405 research outputs found

    Application of Soft Computing Techniques for Speed Control of Brushless DC Motors

    Get PDF
    Nowadays Brushless DC (BLDC) motors are treated as the most popular motors, which are applied widely due to their higher efficiency and excellent torque characteristics. Moreover they are operated with DC supply and without using brushes. But BLDC motor operate with wide speed range and therefore it is required to regulate the speed of DC motor using different advanced techniques. In this work, the fuzzy sliding mode control (FSMC) is employed for controlling the speed of BLDC motor. The proposed method is compared with the conventional Sliding mode control (SMC) and the results are analyzed using MATLAB/ Simulink tool

    Critical Aspects of Electric Motor Drive Controllers and Mitigation of Torque Ripple - Review

    Get PDF
    Electric vehicles (EVs) are playing a vital role in sustainable transportation. It is estimated that by 2030, Battery EVs will become mainstream for passenger car transportation. Even though EVs are gaining interest in sustainable transportation, the future of EV power transmission is facing vital concerns and open research challenges. Considering the case of torque ripple mitigation and improved reliability control techniques in motors, many motor drive control algorithms fail to provide efficient control. To efficiently address this issue, control techniques such as Field Orientation Control (FOC), Direct Torque Control (DTC), Model Predictive Control (MPC), Sliding Mode Control (SMC), and Intelligent Control (IC) techniques are used in the motor drive control algorithms. This literature survey exclusively compares the various advanced control techniques for conventionally used EV motors such as Permanent Magnet Synchronous Motor (PMSM), Brushless Direct Current Motor (BLDC), Switched Reluctance Motor (SRM), and Induction Motors (IM). Furthermore, this paper discusses the EV-motors history, types of EVmotors, EV-motor drives powertrain mathematical modelling, and design procedure of EV-motors. The hardware results have also been compared with different control techniques for BLDC and SRM hub motors. Future direction towards the design of EV by critical selection of motors and their control techniques to minimize the torque ripple and other research opportunities to enhance the performance of EVs are also presented.publishedVersio

    Super-twisting sliding mode control for brushless doubly fed reluctance generator based on wind energy conversion system

    Get PDF
    Introduction. Recently, wind power generation has grown at an alarming rate in the past decade and will continue to do so as power electronic technology continues to advance. Purpose. Super-twisting sliding mode control for brushless doubly-fed reluctance generator based on wind energy conversion system. Methods. This paper deals with the robust power control of a grid-connected brushless doubly-fed reluctance generator driven by the variable speed wind turbine using a variable structure control theory called sliding mode control. The traditional sliding mode approach produces an unpleasant chattering phenomenon that could harm the system. To eliminate chattering, it is necessary to employ a high-order sliding mode controller. The super-twisting algorithm is one type of nonlinear control presented in order to ensure the effectiveness of the control structure we tested these controllers in two different ways reference tracking, and robustness. Results. Simulation results using MATLAB/Simulink have demonstrated the effectiveness and robustness of the super-twisting sliding mode controller.Вступ. В останнє десятиліття виробництво вітрової енергії зростало загрозливими темпами і продовжуватиме зростати у міру розвитку технологій силової електроніки. Мета. Управління ковзним режимом суперскручування для реактивного безщіткового генератора з подвійним живленням на основі системи перетворення енергії вітру. Методи. У цій статті розглядається надійне керування потужністю підключеного до мережі безщіткового реактивного генератора з подвійним живленням, що приводиться в дію вітряною турбіною зі змінною швидкістю, з використанням теорії управління зі змінною структурою, яка називається керуванням в ковзному режимі. Традиційний підхід зі ковзним режимом створює неприємне явище вібрації, що може зашкодити системі. Для усунення вібрації необхідно використовувати регулятор ковзного режиму високого порядку. Алгоритм суперскручування - це один із типів нелінійного управління, представлений для забезпечення ефективності структури управління. Ми протестували ці контролери двома різними способами: відстеженням посилань та надійністю. Результати моделювання з використанням MATLAB/Simulink продемонстрували ефективність та надійність контролера ковзного режиму суперскручування

    Precision Control of a Sensorless Brushless Direct Current Motor System

    Get PDF
    Sensorless control strategies were first suggested well over a decade ago with the aim of reducing the size, weight and unit cost of electrically actuated servo systems. The resulting algorithms have been successfully applied to the induction and synchronous motor families in applications where control of armature speeds above approximately one hundred revolutions per minute is desired. However, sensorless position control remains problematic. This thesis provides an in depth investigation into sensorless motor control strategies for high precision motion control applications. Specifically, methods of achieving control of position and very low speed thresholds are investigated. The developed grey box identification techniques are shown to perform better than their traditional white or black box counterparts. Further, fuzzy model based sliding mode control is implemented and results demonstrate its improved robustness to certain classes of disturbance. Attempts to reject uncertainty within the developed models using the sliding mode are discussed. Novel controllers, which enhance the performance of the sliding mode are presented. Finally, algorithms that achieve control without a primary feedback sensor are successfully demonstrated. Sensorless position control is achieved with resolutions equivalent to those of existing stepper motor technology. The successful control of armature speeds below sixty revolutions per minute is achieved and problems typically associated with motor starting are circumvented.Research Instruments Ltd

    PI AND SLIDING MODE CONTROL FOR PERMANENT MAGNET BRUSHLESS DC MOTOR

    Get PDF
    This paper will compare properties of Sliding Mode Controlled (SMC) and classical Proportional Integral (PI) controlled brushless DC motor (BLDC) in applications. It is the simple strategy required to achieve good performance in speed or position control applications. This paper addresses controlling of speed of a BLDC motor which remains among the vital issues. A BLDC motor is generally controlled by Proportional plus Integral (PI) controller. PI controller is simple but sensitive to parameter variations and external disturbance. Due to this reasons, Sliding Mode Control (SMC) is proposed in this paper. This control technique works against parameters variations and external disturbances, and also its ability in controlling linear and nonlinear systems. Performance of these controllers has been verified through simulation using MATLAB/SIMULINK software. The simulation results showed that SMC was a superior controller than PI controller for speed control of a BLDC moto

    Review on auto-depth control system for an unmanned underwater remotely operated vehicle (ROV) using intelligent controller

    Get PDF
    This paper presents a review of auto-depth control system for an Unmanned Underwater Remotely operated Vehicle (ROV), focusing on the Artificial Intelligent Controller Techniques. Specifically, Fuzzy Logic Controller (FLC) is utilized in auto-depth control system for the ROV. This review covered recently published documents for auto-depth control of an Unmanned Underwater Vehicle (UUV). This paper also describes the control issues in UUV especially for the ROV, which has inspired the authors to develop a new technique for auto-depth control of the ROV, called the SIFLC. This technique was the outcome of an investigation and tuning of two parameters, namely the break point and slope for the piecewise linear or slope for the linear approximation. Hardware comparison of the same concepts of ROV design was also discussed. The ROV design is for smallscale, open frame and lower speed. The review on auto-depth control system for ROV, provides insights for readers to design new techniques and algorithms for auto-depth control

    Some Permanent Magnet Synchronous Motor (PMSM) Sensorless Control Methods based on Operation Speed Area

    Get PDF
    This paper compares some sensorless Permanent Magnet Synchronous Motor (PMSM) controls for driving an electric vehicle in terms of operating speed. Sensorless control is a type of control method in which sensors, such as speed and position sensors, are not used to measure controlled variables.  The controlled variable value is estimated from the stator current measurement. Sensorless control performance is not as good as a sensor-based system. This paper aims are to recommend a control method for the PMSM sensorless controls that would be used to drive an electric vehicle. The methods that we will discuss are divided into four categories based on the operation speed area.  They are a startup, low speed, high speed, and low and high-speed areas. The low and high-speed area will be divided into with and without switching.  If PMSM more work at high speed, the most speed area that is used, we prefer to choose the method that works at high speed, that is, the modification or combination of two or more conventional methods
    corecore