104 research outputs found

    Compressed Skewed-Load Delay Test Generation Based on Evolution and Deterministic Initialization of Populations

    Get PDF
    The current design and manufacturing semiconductor technologies require to test the products against delay related defects. However, complex acpSOC require low-overhead testability methods to keep the test cost at an acceptable level. Skewed-load tests seem to be the appropriate way to test delay faults in these acpSOC because the test application requires only one storage element per scan cell. Compressed skewed-load test generator based on genetic algorithm is proposed for wrapper-based logic cores of acpSOC. Deterministic population initialization is used to ensure the highest achievable aclTDF coverage for the given wrapper and scan cell order. The developed method performs test data compression by generating test vectors containing already overlapped test vector pairs. The experimental results show high fault coverages, decreased test lengths and better scalability in comparison to recent methods

    Low-Capture-Power Test Generation for Scan-Based At-Speed Testing

    Get PDF
    Scan-based at-speed testing is a key technology to guarantee timing-related test quality in the deep submicron era. However, its applicability is being severely challenged since significant yield loss may occur from circuit malfunction due to excessive IR drop caused by high power dissipation when a test response is captured. This paper addresses this critical problem with a novel low-capture-power X-filling method of assigning 0\u27s and 1\u27s to unspecified (X) bits in a test cube obtained during ATPG. This method reduces the circuit switching activity in capture mode and can be easily incorporated into any test generation flow to achieve capture power reduction without any area, timing, or fault coverage impact. Test vectors generated with this practical method greatly improve the applicability of scan-based at-speed testing by reducing the risk of test yield lossIEEE International Conference on Test, 2005, 8 November 2005, Austin, TX, US

    Transition Faults and Transition Path Delay Faults: Test Generation, Path Selection, and Built-In Generation of Functional Broadside Tests

    Get PDF
    As the clock frequency and complexity of digital integrated circuits increase rapidly, delay testing is indispensable to guarantee the correct timing behavior of the circuits. In this dissertation, we describe methods developed for three aspects of delay testing in scan-based circuits: test generation, path selection and built-in test generation. We first describe a deterministic broadside test generation procedure for a path delay fault model named the transition path delay fault model, which captures both large and small delay defects. Under this fault model, a path delay fault is detected only if all the individual transition faults along the path are detected by the same test. To reduce the complexity of test generation, sub-procedures with low complexity are applied before a complete branch-and-bound procedure. Next, we describe a method based on static timing analysis to select critical paths for test generation. Logic conditions that are necessary for detecting a path delay fault are considered to refine the accuracy of static timing analysis, using input necessary assignments. Input necessary assignments are input values that must be assigned to detect a fault. The method calculates more accurate path delays, selects paths that are critical during test application, and identifies undetectable path delay faults. These two methods are applicable to off-line test generation. For large circuits with high complexity and frequency, built-in test generation is a cost-effective method for delay testing. For a circuit that is embedded in a larger design, we developed a method for built-in generation of functional broadside tests to avoid excessive power dissipation during test application and the overtesting of delay faults, taking the functional constraints on the primary input sequences of the circuit into consideration. Functional broadside tests are scan-based two-pattern tests for delay faults that create functional operation conditions during test application. To avoid the potential fault coverage loss due to the exclusive use of functional broadside tests, we also developed an optional DFT method based on state holding to improve fault coverage. High delay fault coverage can be achieved by the developed method for benchmark circuits using simple hardware

    Multi-Cycle Test with Partial Observation on Scan-Based BIST Structure

    Get PDF
    Field test for reliability is usually performed with small amount of memory resource, and it requires a new technique which might be somewhat different from the conventional manufacturing tests. This paper proposes a novel technique that improves fault coverage or reduces the number of test vectors that is needed for achieving the given fault coverage on scan-based BIST structure. We evaluate a multi-cycle test method that observes the values of partial flip-flops on a chip during capture-mode. The experimental result shows that the partial observation achieves fault coverage improvement with small hardware overhead than the full observation.2011 Asian Test Symposium (ATS), 20-23 Nov. 2011, New Delhi, Indi

    Acceleration of Seed Ordering and Selection for High Quality Delay Test

    Get PDF
    Seed ordering and selection is a key technique to provide high-test quality with limited resources in Built-In Self Test (BIST) environment. We present a hard-to-detect delay fault selection method to accelerate the computation time in seed ordering and selection processes. This selection method can be used to restrict faults for test generation executed in an early stage in seed ordering and selection processes, and reduce a test pattern count and therefore a computation time. We evaluate the impact of the selection method both in deterministic BIST, where one test pattern is decoded from one seed, and mixed-mode BIST, where one seed is expanded to two or more patterns. The statistical delay quality level (SDQL) is adopted as test quality measure, to represent ability to detect small delay defects (SDDs). Experimental results show that our proposed method can significantly reduce computation time from 28% to 63% and base set seed counts from 21% to 67% while slightly sacrificing test quality

    On Flip-Flop Selection for Multi-cycle Scan Test with Partial Observation in Logic BIST

    Get PDF
    Multi-cycle test with partial observation for scan-based logic BIST is known as one of effective methods to improve fault coverage without increase of test time. In the method, the selection of flip-flops for partial observation is critical to achieve high fault coverage with small area overhead. This paper proposes a selection method under the limitation to a number of flip-flops. The method consists of structural analysis of CUT and logic simulation of test vectors, therefore, it provides an easy implementation and a good scalability. Experimental results on benchmark circuits show that the method obtains higher fault coverage with less area overhead than the original method. Also the relation between the number of selected flip-flops and fault coverage is investigated.27th IEEE ASIAN TEST SYMPOSIUM (ATS\u2718), 15-18 October 2018, Hefei, Chin

    Efficient Test Set Modification for Capture Power Reduction

    Get PDF
    The occurrence of high switching activity when the response to a test vector is captured by flipflops in scan testing may cause excessive IR drop, resulting in significant test-induced yield loss. This paper addresses the problem with a novel method based on test set modification, featuring (1) a new constrained X-identification technique that turns a properly selected set of bits in a fullyspecified test set into X-bits without fault coverage loss, and (2) a new LCP (low capture power) X-filling technique that optimally assigns 0’s and 1’s to the X-bits for the purpose of reducing the switching activity of the resulting test set in capture mode. This method can be readily applied in any test generation flow for capture power reduction without any impact on area, timing, test set size, and fault coverage

    A comprehensive comparison between design for testability techniques for total dose testing of flash-based FPGAs

    Get PDF
    Radiation sources exist in different kinds of environments where electronic devices often operate. Correct device operation is usually affected negatively by radiation. The radiation resultant effect manifests in several forms depending on the operating environment of the device like total ionizing dose effect (TID), or single event effects (SEEs) such as single event upset (SEU), single event gate rupture (SEGR), and single event latch up (SEL). CMOS circuits and Floating gate MOS circuits suffer from an increase in the delay and the leakage current due to TID effect. This may damage the proper operation of the integrated circuit. Exhaustive testing is needed for devices operating in harsh conditions like space and military applications to ensure correct operations in the worst circumstances. The use of worst case test vectors (WCTVs) for testing is strongly recommended by MIL-STD-883, method 1019, which is the standard describing the procedure for testing electronic devices under radiation. However, the difficulty of generating these test vectors hinders their use in radiation testing. Testing digital circuits in the industry is usually done nowadays using design for testability (DFT) techniques as they are very mature and can be relied on. DFT techniques include, but not limited to, ad-hoc technique, built-in self test (BIST), muxed D scan, clocked scan and enhanced scan. DFT is usually used with automatic test patterns generation (ATPG) software to generate test vectors to test application specific integrated circuits (ASICs), especially with sequential circuits, against faults like stuck at faults and path delay faults. Despite all these recommendations for DFT, radiation testing has not benefited from this reliable technology yet. Also, with the big variation in the DFT techniques, choosing the right technique is the bottleneck to achieve the best results for TID testing. In this thesis, a comprehensive comparison between different DFT techniques for TID testing of flash-based FPGAs is made to help designers choose the best suitable DFT technique depending on their application. The comparison includes muxed D scan technique, clocked scan technique and enhanced scan technique. The comparison is done using ISCAS-89 benchmarks circuits. Points of comparisons include FPGA resources utilization, difficulty of designs bring-up, added delay by DFT logic and robust testable paths in each technique

    Improved Path Recovery in Pseudo Functional Path Delay Test Using Extended Value Algebra

    Get PDF
    Scan-based delay test achieves high fault coverage due to its improved controllability and observability. This is particularly important for our K Longest Paths Per Gate (KLPG) test approach, which has additional necessary assignments on the paths. At the same time, some percentage of the flip-flops in the circuit will not scan, increasing the difficulty in test generation. In particular, there is no direct control on the outputs of those non-scan cells. All the non-scan cells that cannot be initialized are considered “uncontrollable” in the test generation process. They behave like “black boxes” and, thus, may block a potential path propagation, resulting in path delay test coverage loss. It is common for the timing critical paths in a circuit to pass through nodes influenced by the non-scan cells. In our work, we have extended the traditional Boolean algebra by including the “uncontrolled” state as a legal logic state, so that we can improve path coverage. Many path pruning decisions can be taken much earlier and many of the lost paths due to uncontrollable non-scan cells can be recovered, increasing path coverage and potentially reducing average CPU time per path. We have extended the existing traditional algebra to an 11-value algebra: Zero (stable), One (stable), Unknown, Uncontrollable, Rise, Fall, Zero/Uncontrollable, One/Uncontrollable, Unknown/Uncontrollable, Rise/Uncontrollable, and Fall/Uncontrollable. The logic descriptions for the NOT, AND, NAND, OR, NOR, XOR, XNOR, PI, Buff, Mux, TSL, TSH, TSLI, TSHI, TIE1 and TIE0 cells in the ISCAS89 benchmark circuits have been extended to the 11-value truth table. With 10% non-scan flip-flops, improved path delay fault coverage has been observed in comparison to that with the traditional algebra. The greater the number of long paths we want to test; the greater the path recovery advantage we achieve using our algebra. Along with improved path recovery, we have been able to test a greater number of transition fault sites. In most cases, the average CPU time per path is also lower while using the 11-value algebra. The number of tested paths increased by an average of 1.9x for robust tests, and 2.2x for non-robust tests, for K=5 (five longest rising and five longest falling transition paths through each line in the circuit), using the eleven-value algebra in contrast to the traditional algebra. The transition fault coverage increased by an average of 70%. The improvement increased with higher K values. The CPU time using the extended algebra increased by an average of 20%. So the CPU time per path decreased by an average of 40%. In future work, the extended algebra can achieve better test coverage for memory intensive circuits, circuits with logic black boxes, third party IPs, and analog units
    corecore