summarized the topological based 

measures presented by researchers for assessing the roadway network. 
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Table 2-1 Topological-based Vulnerability Measures 

Ref. 
No. of degraded 

components 
Approach 

Indicator(s) to 

capture consequences 
Method Conclusions 

(14) Network Distance 

Network efficiency 

Global and Local 

efficiency 

 

-Shortest path 

-Weighted and 

unweighted network 

Global efficiency is a measure 

of the directness of the 

connections between all node 

pairs, however, local efficiency 

indicates the average directness 

of the connections between the 

neighbors of a node. 

(10) Single link 
Distance & 

flow 

Accessibility index -Shortest path 

-Distance-traffic 

volume indicated a 

link with heavy 

traffic (efficiency-

oriented) 

 

These two criteria give 

accessibility loss to completely 

different links 

 

 

(15) Nodes Distance 

-Degree distribution 

-Degree correlations 

-Clustering 

coefficient 

-A dual graph is 

presented 

-A comparison 

between primal and 

dual graph 

A complex network approach 

to the urban street networks has 

advantages with compare to 

syntax formalism 

(16) Single link 
generalized 

cost 

Accessibility 

measure 

Analyzing the 

network vulnerability 

in terms of 

topological 

configuration and 

socio-economic 

impacts 

more efficient algorithm for 

applying on large network is 

needed and calculating sets of 

critical links is needed. 

 

 

(11) Single link 
Shorter 

Distance 

-Cut vertices 

measure, 

-Betweenness 

measure, 

clustering 

coefficient measure 

 

-Combining dual 

graph modeling with 

connectivity analysis 

and betweenness and 

clustering coefficient 

-Undirected and 

unweighted network 

Links with the high value of 

betweenness and cut links are 

more critical ones. 

locations have one or more of 

the following three properties: 

• Cut links 

• High betweenness 

• Low clustering 

coefficient 

 

(13) Nodes 
Shorter 

Distance 

-Betweenness 

centrality 

-Degree of 

Distribution 

-undirected graph 

-choose three types of 

road granularities, -

four successive attack 

strategies applied 

Topological structure such as 

betweenness centrality 

distribution is more essential to 

the robustness of a network that 

geographical features of the 

network. 

the robustness pattern was quite 

similar for different cities 

(17) Nodes 
Shorter 

Distance 

Betweenness 

centrality 

Developed an 

algorithm for 

computation of BC 

for real-time 

Prove the existing a significant 

correlation between global 

efficiency and BC. 

Ranking Nodes based on their 

metric 
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Traffic-Based Analysis 

The main disadvantage of topological based analysis is that it ignores the dynamic features 

of a transportation network and analyze a congested as an uncongested network (i.e., they do not 

account for traffic rerouting due to link failure). Topological analysis might be sufficient for 

analyzing some types of networks (e.g., social networks) where a failure of a link may only 

result in a re-route between nodes. Modeling of roadway networks on the other hand, is more 

complex and estimating an equilibrium after a change in the network’s topology is more 

challenging as all traffic equilibrium models try to emulate human behavior. Hence, it may not 

be realistic to only consider the topological aspects of a road network for assessing link 

criticality.  

To address these issues, researchers suggested traffic-based analysis which models the 

network as an abstract network and applies demand and supply analysis. Full-scan analysis is the 

most common approach used in the literature, where links are removed one by one, and a 

performance measure (usually a function of travel time) is calculated for each link removal, and 

the links are ranked based on the changes in value of the selected measure. Such measures 

require a User Equilibrium (UE) to be identified every time a link is removed. The main 

network’s performance measure in most of these studies is based on increases in travel time, 

flow, or a generalized cost function (18–24). These methods provide more accurate results but 

are not applicable to real life large-scale networks. High computational times required from 

estimating multiple UEs and dis-connectivity that might occur during removal of links are the 

biggest issues for applying these methods large-scale transportation network (6).  

In addition, a group of researchers have tried to adopt traffic-based analysis with game-

theory concepts to identify sets of critical links, instead of individual links. Under these methods, 
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networks are part of a game between three players; the designer, attacker, and the users (3,25–

28). Such models suffer from the same drawbacks of high computational and time requirements 

(requiring multiple UE solutions for the users of the network) and have been very difficult to 

implement in real size networks. Table 2-4 summarized the traffic-based measures presented by 

researchers for assessing the roadway network. 
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Table 2-2 Traffic-based Transport Vulnerability Measures 

Ref. 

Single 

/Multiple 

links 

Approach 
Indicator(s) to capture 

consequences 
Method 

(20) Single Generalized 

Cost 

 

Exposure index 

Importance index 

 

weighted cost by travel demand-link importance 

using the shortest path 

The Importance of a link is a function of the 

increase in weighted travel time that occurs when 

that link is disrupted. 

(23) Single Travel Time 

 

Robustness Index 

 

Optimization Based 

System-wide 

re-assignment of traffic when a specific link is 

removed 

examined the relationship 

between volume, capacity and link criticality. 

(29) Single Generalized 

Cost 

 

Accessibility Index 

 

Four Accessibility Index by combining travel 

demand model 

• Network accessibility,  

• Zonal accessibility,  

• O–D accessibility 

• O–D accessibility by each mode 

(30) Single/Mult

i 

Generalized 

Cost 

Accessibility Index Assess system-wide effects 

Based on benefits 

(31) Single Flow efficiency measure for elastic 

or fixed demands 

Optimization Based 

for elastic (no users want to alter his travel 

decision) or fixed demands (cost equity) 

(32) Single Travel Time Robustness Index Rank-ordering critical link based on capacity-

reduction and connectivity 

(33) Single Generalized 

Cost 

Accessibility Index Optimization based-ranking links 

Used Hansen integral index as accessibility index 

(21) Multiple Travel Time Vulnerability index Optimization-Based 

Grid-base full closure for finding the Worst-case 

Scenario 

(12) Single Travel Time Robustness Index Alternate route indicator 

(34) Single Generalized 

Cost 

Accessibility Index Optimization-based (Fuzzy Method) 

Two vulnerability index:  

• based on physical characteristics 

• Operational characteristics 

(6) Single Flow Link Importance Index Ranking links based on local and global 

importance 

(18) Single Generalized 

Cost 

 

Accessibility Index Deprivation cost and logistics cost 

Optimization-based, Find the worst-case scenario 
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Hybrid Analysis 

A few studies have been published trying to incorporate traffic assignment characteristics 

(e.g., flow, travel time, etc.) into existing topological measures (e.g., centrality measures, 

efficiency, etc.) and develop new criteria which could be called hybrid measures. These 

approaches try to reduce computational and time requirements while retaining accuracy in 

ranking the critical links in transportation networks.  

A simulation-based criticality measure called Stress Test Criticality developed to capture the 

effect of day-to-day disruptions (i.e., reduced link capacity instead of removing the link from the 

network) was proposed by Gauthier et al. (35) and considered four different link criticality 

measures based on Betweenness-Centrality i.e., Unweighted BC, Travel-time weighted BC, 

unweighted BC on entry/exit nodes only (BC entries–exits), and Travel-time weighted BC from 

entry to exit nodes only. Results of their study suggested that the adequacy of the proposed 

measures is highly variable. Link Criticality Index proposed by Almotahari and Yazici (9) is 

based on the link marginal cost and utilizing the convex combination solution of the UE 

problem. They compared ranking links using their proposed measure, three existing traffic-based 

measure (20,23,31), and one hybrid measure (35) with UE link flow. While ranking links using 

their proposed index had a very low correlation with the UE link flows (correlation = 0.2), the 

other measures were outperformed better by showing correlations ranged from 0.31 (for the 

hybrid measure) to 0.9 (for the traffic-based measures). Li et al (36), proposed an approach 

which by considering traffic flow betweenness index is able to identify the critical links in large 

scale network. The traffic flow betweenness index is calculated based on traffic flow 

betweenness and rerouted travel demand. The proposed index performed better in identifying 

critical facilities (e.g., bridges) when compared to the Hansen accessibility index. 
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To improve computational efficiency, this research proposes nine new measures making the 

balance between the accuracy of the traffic-based measures and the applicability of the 

topological -based measures for large-scale networks. The proposed measures combine elements 

of topology and traffic characteristics of a roadway network and require significantly less 

computational power and time. To evaluate the accuracy of the results, the proposed measures, 

through a set of numerical experiments, are compared to three traffic-based measures that are 

commonly used as benchmarks in the related literature. Next, the traffic-based measures selected 

to evaluate the proposed measures, the proposed new hybrid measures, and the methods used to 

evaluate their accuracy are discussed. 

 

Methodology 

In this research, nine hybrid measures which are variants of the link Betweenness Centrality 

(BC) measure are proposed and evaluated. Applying of these measures only require the UE 

conditions for the base network (i.e., network condition when all links are operational). BC was 

first introduced by Freeman (37), and it is known as finer-grained measure between other 

centrality measures such as closeness and degree centrality (35), and has been applied to a wide 

range of graph theory problems. For a link, the value of BC expresses the frequency the link falls 

on the shortest paths connecting pairs of nodes (Equation 1). Links with high betweenness 

centrality values represent a bridge-like connector between different parts of a network, a failure 

of which will affect the communication between multiple pairs of nodes through the shortest 

path. 
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𝑩𝑪(𝒂)= ∑
𝝈𝒔𝒕(𝑎)

𝝈𝒔𝒕
𝒔,𝒕  

 

 (Equation 1) 

where 𝜎𝑠𝑡(𝑎) is the shortest path from node s to node t that traverses link a, and 𝜎𝑠𝑡 is the 

number of the shortest path from node s to t.  

According to Equation 1, equal weights are assumed for every edge between every pairs of 

nodes in the network and routes are chosen based on hop counting in shortest path strategy. In 

order to no longer treat links as binary interactions when calculating the shortest paths in a 

network, links can be weighted. Weighting links adds another dimension of heterogeneity to the 

network beyond the topological effects. The weights proposed herein combine elements of 

network connectivity and demand/supply attributes to balance accuracy and computational time 

in identifying critical links in a roadway network. A brief description of all nine proposed hybrid 

measures, applied weights, nomenclature and formulas are provided in Table 2-3. Next, the 

weighted measure categories proposed in this research are presented and discussed.  

Proposed Weighted BC Measures  

An edge-weighted graph is a pair of (G,w), where G=(V,E) is a graph with a set of Vertices 

(V) and a set of Edges (E), and w:E⟶R is a weight function, often referred to as the “cost” of the 

edge. Dijkstra (38) proposed an algorithm for finding the path of least resistance in a weighted 

graph. According to this algorithm, weights of the links represent the cost of transmitting (e.g., 

travel time) the links, therefore, high values indicate the weak or costly links. In this research, to 

examine the impact of distinct traffic attributes on modifying the BC, as a measure that only 

considers the topological aspects of the network, different traffic characteristics were assigned as 

link’s weight in BC calculation. Therefore, the proposed measures can rank the links by 
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considering two fundamental network factors in analyzing their criticality, I) centrality and II) 

traffic characteristics.  

Uncongested Network Weight 

The UE principle assumes that users will always choose the shortest path from their origin to 

their destinations, irrespective of the type of the link (e.g., highway, arterial, collector etc.). To 

capture the UE principle in an uncongested network, Free Flow Travel Time (FFTT) was 

considered in this research as an edge weight when computing the shortest path used in the 

calculations of BC. FFTT can be effective in identifying critical links in uncongested conditions. 

 

Congested Network Weight 

Congested travel times (which are a function of FFTT, link utilization i.e., volume to 

capacity ratios, and class e.g., collector, arterial, etc.) are better indicators of shortest paths under 

congested conditions. In this research, two weights were considered in the BC calculations to 

capture user behavior in congested networks. The first weight was the actual travel time (which 

will be referred to as congested travel time), calculated using the Bureau of Public Roads (BPR) 

function (39). The second weight was the difference of actual travel time and free flow travel 

time of a link can be referred as travel time loss of a link.  

Medium Congested Network Weight 

To capture the importance of a link under medium congestion conditions, and based on how 

Dijkstra algorithm (38) treats the edge’s weights in the shortest path calculation, a flow-based 

decay function weight is proposed in Equation 2. 

𝑤𝑎 = 𝐹𝑚𝑎𝑥(1 − 𝑟)𝐹𝑎  (Equation 2) 
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where 𝐹𝑚𝑎𝑥 is the maximum flow over all the links in the network, r is the decay rate set 

equal to 0.01 through experimentation discussed in the next section, and Fa is the flow on link a.  

Social Efficiency 

Based on the social efficiency perspective, roads with more demand serve more people and 

thus generate higher social and economic benefits, hence, need to be considered more significant. 

To account for social efficiency, four additional measures were introduced. These measures are 

based on the product of the weighted BC (uncongested, congested demand, and social efficiency 

weights) and link’s flow. In Table 2-3, these measures are marked with a star sign. 
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Table 2-3 Proposed Hybrid Measures 

Hybrid Measure’s 

Name and 

Abbreviation 

Link Weight for BC 

Estimation 
Formulation Description 

Free Flow Travel 

Time BC (TFFBC) 

Free Flow Travel Time 

(𝑇𝑎
FF) 

 

𝑇𝐹𝐹𝐵𝐶𝑎 = 𝑤𝑎𝐵𝐶𝑎 

 

𝑤𝑎 = 𝑇𝑎
𝐹𝐹  

 

BCa=Betweenness Centrality of 

link a 

𝑇𝑎
FF=

𝐿𝑎

𝐹𝐹𝑆𝑎
 

FFSa=Free Flow Speed of link a 

La=Length of link a 

Congested Travel 

Time BC (TCBC) 

Congested Travel Time 

(𝑇𝑎
𝐶) 

 

𝑇𝐶𝐵𝐶𝑎 = 𝑤𝑎𝐵𝐶𝑎 

 

𝑤𝑎 = 𝑇𝑎
𝐶 

 

𝑇𝑎
𝐶 = 𝑇𝑎

𝐹𝐹 [1 + 𝛼(
𝐹𝑎

𝐶𝑎

)𝛽] 

𝐹𝑎=Flow of link a 

𝐶𝑎=Capacity of link a 

α & β =Model parameters 

Travel Time Loss 

BC (TLBC) 

Travel Time Loss (𝑇𝑎
𝐿) 

 

 

𝑇𝐿𝐵𝐶𝑎 = 𝑤𝑎𝐵𝐶𝑎 

 

𝑤𝑎 = 𝑇𝑎
𝐿 

 

𝑇𝑎
𝐿=𝑇𝑎

𝐶 − 𝑇𝑎
FF 

𝑇𝑎
𝐶= Travel Time of link a 

𝑇𝑎
FF=Free Flow Travel Time of 

link a 

Flow BC (FBC) Flow as a decay function  

 

𝐹𝐵𝐶𝑎 = 𝑤𝑎𝐵𝐶𝑎 

 

𝑤𝑎 = 𝐹𝑚𝑎𝑥(1 − 0.01)𝐹𝑎  

 

𝐹𝑚𝑎𝑥 = Maximum flow value in 

the network 

Flow Weighted BC 

(BC*) 
Flow (𝐹𝑎) 𝐵𝐶∗

𝑎 = 𝐹𝑎 ∗ 𝐵𝐶𝑎 
BCa = Betweenness Centrality of 

link a 

Flow Weighted 

Free Flow Travel 

Time BC (TFFBC*) 

𝐹𝑎 and 𝑇𝑎
FF 𝑇𝐹𝐹𝐵𝐶∗

𝑎
= 𝐹𝑎 ∗ 𝑇𝐹𝐹𝐵𝐶𝑎  

TFFBCa = Free Flow Travel Time 

BC of link a 

Flow Weighted 

Congested Travel 

Time BC (TCBC*) 

𝐹𝑎 and 𝑇𝑎
C 𝑇𝐶𝐵𝐶∗

𝑎
= 𝐹𝑎 ∗ 𝑇𝐶𝐵𝐶𝑎 

TCBCa = Congested Travel time 

BC of link a 

Flow weighted 

Travel Time Loss 

BC (TLBC*) 
𝐹𝑎 and 𝑇𝑎

L 𝑇𝐿𝐵𝐶∗
𝑎

= 𝐹𝑎 ∗ 𝑇𝐿𝐵𝐶𝑎  TCBCa = Travel Time Loss BC of 

link a 

Flow weighted 

Flow BC (FBC*) 
𝐹𝑎 and 𝐹𝑚𝑎𝑥(1 − 0.01)𝐹𝑎 𝐹𝐵𝐶∗

𝑎 = 𝐹𝑎 ∗ 𝐹𝐵𝐶𝑎 FBCa = Flow BC of link a 
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Benchmark Measures 

To evaluate the proposed measures, we compare their performance to three existing traffic-

based link ranking measures: the Network Robustness Index (NRI) (23), the Importance Measure 

(IS) (20), and the Network Robustness Index Modified (NRI*) (24). All these three measures use 

the full scan analysis methodology for ranking links where links are removed one by one, and a 

performance measure (usually a function of travel time) is calculated in each step, and the links 

are ranked based on the changes in value of the selected measure. Most of the published research 

proposing new vulnerability measures have used at least one of these three measures as 

benchmarks (9,36,40) as they are extremely accurate, albeit time consuming and not applicable 

for full-scan analysis on large-scale networks. It is worth mentioning that if a link’s removal 

results in a disconnected network, such a link is automatically categorized as highly critical 

(although in large-scale transportation networks removal of a single link is highly unlikely to 

lead to a disconnected network, since multiple paths exist between each origin-destination pair). 

A brief description of each traffic-based link ranking measure is presented next. The formulas 

and notations for each measure are also provided in Table 2-4. 
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Table 2-4 Traffic-Based Measures from The Literature 

Measure Reference Formulation Description 

NRI (23) 𝑁𝑅𝐼𝑎 = 𝐶𝑎 − 𝐶0 

𝐶0: Network travel time when all links are 

present in the network 

𝐶𝑎: Network travel time when link a is removed 

from network 

IS (20) 𝐼𝑠𝑎 =
∑ ∑ 𝑥𝑖𝑗𝑗≠𝑖𝑖 (𝐶𝑖𝑗

𝑎 − 𝐶𝑖𝑗
0 )

∑ ∑ 𝑥𝑖𝑗𝑗≠𝑖𝑖

 

𝑥𝑖𝑗: Travel demand between origin i and 

destination j 

𝐶𝑖𝑗
0 : Travel time from origin i to destination j 

when all links are present in the network 

𝐶𝑖𝑗
𝑎: Travel time from origin i to destination j 

when link a is removed from network 

NRI* (24) 

 

𝑁𝑅𝐼𝑎
∗ = ∑ 𝑡𝑖

𝑎𝑥𝑖
𝑎 − ∑ 𝑡𝑖 𝑥𝑖 

 

 

𝑥𝑖
𝑎: Travel demand on link i when link a is 

removed and network is re-routed 

𝑡𝑖
𝑎 : Travel time on link i when link a is removed 

from the network 

𝑥𝑖: Travel demand on link i when all links are 

present in the network 

𝑡𝑖: Travel time on link i when all links are 

present in the network 

NRI: Network Robustness Index, IS: Link Importance, NRI*: Modified Network Robustness Index 

 

 

Network Robustness Index (NRI) presented by Scott et al. (23) could be considered as the 

first traffic-link based measure for analyzing the criticality of the road network. NRI was initially 

presented as an alternative for link-based volume/capacity ratio which is a local measure for 

identifying critical links in the system. NRI for a link was defined as the difference in total travel 

of the network between the base case when all links are present in the network and in a case 

when a specific link is removed from the network.  

The exposure-importance method was developed for identifying the link importance index 

as a measure for finding critical links by Jenelius et al. (20). The Berdica’s definition of 

vulnerability was utilized based on loss of serviceability in the system in this method (41). Link 

importance and site exposure measures were derived based on the increase in the generalized 

cost of travel in degraded networks considering social efficiency by weighting the travel cost by 

travel demand.  
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As mentioned earlier, the NRI index is the change in total travel time resulting from re-

assignment of traffic when a specific link is removed, hence, it is a scaled index and cannot be 

used to compare the networks. The Network Trip Robustness index was proposed in order to 

compare the networks (24). Network Trip Robustness index is calculated by dividing the 

summation of a modified NRI (NRI*) value across all individual links by the total trip demand. 

The Modified NRI is the difference between sum of the product of each link’s travel time and the 

flow across it when that link is removed and the base case scenario.  

 

Hybrid Measures Evaluation Metric 

Spearman’s Rank Correlation between the traffic-based and hybrid measures is used to 

evaluate the reliability and sensitivity of the proposed measures in identifying the critical links of 

a roadway network. Spearman’s rank correlation coefficient (rs) (42) is a statistical measure for 

assessing the strength of a monotonic relationship (linear or not) between the elements of two 

sets. Let X and Y be two sets of link rankings based on two different measures. Both sets have the 

same cardinality n. Let xi and yi be the rank of link i. The Spearman’s rank correlation coefficient 

(rs) between the two sets X and Y is calculated using Equation 3:  

𝑟𝑠 = 1 −
6 ∑ (𝑥𝑖 − 𝑦𝑖)

2
𝑖

𝑛(𝑛2 − 1)
 

 

(Equation 3) 

The value of 𝑟𝑠 lies between -1 and +1, with -1 indicating a perfect negative and +1 

indicating a perfect positive association of ranks. A positive correlation coefficient expresses a 

positive relationship between two elements of sets (as rank of one element in one set increase, 

rank of the corresponding element in the other set also increases) while a negative value of 
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𝑟𝑠 indicates a negative relationship between two sets (as rank of the element in one set increase, 

rank of the corresponding element in the other set decrease) and a zero value for 𝑟𝑠 means there 

is no correlation between the two sets. The aim of the evaluation is to find the perfect match with 

the benchmarks, so as much as results illustrate the higher value of 𝑟𝑠 between presented and 

benchmark criticality measures, they have more monotonic relationship together. Since the 

correlation between the two sets of data depends on the size of the data set, there is no absolute 

description for interpretation of 𝑟𝑠. To make it more clear for interpretation, the strength of the 

correlation could be categorized using the guidelines presented in Table 2-5 for the value of 𝑟𝑠. 

 

Table 2-5 Interpretation of Spearman’s Rank Correlation Coefficient (rs) 

Range of 𝒓𝒔 Strength of the Correlation (positive/negative) 

−0.5 ≤ 𝑟𝑠 ≤ 0.5 Weak  

0.5 < 𝑟𝑠 ≤ 0.7 , −0.7 ≤ 𝑟𝑠 < −0.5 Moderate/Strong  

0.7 < 𝑟𝑠 ≤ 1, −1 ≤ 𝑟𝑠 < −0.7 Strong/Very strong 
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Numerical Experiments 

In this section results from numerical experiments used to perform the analysis to evaluate 

the proposed hybrid measures for three case study networks are presented and discussed. Figure 

2-1 shows a flowchart of the steps taken to perform the analysis. 

 

 

 
Figure 2-1 Numerical experiments steps 

 

 

Case Study Networks 

To evaluate the proposed hybrid measures, three case study networks commonly found in 

the literature were used (Sioux Falls-small size, Eastern Massachusetts-medium size, Chicago 

Sketch-large size). Table 2-6 provides the basic information of each network while Figure 2-2 

provides schematics of the networks. Data for the networks was obtained from (43).  

 

Table 2-6 Selected Networks for Evaluating the Hybrid Measures with Traffic-Base Measures 

Network No. of Nodes No. of Links No. of Zones No. of UE Paths 

Sioux Falls Network (SFN) 24 76 24 757 

Eastern Massachusetts Network (EMN) 74 258 74 1196 

Chicago Sketch Network (CSN) 933 2950 387 215,767 



 

28 

 

 
 

 

Figure 2-2 Case study networks: (a) Sioux Falls, (b) Eastern Massachusetts, and (c) Chicago 

Sketch 

 

Spearman’s Rank Correlation Results: Traffic-Based with Hybrid Measures  

For each of the three-case study networks, the Spearman’s rank correlation coefficient (rs) 

values between the traffic-based and hybrid measures over all the links (excluding centroid 

connectors) were calculated. Results are reported in Table 2-7 and indicate that BC shows a 

weak correlation with all three traffic-based measures and degrades with network size, especially 

when compared to most of the proposed hybrid measures. For example, when the graph is 

weighted by the link’s travel time (TCBC), a much higher correlation is obtained with all traffic-

based measures (rs of about 0.70 for SFN). Results shown in Table 2-7 reveal that four of the 

hybrid measures (i.e., TCBC, BC*, TFFBC*, and TCBC*) show promise and exhibit moderate to 

strong correlation (i.e., 𝑟𝑠 ∈ [(−1, −0.5) ∪ (0.5,1)]) with at least two out of the three traffic-

based measures. Among these four measures, TCBC does not perform well for the largest 

network (CSN) while the other three (BC*, TFFBC*, TCBC*), that consider social efficiency, 

exhibit strong correlations with the IS and NRI* as the network size increase.  
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Table 2-7 Spearman’s Rank Correlation: Traffic-Based with Hybrid Measures 

 

Common Critical Links (CCL): Traffic-Based with Hybrid Measures 

In addition to the Spearman’s coefficient, further analysis was performed to estimate 

common critical links identified by both traffic-based and hybrid measures. For this analysis, 

links from each network were ranked based on the value of the traffic-based and hybrid measure 

and then were split into four sets (G1 through G4) with each set containing 25% of the links. For 

example, for the Sioux Fall network sets G1, G2, and G3 contained the first, second and third 20 

most important links while subset G4 all the remaining links. Next, the percentage of CCL 

within each set between the traffic-based and hybrid measures were calculated, and results are 

reported in Figure 2-3. For example, for the SFN results in Figure 2-3 show that 60% of the first 

20 critical links (i.e., set G1) as identified by BC are the same to the ones identified by NRI.   

As part of the analysis, average percentages of CCL over all four sets were estimated for 

each of three case study networks. Average percentages were calculated by considering equal 

and unequal weights for the CCL in each set. For the unequal weight case percentages of CCL in 

 

Hybrid 

Measures 

Traffic-Based Measures 

NRI IS NRI* 

SFN EMN CSN SFN EMN CSN SFN EMN CSN 

BC 0.29 -0.08 0.04 0.42 0.03 -0.01 0.33 -0.06 -0.01 

TFFBC 0.36 0.60 0.20 0.28 0.51 0.26 0.35 0.59 0.26 

TCBC 0.73 0.58 0.22 0.74 0.54 0.29 0.68 0.60 0.29 

TLBC 0.40 0.53 0.08 0.44 0.32 0.01 0.35 0.54 0.01 

FBC 0.76 0.42 0.19 0.78 0.40 0.40 0.76 0.41 0.40 

BC* 0.73 0.73 0.23 0.75 0.62 0.71 0.78 0.77 0.71 

TFFBC* 0.69 0.70 0.27 0.57 0.56 0.64 0.70 0.72 0.64 

TCBC* 0.87 0.70 0.28 0.82 0.58 0.69 0.84 0.75 0.69 

TLBC* 0.51 0.58 0.15 0.51 0.36 0.23 0.48 0.61 0.23 

FBC* 0.81 0.53 0.21 0.79 0.45 0.48 0.81 0.54 0.48 
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the first, second, and third subset were considered as four, three, and two times more important 

than the links in the last subset (G4), respectively (i.e., weights of 0.4, 0.3, 0.2 and 0.1 for subsets 

G1, G2, G3 and G4 were selected). Results are reported in Figure 2-4 where we observe that 

BC*, TFFBC*, and TCBC* provide the highest average percentage of CCL with the traffic-based 

measures across all three networks. These results are in line with the Spearman’s coefficient 

analysis. In addition, it is noteworthy that unlike traffic-based measures, only one UE calculation 

is required to produce hybrid measures, while multiple UE are needed in the calculation of the 

traffic-based measures. 
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Figure 2-3 Common critical links: traffic-based and hybrid measures 
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Figure 2-4 Common critical links Averages: traffic-based and hybrid measures 

 

Spearman’s Coefficient Evaluation 

To evaluate the accuracy of the Spearman’s coefficient, the average CCL percentages 

(reported in Figure 2-4) were regressed against the Spearman’s coefficient values (shown in 

Table 2-7) and results are presented in Figure 2-5 (i.e., rs against average CCL, linear fit, 95% 

prediction interval, and adjusted R2 value). High adjusted R2 values and low 95% intervals for 

the medium and large size case study networks (i.e., EMN and CSN) and low adjusted R2 values 

and high 95% intervals for the SFN (i.e., small size network) can be observed, which was 

expected due to the small number of links that increases the weight of the outliers. These results 

showcase a strong correlation between CCL and the Spearman’s Rank correlation coefficient 

(between traffic-based and hybrid measures), supporting the use of the latter, especially for 

medium to large networks where they are mostly needed. 
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Figure 2-5 Linear fit of spearman’s correlation against common critical link percentage with 

95% prediction interval 
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Computational Time Differences: Hybrid vs. Traffic-Based 

For the numerical experiments, MATLAB R2016a on a quad-core 3.5GHz CPU desktop 

computer with 16GB of memory was used. The traffic assignment algorithm used was the Slope-

Based Path Shift Propensity Algorithm (SPSA) (44). The computational time for estimating the 

hybrid and traffic-based measures is shown in Table 2-8. Since each of the traffic-based 

measures considered all possible single link failures, their estimation requires multiple UE 

network estimations (as many as the number of network links plus one traffic assignment for the 

base case of the complete network). Hence, the computational time as compared to the hybrid 

measures (which only require the base network UE conditions) is significantly higher, especially 

for the large Chicago network.  

 

Table 2-8 Computational Times 
  

Traffic-Based Measures 

Case Study Network Hybrid Measures NRI NRI* IS 

Sioux Falls 

<1 minute 

< 2 minutes 

Eastern-Massachusetts <5 minutes 

Chicago-Sketch ~ 8 Hours 73 hours 

 

Conclusions  

In this chapter, new link criticality measures for transportation network vulnerability 

assessment were proposed and their accuracy was evaluated. These measures combine 

characteristics of traffic equilibrium and network topology to balance accuracy and 

computational complexity. These measures assign traffic-based weights to existing topological 

link criticality measures and require only running one traffic assignment in their calculation. 

Numerical experiments using three case study networks, commonly used in the literature as 
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benchmark networks, indicated that three of the proposed nine measures provide comparable 

results to a full-scan analysis. These three measures share the common factor of considering the 

direct effect of social efficiency, where if a link has more demand and is simultaneously more 

central, should be more critical to whole network. In addition to the social efficiency effect, the 

shortest path travel time (uncongested and congested situations) effect was also important and 

captured by the TFFBC* and TCBC* measures. Based on TFFBC* and TCBC*, links which are 

more central as compared to the others, and simultaneously has higher demand and more travel 

time require to commute on them (for both congested and non-congested situations), might be 

identified as the important links.  

These three recommended measures showed promising results which can be utilized by 

planners and decision makers as reliable ranking measures for ranking links in large-scale road 

network, where due to computational burden applying the full-scan analysis is infeasible. Also, 

to support logistics planning analysis, they could be used to identify critical truck paths within a 

short space of time simply by replacing the passenger demand with freight demand (e.g., truck 

units or tonnage) in the estimation. 

The proposed results are subjected to some limitations. The proposed method relied on a 

static user equilibrium which cannot capture the effects of link interaction and uncertainty of 

demand in the traffic assignment. Future research could focus on implementing dynamic traffic 

assignment and/or variable demand. Also, these proposed measures are not able to rank critical 

sets of links. Future research could focus on utilizing these measures in existing game theory-

based models (i.e., hierarchical models) to reduce the computational efforts of user behavior 

modeling. Finally, research can focus on proposing new hybrid measures (by either modifying 

existing topological measures or combining the hybrid ones proposed in this research).  
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CHAPTER 3 : IDENTIFYING CRITICAL SETS OF LINKS IN A 

ROADWAY NETWORK UNDER DIFFERENT DISRUPTION 

SCENARIOS USING THE GAME THEORY FRAMEWORK 

 

All modes of transportation are vulnerable to disruptions caused by natural disasters and/or 

man-made events (e.g., accidents), which may have temporary or permanent consequences. The 

ability to detect critical components in a transportation network is crucial for designing resilient 

networks and improving traffic conditions under partial or complete road disruptions. This 

research introduces an optimization model based on the game theory framework for identifying 

the most critical combination of critical links in a roadway network by considering both day-to-

day and major disruptions. In this regard, various attack scenarios were defined, and the achieved 

outcomes were evaluated with both full scan analysis techniques and hybrid ranking measure on 

the Chicago-sketch network as the case study network. The findings indicate that identifying 

critical sets of links is highly dependent on the adversary's inelegancy, the presence of defenders, 

the attack's selection of links, and the disruption scenario. Additionally, this research indicates 

that in disruptions of multiple links, simply combining the most critical single links significantly 

underestimates the network's vulnerability and there is a complex correlation between critical 

links. The results demonstrate that the proposed model and algorithm is extremely reliable at 

identifying critical sets of links for random and specially targeted attacks based on the 

adversary's link selection in both partial and complete link closure scenarios, while significantly 

reducing computational complexity.  
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Introduction 

Transportation networks serve as vital conduits for commodities and personal travel and are 

integral part of any society's complex freight and urban systems. Trucks are critical in inter- and 

intra-country freight transportation, particularly between neighboring countries. Trucks 

transported more than 62.9 percent of all transporter freight worth $772 billion in 2019 (45). 

Roads, which accounted for 87 and 91 percent of daily and work trips, respectively, are 

considered as the primary mode of personal travel in the United States in 2017 (46). As a result, 

robust transportation networks, particularly roadway systems, have been regarded as a 

requirement for economic growth and a high standard of living (47). Along with improvements 

in the transportation network's efficiency and design to operate at its near-maximum capacity 

over the last few decades, the vulnerability and sensitivity of this infrastructure system to various 

types of disruption has increased. 

The fundamental objective of vulnerability analysis can be subdivided into numerous 

sub-objectives. One critical component of this analysis is identifying critical components of the 

network where certain incidents may have severe consequences (5). When it comes to road 

management, decision makers frequently employ quantitative methods to assess this 

infrastructure. Vulnerability analysis and identifying critical components of the road network 

may assist road authorities and agencies in identifying vulnerable segments of the road network 

prior to disruption. This knowledge is beneficial at both planning and operating stages, as it 

assists to focus on efforts to improve and maintain these critical connections. 

The remainder of the chapter is as follows: The next section summarizes the relevant 

literature, followed by a section explaining the proposed methodology. The fourth section 

presents and discusses the results of a series of numerical experiments using a well-known case 
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study network. The final section of the chapter summarizes the findings and discusses the 

limitations of the proposed methodology as well as future research directions. 

Literature Review 

The general research methodology used by vulnerability researchers consists primarily of 

three key stages including mode of transport, definition of a disruption scenario, and analysis 

method. These stages are briefly explained here:  

Mode of Transport 

Each mode of transportation has a distinct research methodology and vulnerability 

characteristics. For instance, an approach developed and designed for a road network cannot be 

applied directly to a subway system, which is a capacity-constrained and frequency-based system 

with more significant interrelationships of tracks and stations than a road network (48).  

Definition of a Disruption Scenario 

A disruption is defined by a number of parameters, including the degree of degradation (full 

or partial closure), the number of components degraded (single or multiple segments), and the 

source of the disruption (internal or external threats). Internal threats include incidents caused by 

users or maintenance services, while external threats include natural disasters such as 

earthquakes, floods, adverse weather, and hurricanes. A disruption scenario is defined as 

simulating a disruption with these specific parameters on a particular link (Burgholzer et al. 

2013). 
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Analysis Method 

There are two broad categories of vulnerability analysis methods: I) vulnerability measures 

and II) optimization models. 

I) Vulnerability Measures 

Measuring the vulnerability of a network is highly dependent on the type of performance 

function defined for the transport system (49). Smooth traffic mobility, travel expenses (such as 

travel time, or a combination of different costs) are essential performance measures for roadway 

networks. Numerous research has established a variety of measures for assessing the 

vulnerability of systems and evaluating the network's components (6,20,23,30,35). The value of 

the vulnerability measure will be utilized to quantifying the impact of the disruption on the 

network and evaluating the system performance. Mattsson and Jenelius (8) classified 

vulnerability measures into two distinct categories; topological-based and traffic-based.  

In topological-based analysis, the graph’s topological characteristics such as the degree of 

distribution, cluster, centrality measures, and efficiency are used to rank the nodes and links in 

the network (10,11,13,16,17). This kind of analysis only considers the structure of the network 

without considering the user’s behavior in the calculation procedure.  

The most often used approach in the literature is full-scan analysis, which considers the 

system's performance in both normal and abnormal conditions (6,18,20,23,29,32). This approach 

simulates removing each link iteratively and measure its impact on the network performance 

(travel time, generalized cost, flow, etc.) and the links are ranked according to their impact on the 

values of the investigated measures. According to (8,9), the ranking measures proposed using the 

full-scan analysis are referred to as traffic-based vulnerability measures. While traffic-based 

measures are capable of identifying critical links in a network in reliable way (36), their 
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calculation requires undertaking traffic assignment under all possible disruption scenarios, 

resulting in computationally infeasible measures for use on large-scale networks. 

A few studies have been published trying to incorporate traffic assignment characteristics 

(e.g., flow, travel time, etc.) into existing topological measures (e.g., centrality measures, 

efficiency, etc.) and developing new criteria called hybrid measures (9,35,50). This approach 

aims to reduce computational and time requirements while retaining accuracy in ranking the 

critical links in transportation networks.  

II) Optimization Models  

According to the comprehensive research performed by Khademi et al. (51), most of the 

studies on transportation network vulnerability/resilience include only a single link failure. 

However, in real-world road network situations, multiple links are typically affected during 

disruptions, and single link failures can cause misleading when multiple correlated (cascading) 

and uncorrelated disruptions occur, as they do not capture the network-wise effects of such a 

large disruption event (40). The significant computational burden is the main issue in systematic 

nodes/links removal in full-scan vulnerability analysis of a real large-scale network which may 

only be possible/realistic for single-link/node removal (9,50). Mathematical optimization models 

are the best approaches for vulnerability analysis of large-size networks in the face of complex 

disruption scenarios (52). This research proposes an optimization model in a hierarchical game 

theory platform which is adopted with both topological-based and traffic-based analysis.  

There are two main components considered by game theory models which are discussed in 

this section: the players and the formulation. The players are the different viewpoints of the game 

each with their own objective which describe as follows. The formulation is how the game is 

arranged which includes who goes first, how many moves can that player make, etc. 
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Players of the Game 

In transportation networks, there are multiple different viewpoints to consider that 

collectively determine the performance of the networks. These viewpoints fall into three 

different categories: decision makers (defender), threats (adversary), and network users. This part 

of the review is focused on the definition, consideration, and interactions of these three 

viewpoints. 

1. Decision Makers 

Decision makers are responsible for the maintenance, expansion, protection, and operation 

of a transportation network. It is also the responsibility of the decision maker to optimize for the 

benefit of the network users. This translates into the decision maker pursuing the global good by 

considering the benefits and detriments to all users simultaneously. Also, decision makers have a 

large constraint placed upon them in the form of a budget. Budgets limit the number and 

magnitude of the actions that a decision maker can make. In reference to a transportation 

network, the actions available to a decision maker include the following: construct a new link, 

perform maintenance on a link, and expand a link. These actions focus on the building blocks of 

networks, links, thus the complexity of the problem is dependent upon the number of links that 

compose the network. 

2. Intentional or Unintentional Threats 

Adversary to a transportation network can be considered as anything that will negatively 

impact performance. The two categories, intentional and unintentional, differ in those intentional 

threats select their impact while unintentional threats are random or must follow certain rules. 

For example, a terrorist can carefully plan an attack on a specific link of a network while a flood 

can only affect links that are within the flood plain during periods of heavy rain. This example 
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highlights those intentional threats are intelligent and can carefully choose actions for the 

optimal or largest impact on the network.  

Intentional Threats 

Intentional threats, listed in Table 3-1 are deliberate attacks on a network with a clear goal of 

disrupting the network. Unlike unintentional threats, intentional threats are intelligent and 

attempt to exploit known vulnerabilities. Construction on roadways falls into this category 

because it is an intentional intelligent action that can temporarily lower performance on a 

network. This also creates a paradox where in order to protect certain infrastructure against 

vulnerability, construction must create a temporary vulnerability. 

Transportation networks are a common target of attacks due to being economic pipelines 

that are crucial to the movement of people, goods, and services from one place to another. The 

damage or destruction of transportation infrastructure can have wide-spread detrimental effects, 

thus making a very desirable target for an attack. 

Table 3-1 List of Intentional Threats 

Threat Description 

Terrorist Attack (53,54) A terrorist attack is a very focused and deliberate 

attack to damage or destroy a particular infrastructure 

Construction (55) Partial or full road closures are very common 

occurrences when maintaining or improving roadways 

 

Unintentional Threats 

Unintentional threats usually pertain to the consequences of human error, or the damage 

caused by acts of nature. Human errors like negligence and traffic accidents can have drastic 

consequences for a network. This research distinguishes between weather events (rain, snow, 
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etc.) and natural disasters (earthquake, hurricane, etc.) by considering that weather events occur 

often, and natural disasters are rare. Extreme weather events can be classified as natural disasters 

because they present dangers that are on the same scale as other natural disasters. For example, 

excessive rainfall can cause flooding that can wash away roadways and excessive snowfall can 

prevent roadways from being used safely. 

 Weather Events 

Table 3-2 provides a small list of weather events that can be detrimental to a transportation 

network. All of these events lower the coefficient of friction for the roadway thus making it 

slippery and more dangerous. Rain will immediately drain off of the road unless it pools which 

can lead to hydroplaning of vehicles. Snow and ice can pile up thus blocking the roadway until it 

is removed. 

Table 3-2 List of Weather Events 

Weather Event Description 

Rain (56) Precipitation in the form of liquid water 

Snow and Ice (57,58) Precipitation in the form of frozen water 

 

Natural Disasters 

Natural disasters have been responsible for billions of dollars of damage in the United 

States. The total cost of U.S. billion-dollar disasters from 2016 to 2020 exceeds $600 billion. 

These disasters included: hurricanes, droughts, severe local storms, non-tropical floods, winter 

storms, wildfires, and freezes. There are many other natural disasters (listed in Table 3-3) that are 

destructive but are not designated as billion-dollar disasters.  
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Table 3-3 List of Natural Disasters 

Natural Hazard Description 

Earthquakes (59,60) The sudden release of energy in the Earth’s crust that creates seismic waves 

Volcanic Activity (61) This can be an eruption or lava flow associated with an active volcano 

Sea Level Rise (62) The gradual rise of sea level over time (8 inches in the past century) 

Flooding (60,63) An overflow of water that submerges land that is typically dry 

Tsunamis (63) A sea wave caused by the displacement of a large volume of a body of water. 

Hurricane (64) A large tropical storm system with high-powered circular winds 

Tornado (65) A funnel cloud of violently rotating winds 

Wildfires (65) A large, destructive fire that spreads quickly 

Blizzard (65) A severe snowstorm with high winds and low visibility 

 

Human Related Events 

Humans can make choices that have unintended consequences for the performance of a 

roadway network. Table 3-4 lists the events that fall under unintended consequences of human 

actions. In the worst of cases, improper maintenance of a bridge can led to a collapse as was the 

case for I-35 W in Minnesota. Traffic accidents are much more common than bridge failures 

with 10.8 million crashes occurring in 2009. 

Table 3-4 List of Human Error Events 

Human Error Description 

Traffic Accidents (66) Traffic accidents can result in temporary partial or full road closures leading to 

unexpected delay in a network. 

Improper Maintenance (67) Improper maintenance can result in failures that can be catastrophic in some 

cases (Minnesota Bridge) 
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3. Network Users 

There are many different types of network users (cars, trucks, emergency vehicles, buses, 

etc.), but they all have the same goal of using the network to travel from an origin to a 

destination. While achieving that goal, there are multiple potential routes to choose from which 

requires a decision on which to use. There are a number of different objectives that the users can 

try to maximize or minimize (travel time, gas consumption, user cost, etc.), but the chosen route 

represents the most valuable to the user. Network users are inherently selfish due to the fact that 

they only know how their route decision affects themselves without any information available 

about how that decision may affect others. 

Game Theory Formulations 

The field of game theory covers a wide variety of applications and thus includes a wide 

array of formulations to match these applications. The formulations consist of three main parts: 

communication between the players, order of play, and amount of information. The 

communication between the players can be considered as cooperative or non-cooperative. 

Transportation networks are typically non-cooperative where the players cannot make 

agreements with each other about how they will play the game. The order of play can be 

simultaneous, all players choose an action at the same time, or sequential, one player chooses an 

action then another player chooses an action. The amount of information can be considered as 

perfect or imperfect and refers to the knowledge of the actions of other players in sequential 

games. Attacks on transportation networks are primarily sequential games and thus the focus of 

this section is the various formulations of sequential games. 
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Game theory as a tool to assess the transportation network vulnerability began by Bell (68) 

who proposed a mixed strategy non-cooperative game with two players: i) the network users who 

are attempting to find the paths of minimum travel costs, and ii) an evil entity imposing link 

costs on the user to maximize the expected trip cost. MurrayTuite and Mahmassani (25) 

developed a bi-level model and considered four different scenarios involving an adversary and 

the traffic management agency trying to identify the most vulnerable links in the network. To 

evaluate the vulnerability of a system Lownes et al. (69) used a mixed-strategy stochastic game-

theoretical model and applied it to the Sioux Falls network. Their method was designed to 

incorporate all Origin-Destination (ODs) pairs computational efficient and to design a game 

between a user seeking minimum cost paths for travel as well as adversary seeking to maximize 

travel cost by disabling links in the network.  

Yates and Sanjeevi (28) developed the shortest path network interdiction problem (bi-level 

problem) and modeled the network as a two-player game for analyzing attacks on critical 

infrastructure and a subset of the California highway network was used to test the model. A 

global optimization framework for identifying the most combination of critical links was 

presented by Wang et al. (3). Their findings indicate that the crucial combination of vulnerable 

links is not necessarily connected or even placed in neighborhood of each other. Higgs et al. (27) 

used a multi-level multi-objective framework to identify vulnerable routes in a network. To 

tackle the problem of dimensionality, each level was converted to a single objective using the 

weighted sum technique with weight determination based on heuristic methods. To find the most 

important sets of links where losing them will lead to the highest total travel cost, Starita (40) 

formulated a game theoretical model as a bi-level problem and applied it to the roadway 

networks of Sioux Falls and Berlin. According to their results, when multiple link disruptions are 
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considered, optimization methodologies outperform existing vulnerability measures assessment 

techniques.  

What Is Missing in the Literature?  

To overcome the time-consuming issue of vulnerability evaluation, most of the studies 

related to the transport network vulnerability/resilience analysis only consider a single link 

failure. However, in real-road network situations, more than one link is involved during 

disruptions (70). Another concern in the majority of the vulnerability analysis studies is the 

capacity reduction level which was first raised by Sullivan et al. (24). The capacity reduction 

level is defined as the reduction in link’s capacity and is expressed as a fraction of the original 

capacity. In most studies, the vulnerability of a network is assessed for only full disruption of the 

link (12,18,20,23,34) which results in inaccurate reflection of frequent minor events and day-to-

day accidents such as the closure of several lanes in a path due to car accidents or adverse 

weather.  

To address these two main issues in road-way vulnerability analysis, a heuristic solution 

algorithm focusing on worst-case scenario is presented in this research which is capable of 

identifying the critical sets of links under different disruption scenarios including both full and 

partial links closure by using only one traffic assignment. A worst-case scenario is the most 

critical sets of links with respect to a specific performance criterion, which is modeled as a game 

between three players. The upper-level player (defender) can be defined as public entity which is 

responsible for the maintenance and operation of the network. The second level player 

(adversary) can be defined as anything (or anyone) which can degrade the network performance 

and is classified into two categories: intelligent and non-intelligent. The lower-level players are 

road users, whose behavior and rout decision in a congested network are modeled based on the 
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User Equilibrium (UE) assignment model based on the first Wardrop principle. According to the 

assumption in Wardrop’s first principle, travelers always choose the path with the least travel 

time, which is calculated through the Bureau of Public Roads (BPR) function (39). These 

equilibrium constraints can guarantee that no user can improve their travel time by unilaterally 

changing routes. Since both the first and second level objective functions are the same, a min-

max formulation is used to reduce the problem from a tri-level to bi-level problem or interdiction 

problem (65,71). 

Methodology:  

In this section the mathematical formulation used to identify and rank the group of critical and 

vulnerable links in a roadway network is presented. This formulation can assist decision makers 

in developing an optimal investment strategy to maximize the network’s resilience to attacks. 

The product of traffic flows and travel time has been considered as the system’s cost. The 

presented methodology covers two distinct game frameworks: 1) Adversary-User and 2) 

Defender-Adversary-User. The Adversary-User configuration optimizes the adversary’s strategy 

and finds the most critical links in the absence of defender action. The configuration of 

Defender-Adversary-User reduces the adversary’s efficiency by defending the network. In both 

frameworks, the lower level is the UE traffic assignment, which enables the model to account for 

the effect of congestion on drivers’ route choice (39). A bi-level UE based model is used to 

formulate both games. The bi-level formulation models the relationship between the network 

manipulated by defender and adversary at the upper-level, and the users at the lower-level 

problem.  

The nomenclature followed by the mathematical formulation for the Bi-Level User Equilibrium 

(BLUE) are listed as follows.  
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Nomenclature  

Sets Description 

A Set of links 

N Set of nodes 

R Set of origins 

S Set of destinations 

𝐾𝑟𝑠  Set of paths between origin r and destination s 

Variables  

𝑥𝑎  Traffic flow on link 𝑎 ∈ A 

𝑦𝑎 Binary decision to either do nothing (0) or defend link 𝑎 ∈ A (1) 

𝑧𝑎 Binary decision to either do nothing (0) or attack link 𝑎 ∈ A (1) 

𝐵𝐷  Number of links that can be defended 

𝐵𝐴 Number of links that can be attacked 

𝑡𝑎(𝑥) Link travel time function  

𝑞𝑟𝑠 The demand for travel from origin 𝑟 ∈ 𝑅 to destination 𝑠 ∈ 𝑆 

𝐹𝑘
𝑟𝑠 The traffic volume for path 𝑘 ∈ 𝐾𝑟𝑠 between origin 𝑟 ∈ 𝑅 to destination 𝑠 ∈   𝑆 

𝛿𝑎
𝑘𝑟𝑠 The binary path incidence for link 𝑎 ∈ A' if it belongs to path 𝑘 ∈ 𝐾𝑟𝑠 between 

origin 𝑟 ∈ 𝑅 to destination 𝑠 ∈ 𝑆 (1) or not (0) 

 

Mathematical Model for the BLUE: 

Minimize 
 𝑦,𝑧

 ∑ 𝑥𝑎𝑡𝑎𝑎∈𝐴 (𝑥) 

s.t. 

(Equation 1) 

∑ 𝑦𝑎𝑎∈𝐴 ≤ 𝐵𝐷     (Equation 2) 

 

𝑦𝑎 =  {
1, if link a is defended

0, otherwise
 

s.t. 

 

(Equation 3) 

Maximize 
 𝑦,𝑧

 ∑ 𝑥𝑎𝑡𝑎𝑎∈𝐴 (𝑥) 

s.t. 

(Equation 4) 

∑ 𝑧𝑎𝑎∈𝐴 ≤ 𝐵𝐴    (Equation 5) 

𝑧𝑎 =  {
1, if link a is attacked 

0, otherwise
 

s.t. 

(Equation 6) 

min
𝑥

∑ ∫ 𝑡𝑎
𝑥𝑎

0𝑎 (𝑥)𝑑𝑥  

s.t. 

(Equation 7) 

∑ 𝑓𝑘
𝑟𝑠

𝑘 = 𝑞𝑟𝑠   ∀ 𝑟 𝑅 𝑎𝑛𝑑  𝑠 ∈ 𝑆   (Equation 8) 

𝑓𝑘
𝑟𝑠 ≥ 0            ∀ 𝑘 ∈ 𝑘𝑟𝑠, 𝑟 ∈ 𝑅, 𝑠 ∈ 𝑆 (Equation 9) 

𝑥𝑎 = ∑ 𝛿𝑎
𝑘𝑟𝑠𝑓𝑘

𝑟𝑠
𝑘,𝑟,𝑠     ∀ 𝑎 ∈ A (Equation 10) 
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Equations (1) through (3) represent the upper-level problem (i.e., defender) within the 

constraint which limit the number of links that can be defended to a fixed number (equation 2). 

In equation (3), the decision of the upper-level player is shown to be binary, with 1 indicating 

that link 𝑎 is defended and 0 indicating that link 𝑎 is not defended. In equation (4), the second 

level player (i.e., adversary) maximizes its own objective function (which in this research it is 

considered similar to the case with the defender) within the constraints of the total number of 

links that can be attacked (equation (5)). In equation (6), the decision of the adversary is shown 

to be binary where 1 is an attack on link 𝑎 and 0 is no attack on link 𝑎. The third and lower-level 

player (i.e., network users) minimizes the integral of the link travel times in equation (7) within 

constraints of equation (8) and equation (9) which yields to the user equilibrium. Constraint 

equation (8) ensures that the sum of traffic flows on the paths between origin R and destination S 

is equal to the demand. Constraint equation (9) ensures that the traffic flows on the paths are 

non-negative. The traffic flow on each link is defined in equation (10) as the sum of the path 

flows for paths containing that particular link.  

Solution Algorithms: 

The network interdiction problem is classified as NP-hard problems by Wood (72), where 

there is no available exact solution. Therefore, different heuristic and meta-heuristic approaches 

have been introduced by researchers to solve these types of problems. To solve BLUE, we 

proposed a greedy search based heuristic algorithm by utilizing a subcase of the optimization 

model developed by Higgs et al. (27) and making locally optimal solutions at each step. At the 

proposed algorithm in this research which we will refer it from now as Vulnerability Greedy 

Search Based (VGSB) algorithm, the defender of the network search over the best possible 

solutions for increasing the resilience of the network and the adversary moves after the defender 
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and search to find the most critical links on the network which degrading them will lead to 

highest cost increase in the network. The algorithm builds tentative solutions to defend and 

attack by using different link selection methods and update the sets at each stage to reach the 

most promising links. So, at each iteration of the algorithm, a subset of links is selected to be 

defended by different defended efficiency to simulate full and partial defense in the network. 

Then, a subset of links is selected to be attacked to simulate both intelligent and non-intelligent 

adversary. The selected links' capacity will be reduced (by a predetermined percentage) to model 

both major and minor disruptions, and the total cost of the new network will be estimated using a 

shortest path assignment method. The algorithm terminates after a predetermined number of 

iterations has been reached (which varies according to the network's size and PC’s computing 

power). To cover wide variety of attack strategies, four different disruption scenarios have been 

defined in applying VGSB in identifying critical sets of links.  In order to evaluate the accuracy 

of the proposed solution algorithm, the achieved results are compared with three full-scan 

analysis measures.   

Studied Disruption Scenarios:  

To simulate different actions of adversary, four different scenarios are considered. These 

scenarios are summarized in Table 3-5 and details of each scenario is explained as follows. 

Table 3-5 Studied Disruption Scenarios in the Absence of Defender 

Scenario’s 

name 
Source of Attack 

Degree of 

Closure 

Number of 

disrupted links 

(DL) 

SRF 
Random Attack (non-intelligent adversary) 

Full Closure 

Multiple links 

(ML) 

 

SRP Partial Closure 

STF Targeted Attack 

(intelligent adversary) 

1: V/C 
Full Closure 

2: BC* 

STP 
3: TFFBC* 

Partial Closure 
4: TCBC* 
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Source of Attack:  

Both targeted and random attacks are considered in link disruption strategies. In random 

strategy, based on conducting a Monte Carlo simulation, links will be disrupted randomly (which 

can model the case of a non-intelligent adversary) while in targeted strategy (which can model 

the case of an intelligent adversary), links will be disrupted based on the four different rank 

ordered measures (i.e., volume to capacity ratio and three hybrid measures proposed by 

Takhtfiroozeh et al. (50)). Therefore, links with higher rank order are more prone for attacks by 

the adversary and this can be a representer for the intelligent adversary. The four link selection 

measures used in this research to select sets of links to be attacked based on the defined scenarios 

are explained as follow.  

Link Selection Measures in Targeted Attack 

• Link Volume-to-Capacity Ratio Ranking Measure (V/C): For each link the V/C ratio is 

estimated as the ratio of the traffic flow to the capacity of the link.  

• Hybrid Link Ranking Measures: Takhtfiroozeh et al. (50) considered traffic equilibrium 

inputs and outputs in calculating Betweenness Centrality (BC) measure. They modified BC 

to consider both centrality and traffic attributes in ranking the links, and proposed three 

hybrid measures (i.e., BC*, TFFBC*, and TcBC*). BC (equation (11)) was initially introduced 

by Freeman (37), and is a topological measure which has been applied to a wide range of 

graph theory problems. For a link, the value of BC expresses the frequency the link falls on 

the shortest paths connecting pairs of nodes.  

 

𝑩𝑪(𝒂)= ∑
𝝈𝒔𝒕(𝑎)

𝝈𝒔𝒕
𝒔,𝒕           (Equation 11) 

where 𝜎𝑠𝑡(𝑎) is the shortest path from node s to node t that traverses link a, and 𝜎𝑠𝑡 is the 

number of the shortest paths from node s to t. The formula, variables, and description of each 

hybrid measure are presented in Table 3-6.  
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Table 3-6 Selected Hybrid Ranking Measures 

Name Formula Variables Description 

 

Flow Weighted 

BC (BC*) 

 

𝐵𝐶∗
𝑎 = 𝐹𝑎 ∗ 𝐵𝐶𝑎 

𝐵𝐶𝑎 = Betweenness Centrality 

of link a 

𝐹𝑎=Flow of link a  

 

This measure, makes sure that a links 

with more centrality and more demand 

to serve are defined as important links 

in the network. 

 

 

Flow Weighted 

Free Flow 

Travel Time BC 

(TFFBC*) 
𝑇𝐹𝐹𝐵𝐶∗

𝑎 = 𝐹𝑎 ∗ 𝑇𝐹𝐹𝐵𝐶𝑎 

𝑇𝑎
FF=Free Flow Travel Time of 

link a 

𝑇𝑎
FF=

𝐿𝑎

𝐹𝐹𝑆𝑎
 

𝐹𝐹𝑆𝑎=Free Flow Speed of link 

a 

𝐿𝑎=Length of link a 

To capture the UE principle in an 

uncongested network, in computing the 

shortest path used in the BC calculation, 

edges were weighted by their Free Flow 

Travel Time (FFTT). This measure can 

be effective in identifying critical links 

in uncongested conditions. Also, for 

considering the social efficiency, flow 

of the links considered as an extra 

weight in calculating this measure.  

 

Flow Weighted 

Congested 

Travel Time BC 

(TCBC*) 

 

 

𝑇𝐶𝐵𝐶∗
𝑎 = 𝐹𝑎 ∗ 𝑇𝐶𝐵𝐶𝑎 

𝑇𝑎
𝐶= Travel Time of link a 

𝑇𝑎
𝐶 = 𝑇𝑎

𝐹𝐹 [1 + 𝛼(
𝐹𝑎

𝐶𝑎
)𝛽]   

𝐹𝑎=Flow of link a  

𝐶𝑎=Capacity of link a  

α & β =Model parameters 

To capture user behavior in the BC 

calculation, congested travel time has 

been used as a weight for links in the 

shortest path calculation. also flow of 

the links for considering the social 

efficiency effect is applied as an extra 

weight in calculating this measure. 

 

Degree of Closure 

To analyze the performance and criticality of the link depending on the attack efficiency, 

four different capacity reductions (Cr) were considered. Cr = {100%} were considered to 

simulate full closure due to major events and three different capacity-reduction levels denoted as 

Cr = {40%, 60%, 80%} were considered to simulate partial closure due to day-to-day disruptions 

in the roadway network.  

Number of Disrupted Components  

Most of the studies related to the transport network vulnerability/resilience analysis consider 

only a single link failure. However, in real road network situations, usually more than one link is 

affected due to the disruptions. In this regard, scenarios are arranged based on considering 

different sets of links to be compromised (DL=10, 20, 30, 40, and 50 links).  
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Studied Defender Strategies 

In Defender-Adversary-User framework, to investigate the effect of different strategy that 

defender might chose to defend the network, two defense levels (partial and full defend) were 

studied. The effect of 50% defense effectiveness as the partial defense strategy and 100% 

defense effectiveness (i.e., if a link is fully protected, the attack will have no effect on it) as the 

full defense strategy were considered. This research assumed that the defender based on the 

defense budget will protect the specific number of links which recognize by the link selection 

measure as the top critical links.  

Selected Traffic-based Vulnerability Measures for Evaluation Process 

For evaluating the presented methodology, the results of BLUE compared with three traffic-

based criticality measures (the Network Robustness Index (NRI) (23), Link Importance Measure 

(7), and Modified Network Robustness Index (NRI*) (32)) were chosen from the available 

literature. NRI measures rank the links based on calculating the difference in network’s total 

travel time before and after a link is removed from the network by running traffic assignment in 

each iteration. While on the other hand, NRI modified, utilizes the difference of product of 

demand and travel time before and after the link removal from the network as the performance 

function. IS were derived based on the increase in the generalized cost of travel in degraded 

networks considering social efficiency by weighting the travel cost by travel demand. A brief 

description of these three measures is presented next and the formulas of each measure are 

shown in Table 3-7.  

All these three measures use the full scan analysis methodology for ranking links where 

links are removed one by one, and a performance measure (usually a function of travel time) is 

calculated in each step, and the links are ranked based on the changes in value of the selected 



 

55 

 

measure. Most of the published research in roadway vulnerability assessment have used at least 

one of these three measures as benchmarks (9,36,40) as they are extremely accurate, albeit time 

consuming and not applicable for full-scan analysis on large-scale networks. Estimation each of 

the mentioned traffic-based measures requires multiple UE network estimations (as many as the 

number of network links plus one traffic assignment for the base case of the complete network). 

Table 3-7 Selected Traffic-based Criticality Measures and Their Performance Function. 

Name of the 

Measure 
Study Formulation Description 

Performance 

Function 

Network 

Robustness Index 

(NRI) 

Scott et al. 

(23) 
𝑁𝑅𝐼𝑎 = 𝐶𝑎 − 𝐶0 

𝐶0: network travel time 

when all links are present 

in the network. 

𝐶𝑎: network travel time 

when link a is removed 

Travel Time 

Link Importance 

(IS) 

Jenelius et 

al. (20) 
𝐼𝑠𝑎 =

∑ ∑ 𝑥𝑖𝑗𝑗≠𝑖𝑖 (𝐶𝑖𝑗
𝑎 − 𝐶𝑖𝑗

0 )

∑ ∑ 𝑥𝑖𝑗𝑗≠𝑖𝑖

 

𝑥𝑖𝑗: Travel demand 

between origin i and 

destination j 

𝐶𝑖𝑗
0 : Travel time from 

origin i to destination j 

when all links are present 

in the network 

𝐶𝑖𝑗
𝑎: Travel time from 

origin i to destination j 

when link a is removed 

from network 

Travel Time 

× Flow 

Modified 

Network 

Robustness Index 

(NRI*) 

Sullivan et 

al. (24) 

𝑁𝑅𝐼𝑎
∗ = ∑ 𝑡𝑖

𝑎𝑥𝑖
𝑎 − ∑ 𝑡𝑖 𝑥𝑖 

 

𝑥𝑖
𝑎: travel demand on link i 

when link a is removed and 

network is re-routed 

𝑡𝑖
𝑎 : system travel time on 

link i when link a is 

removed 

𝑡𝑖 : base system travel time 

Travel Time 

× Flow 

Numerical Experiment 

To evaluate the proposed algorithm, the Chicago Sketch transportation network which is 

commonly used in the literature for testing different algorithms and models for transportation 



 

56 

 

networks was used. The Chicago sketch network contains 933 nodes, 387 zones, and 2950 links 

where all its network data are obtained from (43).  

Comparison with the traffic-based measures: 

Figure 3-1 through Figure 3-5 present the average percentage difference between the BLUE 

generated system’s cost and the cost of NRI, NRI*, and IS for each attack scenario. The total UE 

system’s cost for the three traffic-based measures was determined by sequentially disrupting 

each link defined in the first 100 critical sets of links according to the priority order identified by 

BLUE. The Compared costs were normalized by their corresponding base costs, which are 

defined as the network costs when no link in the network has been attacked. 
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Figure 3-1 Average Percentage Difference for Different Costs under Random Attack Scenarios  

a) Average Percentage Difference Between NRI and BLUE Performance Function 

b) Average Percentage Difference Between NRI* and BLUE Performance Function 

c) Average Percentage Difference Between IS and BLUE Performance Function 
 

The VGSB algorithm does not perform well in the situation of a random attack for full 

closure, as seen in Figure 3-1. However, the difference between BLUE, NRI, NRI*, and IS 

performance functions are minimal in the case of partial closure for all DLs (i.e., 10, 20, 30, 40, 

and 50 links per set). These small differences in the costs indicate that disrupting links classified 

as critical by BLUE causes as much as cost when they will be disrupted by full-scan analysis 

methods. Based on these findings, it can be stated that when a non-intelligent adversary with 

partial link closure is considered, the proposed methodology performs well in identifying the 

critical sets of links. 
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Figure 3-2 Average Percentage Difference Between NRI’s and BLUE’s Performance Function 

a) Scenario STP-1: Link’s Partial Closure, Targeted Attack, Link Selection V/C ratio 

b) Scenario STP-2: Link’s Partial Closure, Targeted Attack, Link Selection BC* 

c) Scenario STP-3: Link’s Partial Closure, Targeted Attack, Link Selection TFFBC* 

d) Scenario STP-4: Link’s Partial Closure, Targeted Attack, Link Selection TCBC* 
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Figure 3-3 Average Percentage Difference Between NRI*’s and BLUE’s Performance Function 

a) Scenario STP-1: Link’s Partial Closure, Targeted Attack, Link Selection V/C ratio 

b) Scenario STP-2: Link’s Partial Closure, Targeted Attack, Link Selection BC* 

c) Scenario STP-3: Link’s Partial Closure, Targeted Attack, Link Selection TFFBC* 

d) Scenario STP-4: Link’s Partial Closure, Targeted Attack, Link Selection TCBC* 
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Figure 3-4 Average Percentage Difference Between IS’s and BLUE’s Performance Function 

a) Scenario STP-1: Link’s Partial Closure, Targeted Attack, Link Selection V/C ratio 

b) Scenario STP-2: Link’s Partial Closure, Targeted Attack, Link Selection BC* 

c) Scenario STP-3: Link’s Partial Closure, Targeted Attack, Link Selection TFFBC* 

d) Scenario STP-4: Link’s Partial Closure, Targeted Attack, Link Selection TCBC* 
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Figure 3-5 Average Percentage Difference for Different Costs under Link’s Full Closure and 

Targeted Attack 

a) Average Percentage Difference Between NRI’s and BLUE’s Performance Function 

b) Average Percentage Difference Between NRI*’s and BLUE’s Performance Function 

c) Average Percentage Difference Between IS’s and BLUE’s Performance Function 

 

Figure 3-2 through Figure 3-4 illustrate the outcomes of targeted partial closure attacks (40, 

60, and 80% capacity reduction), while Figure 3-5 illustrates the results of a targeted full closure 

attack (100 percent capacity decrease) on various DLs (i.e., 10, 20, 30, 40, and 50 links per set). 

As seen by the scenario of targeted partial closure, all link selections except TCBC* are 

compatible with the proposed algorithm. When BC*, TFFBC*, and V/C links selection measures 

are utilized to simulate the intelligence adversary, the cost difference between BLUE's 

performance function and all three selected vulnerability traffic-based measures (NRI, NRI*, and 
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IS) is acceptable. By incorporating BC* into the VGSB, the possibility of attacking central links 

with higher social efficiency will be increased and similarly, TFFBC* raises the attack’s 

probability of central links with higher free-flow travel time and higher travel demand. The V/C 

ratio increases the likelihood that more congested links will be attacked by the adversary. 

The results of a targeted full-closure attack are depicted in Figure (5). As expected from the 

partial closure results presented in Figure 3-2 through Figure 3-4, TCBC* is not a suitable 

simulator for the intelligent adversary in the methodology proposed in this research. In 

comparison to partial closure results, the V/C ratio underperforms when simulating complete link 

closure. This is a significant finding since many agencies define a link's criticality based on its 

V/C ratio under normal operating conditions, while our findings indicate that this measure does 

not result in appropriate performance in the case of evaluating the network vulnerability using 

the shortest path concept for major disruption. 

BC* and TFFBC* hybrid measures are the measures that showed very promising results for 

both minor and major disruptions, and they are more compatible with the proposed model for 

detecting the most critical group of links. Since traffic equilibrium inputs and outputs are 

considered along with the shortest paths concept in calculating these two hybrid measures, 

therefore, they are recommended as the best-selected link selection measures when modeling the 

intelligent adversary of the network using BLUE. For a more in-depth discussion about the 

nature of these measures, the reader is referred to the previous article published by the authors 

(23) or chapter 2 of this research. 
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Disrupting a Group of Links Versus Disrupting Multiple Single Links: 

Further analysis was performed to evaluate the existing correlation between single critical 

links and critical group of links in the network vulnerability assessment. To conduct this 

analysis, links ranking, and the system cost due to disturbing critical sets of links ordered by 

BLUE and the group of links based on TFFBC* hybrid measure rank order were compared and 

the results are presented in Table 3-8 and Figure 3-6. The first two columns of Table 3-8 show 

the single ranking based on TFFBC*. The third column of this table displays the number of 

disrupted links per set and the last column presents the BLUE solution where TFFBC* is used as 

the link selection obtained with the number of links per set reported in the third column.  

Table 3-8 Critical Links According to TFFBC* and BLUE 

Rank TFFBC* DL BLUE (Scenario SF-3) 

1 805 1 805 

2 761 2 761, 805 

3 947 3 761, 947, 805 

4 731 4 446, 761, 947, 805 

5 801 5 947, 446, 807, 790, 761 

6 567 6 731, 807, 947, 761, 802, 790 

7 727 7 761, 805, 735, 734, 947, 939, 830 

8 734 8 761, 446, 449, 805, 932, 947, 939, 806 

9 735 9 947, 801, 446, 761, 931, 805, 939, 806, 932 

10 446 10 731, 761, 735, 947, 802, 427, 742, 805, 790, 939 

 

Table 3-8 clearly highlighted difference between the TFFBC* ranking measure and the 

BLUE’s solution using TFFBC* for simulation the intelligent adversary. As the number of 

disrupted links per set increase, this difference will be more visible. In fact, it can be seen that 

the most identified critical sets of links by the optimization approach are not simply the 
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combination of the most critical single links. and there is a very complex correlation between 

links when multiple disrupted links are studying.  

The difference between ranking measure and BLUE’s solution becomes more apparent 

when the system’s cost is considered in the analysis. In the following analysis, the total system’s 

cost under shortest path assignment is calculated by sequentially disrupting an increasing number 

of links in each critical set, according to the priority order determined by TFFBC* ranking. The 

results are then compared to the network’s cost calculated by disrupting critical sets of links 

determined by BLUE and the comparison is shown in Figure 3-6.  

 

Figure 3-6 Cost Average Difference Between TFFBC* Hybrid Ranking Measures and BLUE  

 

As the results indicate, when multiple links are disrupted, the ranking method significantly 

underestimates the vulnerability of the network. As the number of multiple links is increased, the 

cost difference will be greater. The presented results indicate that the most critical sets of links, 

those that have the greatest negative effect on the system's total travel cost following an attack, 

are not simply the combination of the most critical single link and there is a very complex 

correlation between links when multiple disrupted links are studying.  
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Defended Network 

Figure 3-7 illustrates the effect of defender decision to reduce the network's vulnerability 

using the proposed methodology. In this study, it was assumed that the defender could defend a 

limited number of links. To assess the impact of full and partial protection, two levels of defense 

efficiency were considered (i.e., 50% and 100%). Additionally, the effect of the defense budget 

was studied by considering various ratios of the number of Defended Links to Attacked Links 

(DL/AL) in the system (i.e., DL/AL of 1 through 5). It is worth mentioning that the number of 

possible attacked links is limited to 10 in this figure to save the solver time. However, the same 

trend is anticipated for the other cases (i.e., 20, 30, or more attached links). Also, since TFFBC* 

was recommended as one of the two best link selection measures in attacking strategy, it was 

used as representative for both defender and adversary to defend and attack the network. 
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Figure 3-7 Costs Percentage Change for Different Link’s Defend Strategies 

a) 100% Capacity Reduction of the Attacked Links, Scenario SF-3 

b) 80% Capacity Reduction of the Attacked Links, Scenario SP-3 

c) 60% Capacity Reduction of the Attacked Links, Scenario SP-3 

d) 40% Capacity Reduction of the Attacked Links, Scenario SP-3 

 

As the results demonstrate, defending the links against an adversary can significantly 

decrease system costs (i.e., vertical ax). However, this improvement is highly dependent on 

attack efficiency. As can be seen, the difference in defensive efficiency between 100% and 50% 

is more noticeable when attack efficiency is high (i.e., when Cr = 100% and Cr = 80%). 

Complete and partial defense strategies have a nearly close effect on reducing the system's cost 

when the link's capacity is reduced by 40% or 60% (minor disruptions). Additionally, as 

illustrated in Figure 3-7, the total cost decreases as the number of protected links increases, 
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although the effect of DL/AL on system cost reduction is highly dependent on attack efficiency 

as well. 

Conclusions  

In this research, a model formulation and a heuristic solution algorithm were proposed to 

assist decision-makers in identifying and ranking vulnerable and critical sets of links of a 

transportation network. Using a game theory framework and a bi-level formulation, this research 

identified the most critical sets of links in a roadway network, focusing on both day-to-day and 

major disruptions. Five distinct link selection measures were used to simulate both the non-

intelligent and intelligent adversary's decision to attack the system's links. Also, the effect of 

defender decisions in defending important links was studied. Unlike most vulnerability modeling 

approaches found in the literature, which require multiple traffic assignments to assess the 

network's vulnerability, the methodology developed in this research evaluates networks’ 

vulnerability using only one traffic assignment and can find the worst combination of critical 

links. As a result, the presented methodology is easily applicable to evaluating roadway networks 

of any size without excessive computational time or power requirements under different 

disruption scenarios. 

Chicago-Sketch selected as the network for applying the network and three well-known full 

scan analysis measures (NRI, NRI*, IS) were used to evaluate achieved results. Analysis of the 

results showed that contrary to popular belief, the volume to capacity ratio of links cannot be 

considered as accurate measure of a links’ criticality in every situation. TFFBC* and TCBC* were 

the measures showing the best performance in the analysis and more compatible with the 

presented methodology. These two attack link’s selection measures increase the attack 
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probability of central links with more demand. Additionally, comparison between the multiple 

links disruption and multiple single link disruptions indicate that the most identified critical sets 

of links, which after attack have the greatest negative effect on the system's total travel cost, are 

not simply the combination of the most critical single link. Identifying critical sets of links is 

highly dependent on the adversary's inelegancy, the attack's selection of links, and the disruption 

scenario defined in terms of partial or complete link closure. Further analysis accomplished to 

evaluate the effect of defender decision in defending recognized critical links by decreasing the 

attack efficiency on these links. In this analysis, different budget constraints were considered for 

the defender and the effect of these constraints were evaluated in changing the total travel time of 

the network.  

Future research can include the development of a solution algorithm with different objective 

functions for the two upper players (i.e., defender and adversary), and application of different 

measures in the selection of candidate links. Additionally, different objective functions for the 

defender and adversary could be considered, as well as multiple adversaries with distinct sets of 

objectives. The proposed method was based on a static user equilibrium, which is incapable of 

accounting for the effects of link interaction and demand uncertainty in traffic assignment. 

Future research may concentrate on dynamic traffic assignment and/or variable demand.  
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CHAPTER 4 : IMPLEMENTATION OF THE PROPOSED 

METHODOLOGIES IN A REAL CASE STUDY 

 

Broward County, in Florida was chosen as the study's testbed location to implementing both 

proposed methodologies in this research (chapter 2 and 3) in consultation with the Florida 

Department of Transportation (FDOT) and local transportation agencies. This county in 

southeast Florida is critical for freight transportation, as it is home to the Port Everglades and the 

Fort Lauderdale International Airport, as well as the I-95, Florida Turnpike, and I-595. 

The main network geometry is a subset of the Southeast Florida Regional Planning Model 

Version 8 (SERPM 8). This is an activity-based model that has become the state of practice in 

travel demand forecasting in the largest U.S. metropolitan areas. Personal and commercial 

demand was estimated using the assigned flows provided by Broward MPO and SE Florida 

through a well-known Origin Destination Matrix Estimation (ODME) procedure. The TransCAD 

software (https://www.caliper.com/) was used to implement the ODME procedure. The Broward 

County network is described in more in-depth details in Table 4-1 and Figure 4-1 Broward 

County Network Location. 
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Table 4-1 Broward County Network 

Network No. of Nodes No. of Links No. of Origin-Destinations (ODs) pairs 

Broward 9,975 24,007 1,653 

 

 

Figure 4-1 Broward County Network Location. 

Individual Critical Link 

Figure 4-2 through Figure 4-4 present the top 5%, 10%, 15%, and 20% important links 

identified by each one of the three hybrid measures recommended in Chapter 2 of this research. 

In these figures, the road classification of the identified critical links showed by using two 

different colors. The top critical links which are arterial are shown by red color, and the critical 

links which are non-arterial, have been shown by green. As seen in these figures, the majority of 

the identified critical links are arterial links. These links carry more flow than non-arterial links, 
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so disrupting them have a more negative cost effect on the network. Also, these figures show that 

central links (i.e., links that more shortest paths traverse on them to connect pairs of ODs) are 

more critical than the others. So, if a link has more demand and is simultaneously more central, it 

is a more critical link than the others. On the other hand, attacks concentrated around origins and 

destinations with a high amount of demand in a way that would effectively isolate that origin or 

destination (i.e., a bridge). 
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Figure 4-2 Critical links identified by 𝐵𝐶∗ hybrid measure  
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Figure 4-3 Critical links identified by 𝑇𝑓𝑓𝐵𝐶∗ hybrid measure  
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Figure 4-4 Critical links identified by 𝑇𝑐𝐵𝐶∗ hybrid  
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Critical Sets of Links  

By implementing the presented mathematical formulation and developed heuristic algorithm 

presented on chapter 3 of this research on the Broward County network, 10,000 different critical 

sets of 30 links were identified for each one of the three assumed capacity reduction cases 

(100%, 80%, and 60% capacity reduction respectively) and for any link that was compromised 

based on two distinct link selections (i.e., 𝐵𝐶∗ and 𝑇𝑓𝑓𝐵𝐶∗, ). These sets of links were ranked 

according to the effect they may have on increasing the cost of travel in the case of attacks. In 

other words, a set of links is more important than other if attacking it results in the greatest 

increase in travel time across the network. 

As illustrated in Figure 4-5, the most critical subset of links will be altered in response to the 

attack's efficiency (partial closure vs. full closure of the link). The findings indicated that 

depending on the severity of the disruption scenario (minor or major), different links in the 

roadway network could be identified as critical. Even considering different capacity reductions 

(60 and 80 percent) in partial closure scenarios results in the identification of distinct critical sets 

of links. 
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Figure 4-5 First Critical Sets of Links Using Three Different Link Selections Under Different 

Capacity Reductions: a) BC*, b) 𝑇𝑓𝑓𝐵𝐶∗ 

 

Figure 4-6 and Figure 4-7 illustrate the probability of attack for each link using all two link 

selection measures under various capacity reduction scenarios (i.e., 100, 80, and 60 percent). The 

probability can be assumed as a measure of a link's criticality; it is calculated as the sum of the 

number of times a link is selected as critical (for all 10,000 sets). Comparing the probability of 
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attack for each link selection scenario and the top 1% critical links ranking by hybrid measures 

which are more compatible with BLUE (i.e., 𝐵𝐶∗, 𝑇𝑓𝑓𝐵𝐶∗), it is revealed that the most critical 

sets of links that when attacked result in the greatest negative effect on the system's total travel 

cost are not simply a collection of the most single-link failures. Identifying critical sets of links is 

highly dependent on the adversary's inelegancy, the attack's selection of links, and the disruption 

scenario defined in terms of partial or complete link closure. 

In Figure 4-6, the intelligent adversary's link selection in the BLUE is represented by 𝐵𝐶∗. 

The results in this figure indicate that central links (i.e., links that more shortest paths traverse on 

them to connect pairs of origin destinations (ODs)) are more critical than others. Thus, if a link 

has a higher demand and is also more central, it is considered more critical than the others. On 

the other hand, attacks focused on high-demand origins and destinations effectively isolate those 

origins and destinations (i.e., a bridge). Additionally, by comparing Figure 4-5(a) to Figure 4-6, 

it is clear that the first recognized critical sets of links (sets of links whose compromise results in 

an increase in the network's highest cost) are the links with the highest attack probability. Thus, 

considering only the firsts recognized sets of links as the most vulnerable links by the proposed 

algorithm can save decision makers more computational time when assessing the network's 

vulnerability. 
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Figure 4-6 Link Attack Probability vs. Top 1% Critical Links for BC*. 
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Apart from centrality and social efficiency (i.e., roads with greater demand serve more 

people and thus achieve additional social and economic benefits, and therefore should be 

considered more significant), 𝑇𝑓𝑓𝐵𝐶∗ also consider travel time shortest path (in both congested 

and uncongested situations) when calculating the network's most critical links. According to 

𝑇𝑓𝑓𝐵𝐶∗ (Figure 4-7), critical links are those which are more central than others, have a higher 

demand, and require more travel time to commute (in both congested and non-congested 

situations). The comparison results in Figure 4-5(b) support the conclusion stated in the 

preceding paragraph that the firsts recognized critical sets of links (sets of links whose 

compromise results in an increase in the network's highest cost) are the links with the highest 

attack probability. 
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Figure 4-7 Link Attack Probability vs. Top 1% Critical Links for 𝑇𝑓𝑓𝐵𝐶∗. 
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CHAPTER 5 : SUMMARY, CONCLUSIONS, AND DIRECTION 

FOR FUTURE RESEARCH 

 

Prioritizing investment decisions in roadway network infrastructure is a serious obstacle for 

decision-makers and planning agencies. Transportation networks are subject to a variety of 

disruptive events that have a significant impact on the travel time of network users. Additionally, 

limited resources are compelling national, regional, and local governments to prioritize their 

investments carefully. Thus, planners and decision-makers should employ an efficient and 

innovative prioritization technique to ensure that significant projects are undertaken and that 

resources are used efficiently.  

In the first part of this research, it was attempted to understand the relative importance of links 

in a road network and suggested a methodology to rank the links according to structure of the 

network while combining with several input and output characteristics of the traffic equilibrium. 

Nine hybrid ranking measures developed as a variants of link Betweenness Centrality (BC) measure. 

To this matter, various traffic characteristics of the network assigned as link’s weight in calculating 

BC. Links with high betweenness centrality values represent a bridge-like connector between 

different parts of a network, a failure of which will affect the communication between multiple 

pairs of nodes through the shortest path. Weighting links adds another dimension of 

heterogeneity to the network beyond the topological effects. Numerical experiments using three 

case study networks in three different sizes (i.e., Sioux Falls, Eastern Massachusetts, and 

Chicago-Sketch), indicated that three of the proposed nine measures provide comparable results 
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to a full-scan analysis. The proposed hybrid link ranking measures require only one traffic 

assignment in their calculations which lead to decreasing the computational time significantly 

compared to the full-scan analysis measures.  

Numerical results showed that considering social efficiency in the proposing hybrid 

measures made their results more reliable. Utilizing social efficiency in calculating BC make 

sure that if a link has more demand and is simultaneously more central, should be more critical to 

whole network. In addition to the social efficiency effect, the shortest path travel time effect in 

both uncongested and congested situations was also important. The recommended hybrid ranking 

measures identified links which are more central as compared to the others and has higher 

demand and more travel time require to commute on them in both congested and non-congested 

situations as the most importing links in the network. Disrupting these links may have more 

severe damage to the system and can result, resulting in a significant increase in travel costs. 

The second section of this research proposed a bi-level mathematical formulation and 

heuristic solution algorithm to assisted decision makers in identifying and ranking vulnerable and 

critical sets of links in a transportation network under various disruption scenarios. The presented 

methodology covers two distinct game frameworks: 1) Adversary-User and 2) Defender-

Adversary-User. Five distinct link selection measures were used to simulate both the non-

intelligent and intelligent adversary's decision to attack the system's links, and four distinct link 

capacity reduction measures were used to simulate both major and minor disruptions. 

Additionally, the effect of defender decisions on defending critical links was investigated. 

Numerical experiments using a case study network indicated that the proposed methodology 

provide reliable results to a full-scan analysis. Unlike the majority of vulnerability modeling 

approaches described in the literature, which require multiple traffic assignments to assess a 
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network's vulnerability, the methodology developed in this research use only one traffic 

assignment and can identify the worst combination of critical links. As a result, the methodology 

presented here is easily applicable to evaluating roadway networks of any size without requiring 

excessive computational time or power under various disruption scenarios. 

The results analysis revealed that the presented methodology produces promising results, 

particularly when the hybrid measures presented in this research are used to simulate an 

intelligent adversary. Additionally, contrary to popular belief, the volume to capacity ratio of 

links cannot be used to accurately determine a link's criticality in all circumstances. More 

importantly, this research demonstrates that the most identified critical sets of links, which have 

the greatest negative impact on the system's total travel cost due to an attack, are not simply the 

combination of the most critical single link. Identification of critical sets of links is highly 

dependent on the disruption scenario defined by the adversary's inelegancy, the attack's link 

selection, and the disruption scenario defined in terms of partial or complete link closure. This 

study demonstrates how presenting a defender can mitigate the adversary's effect on the network. 

This reduction, however, is highly dependent on the efficiency of the attack and the defense 

budget constraints. By utilizing the presented methodology, decision-makers can maximize the 

system's resilience under various disruption scenarios considering their budget constraints. 

Both proposed methodologies for ranking single and multiple links described in Chapter 2 

and Chapter 3 rely on a static user equilibrium, which cannot capture the effects of link 

interaction and assignment and/or variable demand uncertainty. Future research could 

concentrate on implementing dynamic traffic assignment in presenting new hybrid link ranking 

measures on an individual basis. Additionally, the mathematical formulation presented in 

Chapter 3 can be expanded to include dynamic traffic assignment in simulating traveler behavior. 
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Future research can propose new hybrid measures by either modifying an existing topological 

measure (such as closeness, degree centrality, etc.) by different traffic characteristics or by 

combining several hybrid measures. 

Additional research could include examining different objective functions for the defender 

and adversary and evaluating candidates' links using a variety of different measures. This study 

assumed the same objective function for both the defender and adversary had. Considering 

distinct objective functions for these two players could be an extremely interesting future 

direction. Additionally, the effect of multiple adversaries with different objective functions on 

the identification of critical sets of links can be studied. Future research directions may also 

include expanding the hierarchical bi-level game proposed in this study by incorporating a 

combination of sets of links and a capacity-enhancing capital investment strategy. Furthermore, 

links can be attacked with a reduced capacity reduction, as opposed to the case where the 

defender invests through capacity expansion.  
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