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The task of ensuring the correct temporal behavior of IC designs,

both before and after fabrication, is extremely important. It is becoming

even more imperative as the demand for performance increases and process

technology advances into the deep sub-micron region.

This dissertation tackles the key issues in the timing verification

and delay testing methodologies. An efficient methodology is presented to

identify false timing paths in the timing verification methodology which uti-

lizes ATPG technique and timing information from an ordered list of timing

paths according to the delay information. This dissertation also presents a

speed binning methodology which utilizes structural delay tests successfully

instead of functional tests. In addition, it establishes a methodology which

quantifies the correlation between the timing verification prediction and

actual silicon measurement of timing paths. This quantification method-

ology lays the foundation for further research to study the impact of deep

submicron effects on design performance.
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Chapter 1

Introduction

High performance Very Large Scale Integration (VLSI) circuits are

characterized by high complexity and large variations in component delays.

They are also required to operate at increasingly high clock speeds which

do not allow for much design margin. In such a scenario, it is imperative

and more challenging to ensure the correct operation of such circuits within

the allowed timing constraints.

Timing verification refers to pre-fabrication verification of the tem-

poral behavior of a design database. Delay testing, on the other hand,

refers to post-fabrication timing verification which subjects each chip to

functional or structural test vectors at the rated clock speed.

Timing analysis is at the core of the timing verification and delay

testing methodologies. The objective of timing analysis is to improve the

accuracy of critical path identification in a design cycle. For testing, timing

analysis improves the selection of critical paths for delay test generation.

This goal of testing is important as it guarantees that the device fully meets

customer performance expectations.
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1.1 Scope of the Thesis

We first describe the problems that are being addressed in this the-

sis, then define the scope of the thesis.

• False Path Identification

In industry, static timing analysis or structural timing analysis (STA)

is the dominating approach in the design methodology to guarantee

that the chip design meets the specified clock frequency before the

actual fabrication. This structural approach can be very efficient. It

scales well with complex, high performance circuits.

The downside of STA is that a transition is assumed to propagate

along a path without verifying that there is indeed some pattern of

input stimuli that could sensitize the path. A path is considered

sensitizable if a transition at the head of the path (launch point) can

be propagated to the tail of the path (capture point). The transition

may not be sensitized due to unsatisfiable logic conditions. This is

the false path problem with the structural analysis [21]. The false

path problem could result in a large percentage of identified paths

being unsensitizable.

• Speed Binning Utilizing Structural Tests

Speed binning is used to sort working ICs based on their performances

and to assign them to appropriate price points. The use of functional

vectors has been an industry standard for speed binning of high-

performance ICs. This practice can be prohibitively expensive as ICs

become faster and more complex. In comparison, structural patterns
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target performance related faults in a more systematic manner, which

makes structural testing an attractive alternative for speed binning.

• Pre-silicon and Post-silicon Timing Path Correlation

The lack of correlation between pre-silicon prediction and post-silicon

measurement of timing paths highlights the disconnect between the

design methodology and silicon bring-up efforts. During pre-silicon

timing verification, a set of critical timing paths, S1, is identified.

Engineering efforts are then spent optimizing S1. During the post-

silicon phase, often a different set of critical timing paths S2, which

gates the speed of the silicons, is identified. Trade-offs of power and

area to speed up timing paths in S1 during optimization do not nec-

essarily translate into speed-up for timing paths in S2, which gate the

performance of the actual silicons. This is caused by process varia-

tions, power noise, crosstalk, thermal effects etc., [24] [27][56], and

also sometimes certain design practice contributes to the situation as

will be described in Chapter 4.

To tackle the above listed problems, the principal contributions of

this thesis are detailed below.

• Efficient utilization of automatic test pattern generation (ATPG)

technique and timing information for false path identification in the

timing verification methodology.

• Replacing functional tests with structural tests for speed binning.
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• Quantification of the correlation between the pre-silicon predictions

and post-silicon measurements of timing paths.

Before we discuss the specifics of the research of this thesis, we

describe the background and related work on timing verification and delay

testing.

1.2 Background and Related Work

1.2.1 Timing Verification

Timing verification determines the maximum delay of the circuit

under some given component delay model. It also reports the critical tim-

ing paths with the maximum delay in the circuit. A critical (timing) path

is a path in a circuit, which due to its cumulative delay, limits the oper-

ation of the circuit at the desired speed [73]. This critical (timing) path

information can be used to decrease the delay of the circuit during per-

formance optimization if the circuit violates some timing constraints. The

terms timing paths and paths will be used interchangeably in this thesis.

The problem under investigation is the determination of the max-

imum delay at which the sequential circuit can be clocked, given the in-

dividual component delays, set-up and hold constraints, clock skews, etc.

It has been generally carried out in two phases: determining the delays

of the combinational blocks of the circuits, then calculating the minimum

feasible clock period of the whole circuit.

To determine the delay of a combinational logic block, there are two

broad categories of techniques [73]: timing simulation (also called dynamic
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timing verification) and timing analysis.

1.2.1.1 Timing Simulation

The timing simulation approach simulates the logic functions on

each gate and propagates signals through the gates based on the gate func-

tions and the signal delays. This approach relies on input patterns which

are impossible to generate for all of the paths since the number of paths can

be exponential with respect to the number of inputs. Accurate gate delay

estimation depends on many factors from the gate-specific capacitance and

slew rate to factors like voltage, temperature and process variations [55]. It

is also prohibitively expensive to perform delay simulation of paths at the

chip-level. Due to the above reasons, timing simulation is generally used

for detailed timing characterization for library cells and custom designed

circuits.

1.2.1.2 Timing Analysis

Structural timing analysis obtains bounds on the maximum delay

of a circuit by analyzing the topological structures. To estimate the delay

of timing paths in a circuit, certain assumptions of gate delay models need

to be made. The simplistic gate delay model is the fixed delay model, where

the delay of each gate is assigned a single delay value. A bounded delay

model assumes that each gate delay can vary independently of each other

in a range [22]. More refined delay models take into consideration that the

delay may depend on the fanout [60][62], or on the transition propagated

through the gate (rising or falling) [67][74]. In [12], authors present a delay

model that includes gate inertia, i.e., the impulse at an input must be
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long enough to change the value at the output of a gate. In [63], authors

take into consideration electrical phenomena at the transistor-level and

determine the gate delay based on values and transitions at nodes that do

not belong to the path, or that are visible only at the transistor-level.

Structural timing analysis attempts to efficiently process the ex-

ponential number of timing paths in the circuit using linear structural

algorithms which do not take into consideration the circuit functionality.

It is generally used iteratively to allow the timing issues with a certain

number of critical timing paths fixed before it is run again to generate

another set of critical paths. Unfortunately, not all the timing paths iden-

tified using such analysis can be sensitized since functional information of

the circuit is not taken into consideration. The cost of optimization and

iteration is expensive without any performance improvement when spent

on optimizing unsensitizable paths. It leads to underestimation of the cir-

cuit speed, and becomes worse as the demand for the higher performance

circuits grows. An unsensitizable critical timing path becomes a bottle-

neck to time-to-market and translates into trading power and area for a

perceived but nonexistent performance gain.

There has also been much work on sensitization criteria and al-

gorithms to find the maximum circuit delay. Benkoski et al. [6] have

proposed a static path sensitization criterion. A viable criterion is defined

in [54] where the side-inputs of the path under consideration either settle

to non-controlling values or terminate a viable path under the test with

larger (or equal) delay. In [15], authors have defined conditions for vigorous

sensitization of a path.

In industry, designers perform timing analysis to find the frequency
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at which the design should work correctly after manufacturing. Timing

analysis requires information about a design’s logic gate and interconnect

delays. For a design using standard cell libraries, the library description

provides information about logic gate delays. For custom-designed logic,

a thorough circuit simulation provides the logic gate delays. Interconnect

delays are either estimated from the interconnect’s dimensions (leading to

an estimate of the associated resistance and capacitance), or the resistance

and capacitance values are extracted from the design layout with extrac-

tion tools. Because a design must operate over a range of voltages and

temperatures, and component delays vary with the operating voltage and

temperature, timing analysis is usually performed at various temperature

and voltage corners.

1.2.1.3 Statistical Timing Verification

As CMOS technologies continue to evolve and advance and mini-

mum feature sizes continue to decrease, circuit timing reflects many im-

portant effects such as process variations, power noise, crosstalk, thermal

effects, etc. These effects are hard to predict and model deterministically.

Statistical timing analysis and timing simulation approaches attempt to

better handle the deep sub-micron timing effects [2][9][45][46][49][56][59].

In the statistical approach, instead of fixed delays, delay variables

with correlated variations among themselves, will be used to produce a

statistical distribution, rather than best-case and worst-case models. This

approach attempts to predict the percentage of circuits that will run at a

given speed, while allowing the adjustment of timing criteria to reach the

acceptable mix of yield vs performance for a given IC design.
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Statistical timing verification is not the focus of this thesis.

1.2.2 Delay Fault Testing

At 0.13 micron and below, IC manufactures are starting to see more

defects that are not caught by traditional stuck-at fault testing [3]. Defects

like high impedance metal, high impedance shorts and crosstalk are not

caught by traditional stuck-at tests. Instead they show up as timing failures

that can only be caught by at speed testing. These defects are called timing

defects, compared to logic defects which cause the failures of the circuit

functionality. One study on a microprocessor design shows that if scan-

based at-speed tests were removed from the test program, the escape rate

went up nearly 3% [71]. Another study carried out at Standford University

showed that, for 0.7 and 0.35 micron technology respectively, the detection

of 30% to 35% of defective parts of circuits designed with standard cells

depended on at-speed tests. Also 3 out of 116 defective parts would be

missed when tested at slower than the expected operating speed at normal

operating voltage [78].

The two at-speed fault models most widely used today include the

path delay model and the gate fault model [18][32][33][34][67]. Path delay

tests target faults which model manufacturing defects or process problems

that can cause cumulative delays along the design’s critical paths. Gate

fault tests target faults which model manufacturing defects at the inputs

and output of a gate. Under the gross delay fault model, a gate fault can be

detected along any path, while under the small gate fault model, faults of

different sizes are detected along different paths. Research has been done

to propagate transitions along the longest paths [35][60]. A comparison

8



between the gate fault model and the path fault model is presented in [38].

Other at-speed fault models include segment delay fault [29][30].

At-speed path delay or gate fault tests require test patterns with

two parts. The first part launches a logic transition value along a path,

and the second part captures the response at a specified time determined

by the system clock speed. If the captured response indicates that the logic

involved did not transition as expected during the cycle time, the path fails

the test and is considered to be defective.

Two types of scan methods can be used for at-speed testing: launch-

off-shift and broadside [44]. In the launch-off-shift method (Fig. 1.1), the

last shift of the scan chain load also launches the transition event. The

critical timing is the time from the last shift (or launch) clock to the capture

clock. The figure also shows the launch clock is skewed so that it is late

in its cycle, and the capture clock is skewed so that is is early in its cycle.

This skewing creates a higher launch-to-capture clock frequency than the

standard shift clock frequency. The main advantage of launch-off-shift

method is that it only requires the ATPG tool to create combinational

patterns, which are quicker and easier to generate. The main disadvantage

(for mux-DFF designs) is that it imposes restrictions on the routing of the

SE signal. The SE signal must switch from 1 to 0 very quickly, because

after the second pattern (a shifted version of the first pattern) appears at

the flip-flop outputs, the tester must capture the circuit response in a time

equal to the system clock cycle time. One way to meet this requirement

is to route the SE signal as a clock tree. However, routing another high-

speed signal with clock-like accuracy, in addition to the clocks required for

system operation, can be expensive. An alternative is to use a pipelined

9
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Figure 1.1: Launch-off-shift pattern timing

approach for SE signal distribution. Also the nonfunctional logic related

to operating SE at a high frequency can contribute to yield loss. Another

downside is that it could detect non-functional delay faults and scan chain

shifting is usually done at lower frequencies.

In the broadside method (Fig.1.2), the entire scan data shifting can

be done at slow speeds in test mode, and then two at-speed clocks are

pulsed for launch and capture in functional mode. Once the values are

captured, the data can be shifted out slowly in test mode. This method

also allows using the late and early skewing of the launch and capture clocks

within their cycles. The main advantage of this broadside approach is that

the timing of the SE transition is no longer critical, because the launch and

capture clock pulses occur in functional mode. Adding extra dead cycles

after the last shift can give the SE additional time to settle. Another

advantage of broadside approach is that it does not require scan chains

to shift at-speed. From the design point of view, this makes broadside

method simpler to implement.The ATPG problem is now sequential, as a

result more faults can be detected in functional mode. The downside is
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that the test generation time can be longer and a higher pattern count

might result. In this thesis, we use broadside scan method to apply our

at-speed tests.

There are two main sources for the at-speed test clocks for test

application: external ATE and on-chip clocks. Traditionally, ATE has al-

ways supplied the test clocks. However, the cost of the tester increases as

the clocking speeds and accuracy requirements rise. The second source of

clocks come from inside the chip itself. An IC design includes a phase-

locked loop (PLL) or other on-chip clock generating circuitry. Because

the purpose of a delay test is to verify that the circuitry can operate at a

specified clock speed, it makes sense to use the actual on-chip functional

clocks. On-chip functional clocks are not only more accurate, but also

avoid the problem of importing high-speed clock signals into the device.In

this scenario, the tester provides the slower test shift clocks and control sig-

nals, and the programmable on-chip clock circuitry provides the at-speed

launch and capture clocks. Using these functional clocks reduces the ATE

requirements, enabling the use of a less expensive tester. An example of
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a programmable PLL is shown in Fig.1.3, combinations of system clock

(System clk) and scan clocks (Scan clk1 and Scan clk2) are used to gen-

erate the internal clock signals feeding to the design core (Clk1 and Clk2).

1.2.2.1 Transition Fault Tests

Transition faults include slow-to-rise or slow-to-fall faults placed at

the inputs and output of each gate. The number of transition faults in a

design scales linearly with the size of the design. In order to detect a tran-

sition fault, an ATPG tool operates under the gross delay fault assumption

and does not necessarily travel the longest path which limits the maximum

operating frequency. So in general, a transition test may not always ex-

pose a small delay fault along a critical path. As a result, in a fixed-cycle
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testing scheme, a good portion of the transition tests are not suitable for

delay defect testing if the paths being tested are too short compared to

the functional cycle time. There have been many research attempts to

overcome this problem [35][60][79].

1.2.2.2 Path Delay Tests

The path delay fault model concerns itself with propagation delays

along one or more paths exceeding the timing constraint. A path is said to

have a delay fault if the delay of the path is greater then the given timing

constraint, and this excess delay is the size of the path delay fault. This

model does not try to assign the excess delay to any sub-path or point-

to-point connection. It also makes no assumption about the individual

component delays. Path delay fault model is general enough to include the

gate delay fault model.

An often-cited hurdle for path-delay testing is the large number of

paths that a combinational circuit can have. In [65], it is shown that the

number of paths can be an exponential function of gates. For example, the

benchmark circuit c6288 [10] is known is have 1.98 x 1020 paths [73]. To

contain the so-called path explosion problem in path delay testing, several

criteria for selecting paths have been proposed. In [43], an algorithm is

given that identifies a set of paths including the longest delay path through

every net. Realizing that some selected paths may be untestable, authors

generate tests for longest delay testable paths through all the nets [60].

Vigorous path sensitization criteria are developed where the timing of side

inputs of delay paths are taken into consideration [15].

There are different types of path delay tests. Some of the path delay

13



tests are called robust tests [17][67]. A robust test is supposed to detect a

delay fault it targets regardless of the presence of other delay faults in the

circuit under test. A non-robust test [17][67] is guaranteed to detect the

fault it targets only if no other delay faults affect the circuit. Since non-

robust tests are prone to fault masking, test generation procedures select

robust tests (e.g., [14][50][53][60][64][66]). A non-robust test for a path will

still be valid if we can guarantee that the side-paths which can invalidate

the test are delay fault-free. Such a non-robust test is called a validatable

non-robust testable. It has been shown that up to 43% of the paths in

the ISCAS85 benchmark circuits are not even non-robustly testable [17].

Considerable work has been done to classify these remaining non-robustly

testable paths based on delay fault testability. One such classification is

shown in Fig. 1.4.

The set of path delay faults in a circuit can be divided into those

that are functionally sensitizable and those that are functionally redundant.

A non-robust untestable delay fault can still affect the timing of a circuit

if it may be sensitized along with other non-robust untestable delay faults.

These delay faults are considered functionally sensitizable [17], or multiply-

testable [26]. Functionally redundant path delay faults correspond to those

paths that cannot be sensitized for any combination of component delay

values.

1.2.2.3 At-Speed Memory BIST Test

Testing of on-chip memories requires delivery of a huge number of

pattern stimuli to the memory and the readout of an enormous amount of

cell information [11]. As the number of memory bits per chip continues
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Figure 1.4: A Classification of Path Delay Faults

to increase exponentially and fault sensitivity increases, memory faults

become more complex. As a result, applying any memory testing algorithm

of complexity higher than O(n) becomes prohibitively expensive [11].

With memory BIST, the entire memory testing algorithm is imple-

mented on-chip, and operates at the speed of the circuit, which is 2 to

3 orders of magnitude faster than a conventional memory test [28]. The

following test hardware is needed for memory BIST (Fig. 1.5):

• A memory BIST controller.

• An Address decoder.

• A MUX circuit feeding the memory during self-test from the con-

troller.

• A comparator for response checking.
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• A Background Pattern inserter or Data Generator for inserting test

patterns into memory columns.

If memory BIST related logic is conditioned to run at functional

speed, memory BIST can be used to catch timing related faults inside the

memories. This is especially important for high performance ICs in which

the custom designed memories gate the frequency.

16



1.2.2.4 BIST for Delay Faults

It is also possible to test circuits for timing delays using BIST [11].

A delay fault BIST testing system has the standard BIST architecture,

but with a hybrid pattern generator optimized to test both stuck-at faults

and delay faults. While pseudo-random vectors provide good coverage of

stuck-at faults, they can also cover a large percentage of transition faults

if applied at high speed. Coverage of path delay faults frequently requires

additional circuit modifications. When pseudo-random patterns are ap-

plied to the circuit, some long combinational paths that are non-functional

in the sequential mode can be activated. When this happens, BIST can

produce timing failures even in a circuit that meets the functional timing

requirements. In such cases, the clock rate of BIST should be lowered below

the specification. A suitable clock rate can be found by timing simulation.

The power consumption of at-speed BIST can exceed the power rating of

the chip. This is because of the high signal activity that random vectors

cause in some circuits. Both peak and average power for BIST should be

analyzed and corrected. BIST for delay faults technique is not the focus

of this thesis.
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Chapter 2

Utilizing ATPG Technique and Timing

Information for False Path Identification

In this chapter, false path identification(FPI) techniques are dis-

cussed. First we have the following definitions.

A critical timing path (P ) is characterized by a set of n nodes

x1, x2, . . . , xn and a set, T = {t1, t2, . . . , tn}, of signal transitions such that

ti ∈ T represents the logic value transition on xi. Node xi is called a path

input for path P . Many of these path inputs are associated with gate

devices gi of path P which can have other inputs which are called side

inputs. The transition ti of each node xi is characterized by a pair of

booleans 〈bi, ai〉 where bi and ai are the initial (or before) and final (or

after) boolean values at node xi, respectively. bi and ai are always comple-

mentary to each other, since we are concerned with the signal transition

on every node along the path. {b1, b2, . . . , bn} is called the Before set and

{a1, a2, . . . , an} is called the After set. The time frame associated with

the application of the before set is considered the previous time frame,

while that associated with the application of the after set is the current

time frame.

In Fig. 2.1, there are 8 library cells and/or custom macros in the

circuits, path inputs x1, x2, ..., x7 of gates g1, g2, ..., g8, go through transi-
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Figure 2.1: Critical Timing Path

tions < 0, 1 >, < 1, 0 >, < 1, 0 >, < 1, 0 >, < 0, 1 >,< 1, 0 > and < 1, 0 >.

Gates gi can have other inputs like x9 for gate g3, x10 for gate g4 which are

side inputs of the bold-faced path in the figure.

Definition: a false path is a path along which a specified logic tran-

sition cannot be sensitized.

Timing paths identified using structural timing analysis are consid-

ered to start from the launch point and end at the capture point. Each

node xi is either the primary input or output of a sequential element, li-

brary component or custom macro. xi depends combinationally upon a set

of sequential elements and primary inputs. Timing paths with outputs of

sequential elements as their launch points and inputs of sequential elements

as their capture points are called latch to latch timing paths.

Timing paths are generally listed in the timing reports based on

their timing slacks. Timing slack is defined as the required arrival time

minus the actual arrival time at a capture point of a timing paths. Static

timing analysis can be configured to run so that only the single worst case

timing path is generated for each capture point in the circuit. These paths
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are called main paths. Main paths can be ordered based on their timing

slacks at the capture points with the path with the worst slack showing up

first in the report.

Besides the main path for a particular capture point, paths con-

verging to the same capture point, with differences in timing slacks from

that of the main path within a given threshold can be generated. These

paths are called subpaths. Subpaths and their corresponding main path

form a group of converging paths.

2.1 Environment for False Path Identification

Certain assumptions need to be made about the environmental con-

dition of a logic block before analyzing the stand-alone operation of such

a block. Such assumptions include the range and arrival of primary in-

put vectors to the block. A single-stepping transition mode of operation

[22][23] is used where all circuit nodes are assumed to have stabilized to

their final values under the first input vector before a second primary input

vector is applied. This reflects the assumption that the block of interest

is embedded in a scan latch/flip-flop based synchronous sequential system

(Fig. 2.2). In this setting, a particular timing path could be false due to

the following.

• local constraints: logic constraints of the block containing the path,

• external/environmental constraints: constraints imposed by the

logic feeding the latches which surround the block containing the

path.
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Figure 2.2: Logic Constraints

As shown in Fig. 2.2, paths P1 and P2 are two timing paths under

consideration. Designs built with a test methodology which inserts scan

latches between a block and its surrounding logic are considered. The

latches are illustrated using shaded boxes in the figure. We can see the

following.

• Path P1 is false since d feeds into both the and and or gates. It

violates local constraints.

• Path P2 is false and violates external constraints if s and s′ are con-

strained by the surrounding logic to be one-hot.

In general, in a System On Chip (SOC) setting, block B can be a processor

itself or a peripheral device. Currently the analysis is restricted to local
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constraints within combinational blocks. An enhanced scan latch/flip flop

based environment is further assumed, where an arbitrary vector pair can

be applied to the combinational portion of a sequential circuit. With this

assumption, we are being conservative in identifying false paths.

2.2 Logic Path Sensitization

In order to check whether a transition can be sensitized through a

path P , we need to check if every xi on the path can take up the values

bi as well as ai, which is equivalent to checking the satisfiability of the

following Boolean functions.

• ea = True iff for all i, xi = ai can be justified simultaneously when

evaluated in the current time frame,

• eb = True iff for all i, xi = bi can be justified simultaneously when

evaluated in the previous time frame.

The subscripts in the above terms ea, eb help to indicate the eval-

uation of different criteria. We call the boolean function which checks the

satisfiability of all the ais the after value criterion, while the corresponding

one for bis the before value criterion.

Failing to satisfy any of the ai implies that P is combinationally

false. In Fig. 2.3, it shows a 2-input AND gate with inputs i1 and i2 and

output out. Let us consider the critical path section P (i1, out) and the

0 → 1 transition at i1. If at the same time, the transition on i2 can only

be 1→ 0, then out can not assume its final value 1. A delay of the 0→ 1

transition along path p cannot manifest at the capture point.
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Figure 2.3: False Path due to Violation of the After Value Criterion

On the other hand, failure to satisfy a given bi does not necessarily

make a timing path false. For example, in Fig. 2.4, for a 2-input AND

gate, having inputs i1 and i2 and output out. Let us take the critical path

{i1, out} and the 1 → 0 transition on both nodes. If i1, which is on the

critical path, is undergoing a 1→ 0 and the side input, i2, is undergoing a

0→ 1 transition then the before value criterion is not satisfied. But if the

transition on i2 happens before the transition on i1 (which is a possibility

since the path {i1, out} is the critical path) then there exists a functional

test for this delay path. To account for the effect of the side inputs, the

values in the before set only need to be checked when controlling values on

the side inputs of the corresponding gates are assumed.

The following criteria take into consideration the violation of the

before set when the side-nodes of path P have controlling values.
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Figure 2.4: Effect of side-inputs

• en = True iff respective non-controlling values can be assigned si-

multaneously at all side-nodes when evaluated in the current time

frame,

• erb = True iff xi=bi can be justified simultaneously in the previous

time frame for every xi where en is violated.

en corresponds to the evaluation of non-controlling value criterion

while erb corresponds to the evaluation of revised before value criterion.

Using this notation, the following algorithm, which we will refer to

as algorithm A, was presented in [7], [80].

Given a path P with ea, erb and en

if ea = false, then
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P is a false path (fa)

else if en = true then

P is an active critical path

else if erb = false

then P is a false path (frb)

else P is an active critical path

The labels in parenthesis represent the group of paths which are

identified false at a particular step in the algorithm. We also call the

false paths identified in algorithm A logically false paths since only logic

information is utilized for FPI. If a path is not identified as logically false,

we call it a logically active path. Besides logical false paths, there will be

other kinds of false paths identified as shown later.

In the above algorithm, an active path is a path which has not been

identified as a false path. An active path is not necessarily a true path

since the algorithm only identifies combinational false paths at this point.

2.2.1 Example Circuit

The circuit in Fig. 2.5 will be used to demonstrate the FPI process

using logic path sensitization criteria. There are 6 paths in Fig. 2.5.

• P1: rising transition through nodes “a”, “m”, “x”,

• P2: falling transition through nodes “a”, “m”, “x”,

• P3: rising transition through nodes “b”, “m”, “x”,

• P4: falling transition through nodes “b”, “m”, “x”,
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Figure 2.5: Example Circuit

• P5: rising transition through nodes “b”, “n”, “x”,

• P6: falling transition through nodes “b”, “n”, “x”.

Based on algorithm A, After value criterion (ea) is checked first. As

a result, paths P1, P3, P6 are identified as false (Fig. 2.6), while path P2, P4,

P5 are still considered active. non-controlling value criterion (en) is then

checked. Paths P4 and P5 both satisfy en and can be tested non-robustly

(Fig. 2.7). Path P2 violates en, but not revised before value condition (erb)

(Fig. 2.8). Based on logic sensitization criteria presented so far, path P2

is still an active path.

2.3 Slow Path Condition: False Path Identification
Using Logic and Delay Information

In general, due to reconvergent fanouts in the circuits, race con-

ditions between timing paths exist. In Fig.2.9, both side input nodes of

the AND gate S(i11), S(i12), along with the on-node i1, transition from 1

(non-controlling value) to 0 (controlling value) of the AND gate. Here ea

and erb are satisfied for both the inputs and the output of the gate, but en
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is violated since S(i11) and S(i12) assume the controlling value during the

current time frame.

In a race condition, more than one inputs of a gate on the path un-

der consideration (PUC) transition from the NCV (non-controlling value)

to the CV (controlling value). The input(s) of the gate in a race condition

(a) Path P1

(b) Path P3

(c) Path P6

Figure 2.6: Logical False Paths: Path P1, P3 and P6
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which are side-node(s) corresponding to the on-node ni of the PUC are

called S(nij). All the S(nij) for a PUC form a set SN. The path which

forms a race condition with the PUC at S(nij) is called P/S(nij). All the

S(nij) corresponding to P/S(nij) with longer delay than PUC form a set

SSN. SSN is a subset of SN .

(a) Path P4

(b) Path P5

Figure 2.7: Non-Robust Testable Paths: Path P4 and P5

In Fig. 2.9, due to the race condition between the transitions of the

paths associated with the inputs of the AND gate, the transition at the

output of the gate is associated with that of the faster path. So unless the

arrival times of the transitions associated with the side nodes of the AND

gate, S(i11), S(i12) are slower than that associated with the on-node i1,
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Figure 2.8: Path P2: violates en

the delay effect of the on-path will not be sensitized.

One way of deciding whether the transition associated with the on-

node is sensitized, is to keep track of the arrival time information at each

node during the race condition analysis. But since we have a timing report

generated already, we can utilize the delay information of timing paths

from the timing report efficiently.

Notice in Fig.2.9, since the path section from the output of the AND

gate to the capture point is shared among all P/S(n11), P/S(n12) and P ,

a slower arrival time at the side node S(n11), S(n12) implies that paths

P/S(n11), P/S(n12) have longer delays than path P .

Thus the condition when the on-path transition can be sensitized

in a race condition can be checked based on the delay information of con-

verging timing paths. For any timing path P , which may or may not be a

main path, we have the following theorem.

Theorem I: A timing path P with race condition(s), is a false

path if there is not a logically active P/S(nij) of longer delay than P at

any S(nij).

Proof: In Fig. 2.10, an “x” indicates a S(nij) node.

Take for example, two side-nodes S(n11), S(n12) and the corre-

sponding on-node n1 in a race condition. If either of the two side paths
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P/S(n11), P/S(n12) corresponding to S(n11), S(n12) has been identified as

logically false, then it would not help to sensitize the transition of path P.

If either of the two side paths P/S(n11), P/S(n12) corresponding to S(n11),

S(n12) is of shorter delay than path P , it would kill the propagation of the

transition on node n1.

The same condition needs to be true for all S(nij)s simultaneously,

otherwise P is a false path.

.

We call the condition defined in Theorem I the Slow Path Condition.

The false paths identified based on the slow path condition are not logically

false paths. Whether they can be sensitized depending on the delays of

other logically active paths.

It is straightforward to reason that a main path with a race condi-

tion violates Theorem I.

Corollary I. A main path P with a race condition is false.

To check Theorem I, we can identify the exact locations of race

conditions where ea, eb are satisfied, but en is violated. We can then

check if there are logically active paths of longer delays associated with

these nodes. This can be expensive. Instead, we identify the upper bound

of the locations of race conditions while allowing the PUC sensitization

using efficient structural analysis as follows. First we have the following

definition. Race condition intersection: an intersection node where

path P forms race condition with one of its converging path P ′ based on

the transitions propagated through path P and P ′.
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Corollary II. A timing path P with race condition(s) is false if a

race condition happens at a node which is not among the race condition

intersection nodes between path P and its converging paths with longer

delays.

The converging paths of P with longer delays can be identified from

the delay information in the timing report. Their race condition intersec-

tions with path P can be identified by comparing path nodes and checking

the transitions along the paths.

Corollary II avoids explicitly stating exactly where the race condi-

tions are, but provides an upper limit for them for path P to be sensitized.

We call this restricted subset of race condition intersection nodes RCIN.

If a converging path P
′

with longer delay is logically false, it cannot

help propagate path P at their intersection node(s). A path P with race

conditions is false if none of its converging paths with longer delays is

logically active. Thus we have Corollary III.

Corollary III. A timing path P with race conditions is false if

the corresponding converging paths of RCIN nodes are not logically active

paths.

We call the FPI condition defined by Corollary II, III a revised

slow path condition since it does not attempt to identify the exact loca-

tions of race conditions, only the upper bound. We called the final upper

bound identified using the above corollaries RSPN. Fig. 2.11 illustrates

the boundary of RSPN.
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Figure 2.11: Upper Bound Identified for Race Conditions
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2.4 Improved False Path Identification Algorithm

Besides ea, erb, and en already defined while describing Algorithm

A, we have the following additional definitions.

• es = True iff the set RSPN is non-empty,

• ern = True iff respective NCVs can be assigned simultaneously at

non-Sn nodes.

Item es is for the evaluation of the revised slow path criterion, while

ern is for the evaluation of the revised non-controlling value criterion.

We check if RSPN is empty when en is violated, to see if there are

race condition locations which still allow timing path P to stay sensitizable.

Corollary IV. A timing path P which violates en is false if RSPN

is empty.

In Corollary IV, when en is violated:

• either ea, erb is violated also, thus P is a logic false path,

• or race condition exists. Since RSPN is empty, P is a false path.

Additional logic checks need to be performed at nodes outside RSPN

to further perform FPI on path P.

Corollary V. A timing path P is false if ern is not satisfied for all

of its side-nodes outside RSPN.
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Corollary IV, V allow efficient identification of a false path without

specifying the exact cause of it being false. This allows earlier and more

efficient identification of false paths.

Given a path P with ea, es, ern and erb, Fig. 2.12 shows our im-

proved algorithm B. The labels in parenthesis represent the group of paths

which are identified false at a particular step in the algorithm.

The main advantages over algorithm A are the following.

• Additional false paths (fs and frn) are identified.

• The simultaneous checking of the satisfiability of en and ea to ensure

that a specific transition can be sensitized.

• The locations where erb is checked are identified efficiently using the

corollaries which do not take additional ATPG run time, compared

to being checked exactly where en is violated in algorithm A.

• The checking of ern after es is done at a node 6∈RSPN

• Paths which fail erb can be identified false as early as during the

checking of es.

2.4.1 Example Circuit

We reconsider the circuit in Fig. 2.5. The checking of After value

Criterion and Non-Controlling Value Criterion in our improved algorithm

B remains the same as that in algorithm A. We conclude that paths P1, P3

and P6 are false paths, while paths P4 and P5 can be tested non-robustly.
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ae faif = false, then P is false( )

ae enif and are true, then P stays active

es fs= false, then P is false(if )

f rnthen P is false( )

f rbthen P is false( )

ern es= false, while elsif is true

erb eselsif = false, while , are trueern

else

else

else P stays active

Figure 2.12: Algorithm B

Path P2 is identified to violate en. To further decide whether path P2 is a

false path, we need to utilize timing information. We will analyze timing

information under several scenarios.

Since there is only a single output of the circuit, all the paths from

the input signals converge at the output. Based on the transitions at the

path nodes, path P2 could form race conditions with path P4 and P5 at

node “b”, “n” (Fig. 2.13). The transitions associated with paths P2, P4

and P5 are labeled in Fig. 2.13. For example, at node “m”, path P2 and

P4 converge. The falling transition at node “m” is labeled with t(p2) and

t(p4).

Even though the potential race conditions at node “b” and “n”

could not happen simultaneously, that information is functional and is
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not available to timing analysis tool. Note both path P4 and P5 are non-

robustly testable, thus logically active. Consider the following scenarios of

timing information.

1. if path P2 is the main path at the output port, i.e., it has the worst

case timing out of all the converging paths, then revised slow path

criterion is violated (es is false). As a result, path P2 is false.

2. if path P2 is faster than either P4 or P5 or both, revised slow path

criterion (es is satisfied) path P2 is active.

Figure 2.13: Path P2 and Converging Paths: P4 and P5

We see since path P2 violates en, whether it stays active depends

on its timing relative to other timing paths.

2.4.2 Efficiency of Revised Slow Path Criterion

Revised slow path condition identifies the upper bound of locations

where race conditions could happen. This is especially true for our example

circuit since race conditions could not happen simultaneously at nodes “b”

and “n” due to the logic of the circuit.
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To appreciate the efficiency of our revised slow path criterion, we

perform the following calculation. Suppose a path P with 15 path nodes.

Only 4 of the intersecting path nodes of path P with other converging

paths, transition from NCVs to CVs of the corresponding gates. These are

fairly reasonable, conservative numbers based on the timing analysis of the

industrial circuit we experimented with. We need to perform the following

logic checking if we are to determine exactly where the race condition(s)

happen.

• Assume exactly 1 out of 4 intersecting path nodes forms race condi-

tion with another converging path (4).

• Assume exactly 2 out of 4 intersecting paths nodes form race condi-

tions with 2 other converging paths (6).

• Assume exactly 3 out of 4 intersecting path nodes forms race condi-

tions with 3 other converging paths (4).

• Assume exactly 4 out of 4 intersecting path nodes forms race condi-

tions with 4 other converging paths (1).

The numbers in the parentheses are for the number of logic checks that

need to be performed. We would need to perform a total of 15 (4 + 6 + 4

+ 1) logic checks to determine the exact locations of race condition before

checking whether the timing information at these race condition locations

satisfy the slow path condition requirements. We can see that the number

of logic checks required for slow path condition can quickly add up and

become prohibitively expensive.
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It should be noted that if we still decide to determine the exact lo-

cations of the race conditions after the tight upper bound of these locations

is identified using revised slow path condition, the number of corresponding

logic checking would be much reduced.

2.4.3 The Effectiveness and Limitation of Revised Slow Path
Criterion

In order to make sure timing requirements are met at all the capture

points of a circuit, the timing path with the worst delay at each capture

point, i.e., main path, is included in the timing analysis report. For each

corresponding capture point, other converging paths with differences in

timing slacks from that of the main path within a given threshold are also

included in the timing analysis report.

When handling the timing paths with worst timing slacks at each

capture point, revised slow path criterion prove to be very effective as will

be shown in our experimental results. We can normally identify tighter

upper bounds for race condition locations for a timing path P , compared

to just the intersecting path nodes of path P with other converging paths,

transitioning from NCVs to CVs of the corresponding gates.

On the other hand, the lower the rank of a timing path P is, or

the faster a timing path is, the less effective the criterion is. There is

because there would be many timing paths which are slower than path P ,

which converge at the same capture point. As a result, an upper bound of

race condition locations could not be achieved as effective as in the case

of more critical timing paths. Notice the application of our criterion is for

false timing path identification of critical timing paths where optimization
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of false paths is a more pressing issue.

2.4.4 Timing Accuracy

The comparison of timing slacks of paths depends on how accurately

delays are estimated. A threshold is needed to estimate how close the

timing slacks of two timing paths can be and still be differentiated. In a race

condition, if timing path P1 has a slightly faster timing than P2, P1 might

still be able to activate P2 if P1 ends up with slower timing in real silicon.

To accurately determine the threshold in timing analysis which can also

be used to differentiate two timing paths in silicon, correlation of timing

prediction of timing paths in timing analysis and timing measurement of

the corresponding paths in real silicon needs to be established.

2.5 A More Efficient Version of the Improved Algo-
rithm

In the first two steps of Algorithm B, logic checking of ea and the

satisfiability of ea, en simultaneously is carried out before the structural

checking es. To minimize ATPG run time, we need to minimize the amount

of logical checking and perform the structural checking as early as possi-

ble. We observe that the set of timing paths which fail the simultaneous

satisfaction of ea and en is the upper bound of all the false timing paths

we identified in algorithm B.

With ea, es, ern and erb, we propose algorithm C (Fig.2.14) for path

P . Similarly, the labels in parenthesis represent the group of paths which

are identified false at a particular step in the algorithm. The main efficiency

advantage of algorithm C over Algorithm B is that the upper bound of all
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es fs= false, then P is false(if )

enae are true,and if 

esae = false, while elsif is true

fathen P is false( )

ern ae eselsif = false, while are true, 

f rnthen P is false( )

erb f rbif = false, the P is false( )

else
then P stays active

else

else P stays active

Figure 2.14: Algorithm C

the false paths is identified by ea and en. This reduces the amount of

paths that need be checked by further logic conditions, especially ea. As

in algorithm B, the upper bound is further reduced by checking es.

Note that we perform es on more timing paths in algorithm C than

in algorithm B. This trade-off is minimal for structural analysis. Also,

paths which fail ea by itself and eb can be identified as early as during the

checking of es.

2.6 Bridging the Gap between the Physical Design
and Testing Model

To check criteria ea, erb and ern, we can set the corresponding values

at the nodes along the path simultaneously using commands in the ATPG

41



Design Block(XNOR2)
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I2(NOR2)
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din1

I3(OR2)

out
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Figure 2.15: Ports of Custom Design Blocks

tool. In the current methodology, most of the pre-characterized design

blocks are not gate level primitives understood by the ATPG tool. To

specify the nodes which are ports for these design blocks, we analyze the

gate-level models for the blocks to determine the gate primitives inside the

blocks which are connected to these ports.

We implemented a path extractor which analyzes all of the cus-

tom designs and extracts all of the paths associated between each pair of

input/output pins in a design.

For example, the design block in Fig. 2.15 is not a gate-level prim-

itive. It contains gate-level primitives I1, I2 and I3. Its input/output pins

IN1,IN2 and OUT would then be specified as the following.

1. IN1: /I1/din0, where din0 is an input port for I1,

2. IN2: /I2/din0, where din0 is an input port for I2,
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3. OUT : /I3/out, where out is an output port for I3.

There are 2 paths between IN1 and OUT , one is activated when

IN2 is 0, the other when IN2 is 1. Our path extractor would extract

both. We call a timing path with only library components along it a fully

specified logic path. A timing path through a complex custom design can

correspond to more than one logic paths. We will not label such a timing

path false unless we can identify every one of its logic paths to be false. In

this way, we are being conservative.

2.7 Experimental Results

We considered a circuit as being consisted of sub-circuits and RC

networks. The timing behaviors of the sub-circuits were pre-characterized

under numerous environmental parameters using transistor-level simula-

tion. The RC nets were for the estimation of interconnect timing behavior

using an extraction tool. Timing analysis was then performed on the whole

chip. The output of the timing analysis consisted of a set of critical paths.

We show our results on latch to latch timing paths, but our tech-

niques are generally enough to identify any type of false timing path. The

output of the timing analysis consisted of a set of critical paths along with

the transition for every node on each path. Our FPI engine post-processed

the generated outputs from the timing analyzer.

Our FPI engine translated timing paths into delay paths for ATPG

tools [80]. It checked the satisfiability of different criteria for the path by

setting the corresponding values at the nodes along the path simultane-

ously using the ATPG tool commands. Based on the status returned after
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running the ATPG tool with command files, we used our FPI engine again

to identify a list of false paths. For further logic checking, additional com-

mand files were fed to the ATPG tool and the log files from the ATPG tool

were analyzed.

# of Transistors Frequency # of IO pins # of latches Stuck-at faults
33 million 1Ghz+ 281 90k 6.2M

Table 2.1: Statistics for MPC7455

We ran our experiments on the circuit description for the MPC7455

microprocessor. Statistics are shown in Table 2.1. All runs were performed

on a 400MHz Ultra60 running Solaris 5.6 with 1GB memory. Three sets of

most critical timing paths were generated using the timing analyzer. We

simplified the issue by analyzing only most critical latch to latch timing

paths, but it was straightforward to extend the analysis to other kinds

of paths. The cycle time target was 950ps. The threshold for generating

subpaths was 3ps. The threshold for differentiating between the timing

slacks of two timing paths was set to be 0.5ps. Any two timing paths

with timing slacks of less than 0.5ps difference were considered to be of

comparable delay. False paths identified in different groups following the

convention described earlier are shown in Table 2.2.

Our additional checking of fs and frn was effective in identifying

false paths. This highlights the need of taking into consideration delay

information of the paths besides logic value justification when performing

FPI. The last column in Table 2.2 shows the number of false paths iden-

tified using algorithms B and C, both utilizing fs and frn, over algorithm
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False Path

Latch to Algorithms Identification

latch improvement

timing A B C of B, C

paths fa fa fs fn fb fs fa fn fb over A

61 6 6 9 5 0 12 3 5 0 3.3

332 26 26 36 6 0 54 8 6 0 2.6

566 54 54 56 6 0 95 15 6 0 2.1

Table 2.2: False Paths Identified using Different Algorithms

A. At least twice as many false paths were identified using fs and frn, or

at least 10% additional false timing paths out of the total timing paths

analyzed in all three sets of latch to latch timing paths. Note that only

fa was identified in algorithm A since identifying frb without structural

analysis information was expensive.

We can see that the number of false paths in different columns iden-

tified using algorithm C were different from those identified using algorithm

B. Structural analysis es was performed earlier in algorithm C allowing it

to identify false paths which were under category fa in algorithm B. This

results in the number under the fa using algorithm C being much less than

that using algorithm B. The number of timing paths which needed to be

checked using fa was also reduced. In general, algorithm C performed

much less logic checking than algorithm B, thus algorithm C took much

less time than algorithm B since the run time of the algorithms mainly

came from running the ATPG tool for logical checking. The run time for
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the 3 sets of timing paths was listed in Table 2.3. The ATPG abort limit

was set to 100.

latch to latch timing paths A (mins) B (mins) C (mins)
61 30 63 33
332 68 141 73
566 94 195 101

Table 2.3: Comparison of Algorithms

We see algorithm C requires comparable amount of time to algo-

rithm A, which is about 50% of what it took for algorithm B. With a set

abort limit, in the worst case, the overall run time scaled linearly with the

total number of paths. If the logic checking for most timing paths took

much less time than the abort limit, the ratio of overall run time for two

sets of timing paths could be smaller than the ratio of the numbers of

timing paths of two different runs. From Table 2.3, between the first two

data groups, the ratio of timing path number was 5.4 (332/61), while the

ratio of run time was 2.3. The same was true for comparison between all

of the data groups. The loading of the gate-level model required around 1

hour and was not included in the run time since it was an one-time cost

and was the same for all algorithms.

2.8 Conclusions

We demonstrate new techniques to perform false path identification

utilizing both logic and delay-based information of the paths in the circuit.

We were able to identify at least 20% false paths out of latch to latch main

paths and subpaths within the different groups of timing paths. The false
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path identification criteria using delay-based information identify at least

10% more false paths out of all the latch to latch timing paths.

Our algorithms can be applied using any commercial ATPG tool

and utilizing timing information from any static timing analyzer. Our

algorithm using delay-based information is particularly effective for iden-

tifying the false paths among the most critical timing paths where most

optimization efforts are spent.
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Chapter 3

Correlating Structural Tests with Functional

Tests for Speed Binning

3.1 Definition of Speed Binning

In general, the purpose of testing is to bin the tested ICs based on

certain criteria. Most of the research and industry work on testing has

focused on binning to identify defective ICs. Binning requires an efficient

and affordable mechanism to categorize the ICs. The mechanism to evalu-

ate the ICs needs to correlate with the characteristic that the tester wishes

to identify.

Speed binning is used to sort working ICs based on performance

to assign ICs to appropriate price points. It focuses on how fast the IC

can perform its intended functionalities. Typically, companies choose an

IC’s operating frequency to meet customer and marketing requirements,

as well as to make an economic trade-off between yield loss below the

operating frequency and the higher value of a faster design. In addition,

it is necessary to distinguish faster ICs to be sold as a higher operating

frequency. Speed binning runs tests at the highest rated functional speed

for each part. Parts are then separated according to the highest speed test

they pass, and then priced accordingly.
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3.1.1 Types of Speed Failures

There are two types of speed failures, one due to process variations,

another due to random defects. In a defect-free IC, relatively few crit-

ical paths dominate the maximum frequency over a range of parametric

variations in manufacturing and operating conditions. When parts fail be-

cause of process-related speed variation, many parts have their maximum

frequency dominated by a few critical paths.

Even when the process parameters of a manufactured part are within

an acceptable range, a delay defect caused by random events can appear.

If the delay added by a defect exceeds the timing slack of the path it lands

on, it may cause a timing failure also. Unlike process variation, a delay

defect can appear anywhere on the die and can turn any path into the

critical path gating the frequency of a IC, depending on how much extra

delay the defect introduces. Random delay defects can also exist on crit-

ical paths from normal process variation. Normal process variation has a

Gaussian distribution. Outliers to this Gaussian distribution fall outside

the envelope of normal process variation and are probably due to random

delay defects.

Random delay defects which increase interconnect resistance or cross-

talk sensitivity or that decrease supply voltage or clock skew can cause very

small delay defects. Many of the random delay defects can occur in ICs

which continue to operate above the desired frequency. These defects have

no impact on a product sold at a single frequency, but they can change the

bin a particular IC belongs in. So speed-binning strategy must account for

random delay defects as well as defects induced by process variations.

Speed binning is typically achieved with functional test patterns.
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Functional patterns target systematic speed failures caused by process vari-

ation. It is expected that systematic delay problems caused by process

variation will affect several paths of the chip (including critical paths) and

will hence be detected by functional test patterns targeted at exercising

the critical paths. However, functional patterns are expensive to develop.

The development of functional patterns require significant effort by the de-

sign team. Furthermore, there is no formal measure of their effectiveness

in assessing the true speed of a complex design. Applying functional pat-

terns at full system speed demands an expensive, full-function tester that

can provide a high degree of timing and edge accuracy. As designs become

faster and more complex, the cost associated with the development of func-

tional patterns and the cost of functional testers can become a tremendous

burden for the design team. So even though functional testing has the ad-

vantage of exercising the part in the way it can be exercised in the system,

writing functional tests that target thousands of paths would be beyond

the means of most projects.

In contrast to systematic defects, random delay defects can appear

anywhere on a part. Functional tests that exercise a design’s timing-critical

paths are useful for detecting random delay defects that happen to fall

along the targeted paths, but such tests are generally not sufficient. Struc-

tural tests, on the other hand, can be generated systematically to cover

the entire design.

3.1.2 Structural Tests for Defect Detection vs Speed Binning

Structural tests are generated automatically by ATPG tools. By

selecting a transition fault model and/or a path delay fault model, ATPG
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patterns can be used to measure the design’s overall performance. The fault

coverage of these ATPG patterns provides a succinct measure of pattern

quality. Moreover, it is much easier to debug ATPG patterns. Scan-based

structural tests can be applied with low-cost testers. While scan data may

require large amount of tester memory, fewer tester channels are required

and few, if any, high-accuracy functional channels are required.

Structural tests have been generally used for defect detection. In

[36], delay testing techniques are used to characterize delay-related defects.

The authors show that a reasonable defect level would not be achievable

without delay testing. In another paper [20], pragmatic application of

structural delay tests is described from early design cycle to post-silicon

phase. In [47], structural delay tests are applied at a wide variety of oper-

ating conditions for exploring the relationship between test frequency and

defect coverage. In [61], the author describes BIST implementation tech-

niques to achieve structural at-speed testing and he addresses important

timing setup issues from a logic BIST perspective.

The difference between utilizing structural tests for defect detection

and for speed failure detection or speed binning is the clock frequency at

which the test patterns are applied and the outputs of the IC are captured.

In general, test-only paths can be exercised during scan-based delay testing.

Delays along test-only paths are not necessarily guaranteed to meet the

clock cycle time and can be significantly slower. Thus when the tester

captures the response of the IC circuit after one clock period or very close

to that, it is possible that the destination latch will not correctly capture

the response of a transition sensitized along a very long test-only path.

The launch-on-capture approach to delay testing can minimize, but not
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eliminate this problem because it is difficult during ATPG to determine

whether the first pattern scanned into the latch is a valid system state

that can appear in the latches during functional operation.

If our goal is defect detection, we would allow the test-only paths

to be included in the delay tests if they provide additional delay fault

coverage. Even if these delay faults covered by test-only paths might not

affect the speed of the IC in functional mode, they can still pose a liability

issue to the overall lifetime of the IC circuit. As a result, the overall delay

tests including the test-only paths, will be applied at a frequency lower

than that of the clock frequency to allow signals propagating along these

test-only paths to have enough time to settle down before the logic values

at the outputs of the IC under test are captured. Structural delay tests

run at lower than full speed can still be effective in total defect control by

screening out a significant, measurable portion of defects.

If our goal is speed binning, we would only be interested in the

speed of the IC circuit under the normal mode of functional operation.

As a result, we would seek to eliminate test-only paths completely so that

the clock frequency can be applied at full speed to determine the overall

number of parts which meet frequency, and at higher than full speed to

determine parts to be sold at higher frequency.

To utilize structural tests for speed binning, previous results [4]

has shown the correlation between the frequencies defined by functional

test (functional frequencies), and frequencies defined by at-speed struc-

tural tests (structural frequencies), include at-speed memory tests, transi-

tion fault tests which do not go through arrays, and latch-to-latch path

delay tests. There are coverage holes left due to the lack of transition tests
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going through arrays, and due to the exclusion of timing critical paths other

than the latch-to-latch paths. In another paper [19], a linear relationship

between the frequency determined by functional tests and latch-to-latch

path delay tests is described. The authors establish a linear relationship

between the two frequencies given by the functional tests and the path de-

lay tests. Using that linear relationship, latch-to-latch path delay vectors

can be used for speed binning during the production phase. In this the-

sis, we investigate the correlations between functional frequency and the

frequencies obtained from various types of structural patterns.

3.2 Different Types of Structural Tests

For the purpose of our study, we consider the following types of

structural tests:

• At-speed memory BIST tests: also called ABIST for A(array)BIST.

We use the terms array and memory interchangeably in this thesis.

• Transition tests without going through arrays: also referred

as simple transition tests in this thesis.

• Transition tests going through arrays: also referred to as com-

plex transition tests in this thesis.

• Latch-to-latch path delay tests: also referred to as simple path

tests in this thesis.

• Memory and cycle-stealing path delay tests: also referred to

as complex path tests in this thesis.
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3.2.1 At-Speed Memory BIST Test

Memory BIST focuses exclusively on testing the logic inside the

embedded memory arrays and signals that touch the BIST circuitry, such as

BIST address/data muxes and fail/redundancy data collection downstream

of the memories. Memory BIST running at functional speed can catch

timing related faults inside the memories. This is especially important for

high performance ICs in which the custom designed memories gate the

frequency.

3.2.2 Transition Fault Tests without Going through Arrays

As noted in [4], typical transition test sets do not provide high

coverage in the logic associated with the custom memory arrays. The

difficulty of detecting transition faults that require going through arrays

stems from the fact that: (a) it is generally difficult to model memories

to ATPG tools, (b) those faults require longer test sequences and more

complex clocking. The detection of some transition faults requires going

through embedded arrays, either for control or for propagation.

3.2.3 Transition Fault Tests Going Through Arrays

A different set of transition fault patterns was generated that pro-

vided coverage in the logic associated with the custom memory arrays (as

well as the rest of the logic). It is important to note that many of the

frequency limiting paths in most industrial microprocessors are associated

with the custom memory arrays [4].
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3.2.4 Path Delay Tests

Static timing analysis (STA) can be used to generate a list of critical

paths. A path delay ATPG engine can then be used to generate path delay

tests for these critical paths. The advantage of this methodology is that the

critical paths identified by STA are the best candidates to expose subtle

timing issues. Note that the path delay fault universe is exponential with

respect to the size of the circuit. This makes it impossible for all the paths

to be tested completely. A limitation of path delay test based on critical

paths is that the critical paths identified by STA do not always determine

the IC’s speed. The accuracy of STA is affected by several physical factors

such as temperature, clock skew, interconnect delays and crosstalk effects.

To perform meaningful path delay tests, all the delay path types need to be

included. This includes not only the latch-to-latch paths, but also memory

and cycle stealing paths.

• Latch to Latch Path Delay Tests:

Latch to latch delay paths are launched from latch outputs and cap-

tured at latch inputs. This is the simplest type of delay path.

• Memory Path Delay Tests:

Memory paths are launched from the data output ports of the memo-

ries and captured at the latches, or they can be launched from outputs

of the latches and captured at the data input ports, address ports or

control ports of the memories. For example, Fig. 3.1 shows a rising

transition is launched from the data output port do 7[2] of a memory

with multiple read/write ports. The memory has a read-off value of
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Figure 3.1: Memory Path Delay with Transition Launched from Data Out-
put Port

0 at its output ports. As an example, to generate a test for this path,

an ATPG engine writes a 1 to one of the data input ports (di 0[2]) at

some address (ad w 0[0 : 4] = 00100), then performs a read operation

of the data value at the same address (ad r 7[0 : 4] = 00100). Since

do 7[2] has a read-off value of 0, a rising transition is formed as the 1

is read out. The ATPG engine also needs to propagate the transition

at the data output through the combinational logic to the input of a

latch. The complete test sequence obviously requires several clocks

to perform the write, read and latch capture operations.

• Cycle Stealing Path Delay Tests:

Cycle stealing is a necessity in many high-speed ICs. As an example,

consider a two-phase clock, latch-based design as shown in Fig. 3.2.

Here the transition on the delay path is launched on the rising edge

of the first c2 pulse. Depending on the delay of the combinational

logic in P1, the time at which the transition arrives at the first (C1)

latch varies. Likewise, the delay along P2 affects the arrival time at

the second (C2) latch. The combined path needs to meet a timing of

three half-cycles. In the simple case, P1 is a full cycle path (rise of
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Figure 3.2: A Cycle Stealing Path
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C2 through fall of C1) while P2 is a half-cycle path (must propagate

during second C2 pulse). If P2 fails to meet half-cycle timing, we can

steal time from P1 if P1 propagates in less than a full cycle. If P1

propagates in say, 0.8 cycles, then the data held in the middle (C1)

latch will be valid before the fall of C1. This can be used to get an

early start on P2 and thus close P2’s timing. When cycle stealing

is used, testing the individual paths separately does not suffice to

prove that the combined path will operate correctly at speed. An

at-speed test for P1 proves that P1 meets full-cycle timing. A test

would have to be applied at 20% beyond functional speed to validate

the 0.8 cycle timing in this example. Testing the combined path at

speed is a simpler way of validating the timing for these paths.

3.3 Correlating Structural with Functional Frequen-

cies

Our experiment targeted the same MPC7455 microprocessor, with

statistics shown in Table 2.1. Again, we used similar overall DFT strategy

which was described in [1][68][69].

Different types of scan tests were generated by several ATPG tools.

A simple set of transition test patterns which did not go through memories

had a fault coverage of 70% with around 13k patterns. A second, complex

set of transition test patterns which went through memories had a fault

coverage of 78% with around 12k patterns. Since the value of paths going

through test-only logic is highly controversial in the DFT community [13],

we eliminated these paths from these transition test patterns. The test-

only paths do not need to operate at the maximum chip frequency.
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We ran STA and selected the top 2490 critical timing paths. 1463

of them were core latch-to-latch delay paths, 91 of them were memory

paths, 230 were cycle-stealing paths. The rest of the 700 or so paths were

miscellaneous paths including those in the clock regen or precharge logic,

which were not suitable for delay test.

The path delay test coverage numbers are shown in Table 3.1. The

third column, path cov., was defined as the number of robustly and non-

robustly detected paths over the total number of paths under consideration

(PUC). The fourth column, Test eff., was defined as the number of detected

or undetectable paths over the total number of PUC.

Path types Paths Path cov. Test eff.
Latch to latch 1463 60% 96.7%
Memory 91 95% 100%

Cycle stealing 230 63% 100%

Table 3.1: Path delay coverage nums

3.3.1 Sample Module Results

14 production modules were used as an initial sample for this study.

The maximum frequencies of the various test types (functional, transition,

etc) were measured. The measurements of the frequencies were carried

out through shmooing on an Agilent 93000 tester. The parts were tested

at 1.3v under room temperature. We normalized all the frequencies using

the corresponding functional frequencies of the modules. The normalized

maximum frequencies of each module measured using different tests were

plotted in Fig. 3.3 through Fig. 3.5.
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Figure 3.3: Transition Test Frequency Distribution
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Figure 3.4: ABIST Frequency Distribution

The averages (AVE) and standard deviations (STD DEV) of the

normalized frequency data were calculated and shown in Fig. 3.3 through

Fig. 3.5. The corresponding Gaussian distribution curves were drawn. The

x axis of the Gaussian curves were divided into speed bins based on their

standard deviations. Here we used 0.5 of STD DEV as the width of the

speed bins. For example, in Fig. 3.3, the complex transition tests showed

a standard deviation of 1.80%. For these patterns, the bins would be 0.9%

wide. We then plotted the histogram of the normalized frequency data of

the modules. The numbers inside the boxes of the speed bin histogram

were the module numbers in the respective bins. The complex transition

tests which went through the memories provided the closest match to the

functional frequencies, 99.91% on average with 1.8% standard deviation.

The simple set of transition tests, which did not go through memories, on

the other hand, provided speed binning results 1.39% higher than the func-

tional results. This is understandable since the memories were associated
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Figure 3.5: Path Test Frequency Distribution
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with the most speed limiting paths. Note that these results are somewhat

improved over the earlier results reported in [4]. ABIST tests provided

speed binning results slightly lower and wider spread than those provided

by the transition tests. This validated the fact that the on-chip memories

gate the frequency of the chip.

The latch-to-latch path tests (Fig. 3.5) ran about 20% faster than

the functional tests. This is understandable in that most of the critical

paths are associated with the custom memory blocks. Clearly, generating

path delay tests through the custom memory blocks provided a better

indicator of module performance.

The complex path tests (memory paths plus cycle stealing paths)

ran about 3% faster than the functional tests. Given the limited number of

complex paths tested (145), these results seem to match the static timing

analysis results.

3.3.2 Wafer Probe Results

A larger data sample was collected from various sites on seven wafers

from a recent manufacturing lot. The data was collected from arbitrary

sites during wafer test on a Teradyne J973 tester. The raw data from

the tester showed a modest number of sites failing one or both sets of

transition tests (the transition tests failed at the slowest speed applied). A

small number of modules showed transition test results far slower than their

functional test results. These are believed to be caused by delay defects

(mostly gross-delay defects, a few small-delay defects). This underscores

the need for AC testing in order to achieve acceptable quality levels. Data

for these sites was discarded. Valid data was received for a total of 411 die.
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Due to a data collection error, complex path test data was only available for

207 of these 411 die. Distribution plots of different structural frequencies

normalized to the functional frequencies were shown in Fig.3.6 to Fig.3.9.

The complex transition tests still provided the closest match to the

functional frequencies (99.01% on average). At wafer probe, these patterns

ran 0.9% slower than the original 14 module sample (based on normalized

averages). The results were more variable with a 3.06% standard deviation

versus 1.80% from the module sample. The simple transition tests ran an

average of 1.9% slower than functional tests (98.10%). This differed from

the module results where these patterns ran 1.39% faster than the func-

tional tests. The simple transition tests ran 3.29% slower at wafer than

at module. The ABIST tests averaged 3.83% slower than functional test

(compared with 1.88% from the module sample). The simple path tests

ran much slower at wafer test. Where the module results had simple Pmax

averaging 19.44% faster than functional test, the wafer data shows simple

Pmax averaging 9.28% faster than functional. The complex path tests also

ran much slower at wafer test - averaging 7.88% slower than functional

tests (versus 3.36% faster in the module sample). Both types of path tests

ran over 10% slower at wafer probe than they had in the original module

sample. It can be observed that all of the test types ran slower (compared

with Fmax) at wafer probe compared to the original 14 module sample.

The complex transition tests were affected the least (losing less than 1%)

while the path tests were hit the hardest (running 10% slower). Possible

explanations for this include differences in hardware vintage, electrical en-

vironment, and thermal control. The wafer data was collected from newer,

faster lot than was used in the original module sample. The electrical en-
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Figure 3.6: Transition Test Frequency Distribution
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Figure 3.7: ABIST Frequency Distribution

Figure 3.8: Simple Path Test Frequency Distribution
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Figure 3.9: Complex Path Test Frequency Distribution

vironment is not as robust at wafer test as it is for module test. There are

also differences in cooling between wafer and module test.

3.3.3 Validation of Structural Tests

Fail data analysis could be carried out for parts/dies for which struc-

tural tests provided different frequency predictions than the functional test.

We carried out fail data analysis to see whether the structural tests caught

additional at-speed defects which were missed by functional tests. In other

words, whether structural tests were needed in order to achieve better at-

speed quality levels.

We saw from the data of normalized structural frequencies for out

sample module results, that part 7 was consistently predicted slow by all

the structural tests. Fail data analysis was carried out for part 7. The speed

limiting complex transition test for part 7 exercised BTIC logic which was

normally frequency limiting.

Analysis of fail data of many dies on wafer probe was carried out
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where the frequencies of complex transition tests were noticeably slower

than that of the functional tests. A few speed limiting critical paths were

identified related to the memory transactions of the processor. With the

process variations among all the dies used in our study, these few speed

liming paths gated the speed of over 88% of them. This demonstrated the

effectiveness of our complex transition tests, which included speed limiting

critical paths along with other tests which provide a good coverage of the

entire design.

3.4 Correlation of Structural with Functional Tests

for Speed Binning

Consider the simplest situation of speed binning using only 2 speed

bins: slow and fast bins, which are divided by cut-off frequency f. Ideally,

all the parts with frequencies faster than f can be placed correctly in the

fast bin, while all the parts with frequencies slower than f can be placed

correctly in the slow bin. Parts in the fast bin are sold for x amount of

money more per part than the parts in the slow bin.

In reality, it is possible for speed binning algorithm replying on a

particular type of test to misplace parts with frequencies faster than f into

the slow bin, while on the other hand, parts with frequencies slower than f

into the fast bin. Fast parts placed in the slow bin, called under parts, are

sold for x amount of money less than what they would have sold for. This

resulted in loss in profit. The slow parts placed in the fast bin, called over

parts, are sold for more money, but pose a potentially more serious problem

of parts being returned by customers because they ran at slower than rated

frequency. To avoid the more serious problem of customer returns, it is
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unavoidable to have some under parts. This is shown in Fig. 3.10. In fact,

a guardband is set to place all the over parts along with additional fast

parts into the slow bin. Essentially the guardband is a hedge against speed

binning errors.

As seen in Fig. 3.10, the tighter the guardband, the fewer fast parts

are under sold in the slow bin. As a result, a smaller profit margin is lost.

For example, if one million parts meet the minimum speed requirement

and are being speed binned before shipment. If the guardband can be

reduced from 3% to 2%, as a result, approximately 8% of the parts for

shipment moved into the next higher speed bin commanding an estimated

$50 higher price. This gives an average of $4 per part, a total of $4 million.

We can see that the tightening of guardband brings huge financial gains of

a product.

3.4.1 Sample Module Results

We compared the speed binning data of the structural tests with

the functional tests. Based on 2 speed bins among the 14 parts, their dis-

tribution was shown in Fig.3.11. In Fig.3.11, the ticks on x-axis (frequency

axis) were 10MHz apart. The frequency space between two nearby ticks

on the frequency axis was considered a speed bin, which we would use to

plot our frequency data for different parts. The production frequencies for

the 2 bins were fs and ff, where fs is for slow frequency and ff is for fast

frequency. They were decided by the customers. The guard band for fs was

30Mhz, for ff was 36Mhz. These were set by the functional tests. We used

them for all the tests under consideration. Based on the bin frequencies

and the corresponding guard bands, the parts which fell in each bin by
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different tests were shown in the Fig. 3.11. According to the functional

tests, there were 7 parts in bin1, 7 in bin2. Notice the guard bands resulted

in pessimistic frequency predictions. That was the reason why parts 11,

12, 14, which were within the guard band above ff, ended up in the slow

bin.

Among all the tests, we see that ABIST tests were pessimistic and

ended up putting more parts in the lower bin. The complex transition tests

had the same speed binning results as the functional tests. It is interesting

to note that even parts 7, 6, 8 which were outside the region of 3STD DEV

from the AVE in Fig. 3.6, the final binning results was not affected. The

more optimistic simple transition tests placed only part 12 differently from

the functional tests by predicting its frequency above the guard band of

the faster bin. We scaled the frequency axis of latch to latch tests by 1.2

based on the ratio of its AVE and functional test AVE shown in Fig. 3.8.

fs, ff and the corresponding guard bands are scaled. The speed binning

result using scaled frequency for latch to latch tests was different from

that using functional test in: a) part 13 failed both bins and would be

thrown away; b) part 11 was placed in the faster bin. On the other hand,

when we used complex path tests for binning, all the parts fell into bin2.

Scaling speed bins for the complex path tests did not make any difference.

We saw even complex path tests gave better frequency prediction for each

individual part than the latch to latch path tests, they gave worse speed

binning results if we scaled the speed bins for latch to latch path tests.
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3.4.2 Wafer Probe Results

To assess the suitability of the various structural tests for use in

speed binning, the wafer test data was used to speed bin the 411 die into

one of two bins (fast or slow). We will experiment with different settings

of speed bins. First the cut-off between slow and fast die was defined

arbitrarily as the average of the measured Fmax of the dies. For example,

if the average measured Fmax value was 1030 Mhz, parts at or above 1030

Mhz would be defined as fast while parts below 1030 Mhz would be defined

as slow. In practice, parts right around 1030 Mhz could be offered for sale

as operating at 1.0 Ghz - reserving a 3% guardband. The following tables

give the speed binning results for each of the test types. The 411 dies used

yield 232 “fast” parts and 179 “slow” parts based on the functional test

and the 3% guard band. Table 3.2 uses the average Fmax values as the

cut-off between slow and fast bins for all the structural tests. Table 3.3

uses the average of the corresponding structural test to assign a cut-off for

each particular test type.

The Under column lists the percentage of the 411 parts incorrectly

assigned to the “slow” bin based on a particular test type (“fast” part

errantly classified as “slow”). The Over column lists the percentage of the

411 parts incorrectly assigned to the “fast” bin. The GB column lists the

guardband that would be required in order for all of the parts in the Over

column to operate at their offered speed determined by the functional tests.

It can be seen that several of the test types produced moderately

good results (on the order of 5% each under and over with a 3% guardband

sufficient to protect against errors). Only the complex transition tests

produced acceptable results using the average functional frequency to pick
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Test Type Under Over GB
Complex Transition 7.5% 5.4% 1.8%
Simple Transition 18.7% 0.8% 1.1%

ABIST 34.8% 0.5% 1.8%
Simple Path Delay 0% 35.3% 10.3%
Complex Path 55.6% 0% 0%

Table 3.2: Speed Binning Results with the Average of the Measured Fmax

Test Type Under Over GB
Complex Transition 4.4% 6.6% 2.2%
Simple Transition 3.2% 6.1% 2.2%

ABIST 3.9% 5.4% 2.2%
Simple Path Delay 5.8% 7.3% 6.4%
Complex Path Delay 1.9% 4.8% 2.2%

Table 3.3: Speed Binning Results with the Average of the Corresponding
Structural Tests

the frequency cut-off. The simple path tests were the only tests that did

not produce acceptable results even when the average frequency of simple

path test was used. The complex path tests (with the average frequency

of complex path test as the cut-off frequency) produced the best results.

3.5 Conclusions

We show that good correlation can be achieved between the struc-

tural frequencies and functional frequency. Complex transition tests which

go through the memory arrays, not only provide speed limiting paths, but

also provide tests with good structural coverage of the entire IC. These

complex transition tests can catch additional speed failures which are

missed by the functional tests. Good speed binning results can be achieved
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using scan delay test patterns. For both the transition tests and path delay

tests, testing through the custom memory arrays provided better results.

Our results demonstrate that the usefulness of structural tests extends be-

yond defect detection, and into the characterization of the speed prediction

of high performance ICs.
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Figure 3.11: Speed Binning Data
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Chapter 4

Correlation between the Pre-Silicon Path

Prediction and Post-Silicon Path

Measurement

In order for STA to provide a good guidance for the selection of

critical paths for path delay test generation during the post-silicon testing,

it is important that the STA prediction of critical timing paths correlate

with the actual silicon measurement.

In general in a pre-silicon design environment, timing models used

for STA may not be correct and 100% complete due to many contributing

factors such as clock skew, process variations, inaccurate interconnect delay

models, impact of noise on delay, supply voltage drop, etc [24] [27] [56].

These factors affect the timing yield even more as the processing technology

advances into the submicron region.

In addition, due to the complexity and cost issues, the standard

industry design practice adds to the inaccuracy. For example, during man-

ufacturing, silicon undergoes many iterations to improve the speed of the

parts, like shrinkage of gate oxide and changing of transistor nodes. Often

these changes are not fed back to the characterization and timing analysis

process, as shown by the dashed line in Fig. 4.1, due to complexity and

resource issues. As a result, the delay numbers used by STA, which heavily

depend on the accurate characterization of the transistors and wire delay
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Figure 4.1: Deviation Between Timing Models and Silicons

models, are not likely to reflect those of real silicon. This would affect

the validity of STA runs at all design corners. As a result, the correla-

tion between the timing estimation of the pre-silicon timing models and

the timing measurements of the actual silicons is expected to be poor in

general. In order to predict the timing behavior of ICs accurately, a set of

test chips are needed to figure out the timing path with the worst delay.

In this thesis, we establish a methodology to study the correlation between

the STA prediction of the critical timing paths and the post-silicon delay

measurements of the same set of timing paths.
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4.1 Methodology for Correlation Study

To study the correlation of pre-silicon and post-silicon timing paths,

we use the following delay path selection and test generation methodology

(Fig. 4.2).

• Run chip-level STA to identify n paths with the worst timing slack.

n must be large enough (e.g. 2000-3000) to provide valid coverage.

• For each of the path Pi, i = 1,..., n, identified in the first step, perform

path delay ATPG to generate a sequence of patterns Ti that can be

used to load needed values into the scan chains, then to launch the

right signal values that will sensitize a given path, and finally capture

the response of the path into a latch that can be observed via scan.

• Each delay pattern is applied to each chip while varying the capture

frequency to determine the maximum frequency at which the test

will pass. Thus for every chip, we obtain a measured speed for each

path Pi, for i = 1, ..., n.

• Compare the predicted speed of Pi versus the average measured speed

of Pi for every chip, for i = 1, ..., n.

4.2 Study the Correlation between the Pre-silicon

Path Prediction and Post-silicon Path Measure-
ment

We carried out our experiment of correlation study using the same

MPC7455 microprocessor, with statistics shown in Table 2.1. Similar

78



Timing
Analysis

ATPG

Set of Path Delay Tests

Set of Critical Paths

Tester

Set of Delay Measurements

C
om

pare

Figure 4.2: Correlation Study Methodology

79



overall DFT strategy which was described in [1][68][69] was used for path

delay testing of timing critical paths predicted by STA.

STA was used to generate a set of critical timing paths (Fig. 4.2).

In general, STA could be run at different design corners with different pa-

rameters. We ran STA using nominal voltage and temperature conditions.

Also nominal pin-to-pin delays of library cells were assumed for the run.

After ATPG, the same path delay set as in Table 3.1 was generated. We

came up with 878 simple path delay tests and 231 complex path delay tests

[82][83].

Our experiment for correlation study was performed using 254 parts

from a recent production lot. Every path delay test was run individually

on every part. For each path delay test, the capture frequency was varied

to determine the shortest cycle time at which the test would pass. This was

repeated for each part. We collected data for the top 556 simple delay paths

and 206 complex delay paths for analysis. We could not collect the data

for all the path delay tests generated because many of them ran faster than

the maximum PLL frequency when run individually [77]. We presented

our data and data analysis based on the following series of questions they

answered.

4.2.1 Do the Measured and STA Predicted Speed Data Corre-
late?

To see the overall correlation between the STA prediction and the

measured speed data from the tester for all the paths, the measured speed

data from the tester is recorded and the average from different parts is

used as an indication of the speed of the path. The correlation data is
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Figure 4.3: Correlation between Measured and STA Predicted Speed Data

shown in Fig. 4.3. We see the correlation is generally poor. Note that both

frequency axises have been augmented.

4.2.2 Do the Measured and STA Predicted Path Ranks Corre-
late?

We will examine the correlation between the path ranks based on

STA, and those based on post-silicon measurements. At the pre-silicon

side, the ranks for paths can be inferred from STA. We will only consider

the path ranks of delay paths suited for delay testing. As a result, the path

ranks for our delay paths are different than those in the STA.

For example, consider the case when STA contains a total of 10

paths, where paths 1, 2, 3, 4, 6, 7, 8 can be tested through scan delay
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tests. The rest of the paths 5, 9, 10 are not suited for delay testing,like

the paths in the clock regen logic. The final ranks for the 7 delay paths

under our consideration will be 1, 2, 3, 4, 5, 6, 7. We call the path ranks

predicted by STA old ranks.

On the other hand, we rank the post-silicon paths based on their

delay measurements from the tester. We call the resulting path ranks based

on the delay measurements new ranks.

To check the correlation distribution of the path ranks between the

STA predicted and the post-silicon measured ones, concordance coefficients

are calculated for the delay paths including the simple and complex delay

paths.

The correlation of the two path ranks will be measured based on the

coefficient of concordance [25]. Given a set of k-tuples (r11, r21,...,rk1), (r12,

r22,..., rk2),..., and (r1n,r2n,...,rkn), which represents the k ranks assigned

to the n paths as a result of k different ranking experiments. Hence, rij

represents the rank assigned to the jth path during experiment i. The

coefficient of concordance (W) is a measure of the extent of association or

agreement of various k-tuples. W is defined as:

W = 12/k2n(n2 − 1) ∗
∑n

j=1
[(Rj − k ∗ (n+ 1)/2)2]

where Rj is the sum of the ranks assigned to r1j, r2j,..., rkj. When

W = 0, there is no correlation between the two ranks. When W = 1,

complete correlation exists between the ranks. In our case, k = 2 corre-

sponding to the two different ways of ranking the paths. For each part, the

difference between the two different path ranks would be path dependent.

Concordance coefficients can be calculated considering all the paths of each
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part to show the overall correlation for the part.

We also refer to coefficient of concordance as correlation coefficients.

The distribution of the difference between the predicted and mea-

sured path ranks can be investigated based on individual parts.

We treat rank difference as bins and plot the occurrences of paths

in them. Fig. 4.4(a), Fig. 4.5(a) show the occurrences of paths vs the cor-

responding rank differences for two different parts. We see the distribution

of Part 1 peaked around 40, while that of Part 2 have several peaks. Part

1 have better concordance coefficient (0.82) than that of Part 2 (0.63).

Note that paths with the biggest difference between the old and new

path ranks are at the tail end of the histogram distributions in Fig. 4.4(a)

and Fig. 4.5(a). We expect if we remove a given number of paths with the

biggest difference between the old and new path ranks from the calculation

of coefficients, the values of the concordance coefficients of the parts will

improve. Also when we remove a given number of paths from the coefficient

calculation, both the old and new ranks of the rest of the paths can also be

affected. The rationale is if a path was removed, then the paths which are

less critical than the removed path, become more critical upon the removal.

Thus the overall histogram distribution can change.

We show in Fig. 4.4(b) and Fig. 4.5(b), the new histogram of rank

differences if we remove the top 70 paths (about 10% out of 762 paths

including both simple and complex delay paths) for the same two parts.

We see the correlation between the two different path ranks increase sig-

nificantly for both parts, especially for Part 1. After removing the top 70

paths with the largest rank differences, the histogram for Part 1 becomes
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Figure 4.4: Histogram of Rank Differences for Part 1

tighter. This indicates that there are significant differences in ranks for a

small group of paths, which are largely responsible for the rank difference

for the rest of the paths. Once this small group of paths is removed, the

correlation of the path ranks for the rest of the paths improves greatly. In

comparison, Part 2 shows worse overall correlation between the 2 types of

path ranks since more paths correlate poorly.
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4.2.3 What Do the Correlation Distribution between Measured
and STA Predicted Path Ranks Look Like?

The concordance coefficients are calculated for all the parts. We

divide up the range of the concordance coefficients into bins. We show the

number of parts in different bins in Fig. 4.6(a).

The distribution of concordance coefficients for all the delay paths

peak around 0.74. This show that despite the differences between the

timing models and the real silicon behaviors, correlations exist between

the path ranks predicted by STA and those measured using silicon.

The concordance coefficients are recalculated, after the top 70 paths

with the largest path rank difference are removed for all the parts, and are

shown in Fig. 4.6(b).

Compare the results in Fig. 4.6(b) to those in Fig. 4.6(a), the dis-

tribution peak shift about 0.1, which is a significant improvement for the

concordance coefficient as a measurement of correlation.

Even though STA is run under voltage v1, the frequency measure-

ments are carried out under 3 different voltage design corners: v0, v1, v2

for the delay paths in our experiment. To avoid redundancy, we show only

the concordance coefficient distributions under the voltages v0 and v2 after

the removal of the top 10% of paths with the largest path rank differences

in Fig. 4.7(c) and Fig. 4.7(d).

The averages of the coefficient distributions are given in the sub

captions of in Fig. 4.6 and Fig. 4.7. We see after the path removal, the

averages are 0.83 for both voltages v1 and v2, 0.84 for v0. It is interesting to

note that the correlation of predicted and measured path ranks is slightly
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better under voltage v0 even though the STA prediction is made with

voltage v1.

4.2.4 Are the Parts with Better Correlation Coefficients Faster
Parts?

We divide up the whole region of the concordance coefficients into

3 sections.

• Low correlation section: the values of concordance coefficients are

smaller than 0.7.

• Medium correlation section: the values of concordance coefficients

are greater than or equal to 0.7, but smaller than 0.74.

• High correlation section: the values of concordance coefficients are

greater than 0.75.

We call the parts with concordance coefficients in the low correlation section

lcc parts. We name mcc and hcc parts similarly.

One interesting observation is hcc parts are not necessarily the faster

ones out of all the parts. By the same token, the lcc parts are not nec-

essarily the slower ones. In Fig. 4.8 and Fig. 4.9, we plot the histogram

over normalized functional frequencies. The functional frequencies are nor-

malized against the maximum functional frequency. The histogram show

the distribution of the hcc, mcc and lcc parts in the normalized functional

frequency bins.

Based on work in [82][83], two speed bins are formed based on the

average of the functional frequency (0.92). The parts which are faster than

0.92 form the faster speed bin, while those slower form the slower speed
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bin. The breakdown of the above 3 category of parts in the 2 speed bins

is shown in Table 4.1. We see from Table 4.1, that a larger percentage of

lcc parts go into the faster speed bin.

parts Portion of parts in the faster bin
lcc 66.7%
mcc 56.9%
hcc 32.7%

Table 4.1: Breakdown of Parts in Different Speed Bins

4.3 Conclusions

We establish a methodology for carrying out our study of correlation

between the pre-silicon timing prediction and post-silicon timing measure-

ment of the same set of critical timing paths. We call our methodology the

methodology of Correlation Study. Our experimental data allows us to gain

a general understanding regarding the correlation between the predicted

and measured timing data.

Our correlation study methodology includes all the different types

of delay paths which help to reflect the impact of different process op-

tions on different types of logic. Based on our methodology of correlation

study, further research can be carried out to study the impact of different

effects on timing paths, including clock skews, process variations, coupling

noise etc. The resulting information can be utilized to improve a timing

verification methodology.
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Figure 4.5: Histogram of Rank Differences for Part 2
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Chapter 5

Conclusions and Future Research

This dissertation addresses issues in timing verification and delay

testing methodologies. An efficient technique utilizing ATPG and tim-

ing information to identify false timing paths in the timing verification

methodology is presented. In addition, it seeks to quantify the correlation

of timing path ranks between the timing verification prediction and delay

fault testing measurement. This dissertation also presents a speed binning

methodology utilizing structural delay tests.

5.1 Future Research Directions

Improvement of False Timing Path Identification Method.

Currently we have demonstrated how to identify combinational false tim-

ing paths using ATPG techniques and delay information. We can further

improve our techniques in the following manner.

1. Sequential False Timing Path Identification. Since static tim-

ing analysis does not concern itself with functional information at

all, many timing paths identified by a static timing analyzer may

be false sequentially even though they might be active combination-

ally. Further techniques need to be developed to efficiently identify

sequentially false timing paths.
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2. Characterization of Custom Circuits. Due to the complexity

and wide data bus inputs of custom circuits, it is difficult to determine

the worst case delay between any input/output pair of a custom

circuit. Designers generally decide the vector which activates the

worst case delay for a custom circuit between one of its input/output

pairs based on their intuition, which may not be accurate. As a

result, the worst timing delay between an input/output pair may not

be identified for accurate timing verification.

Also, the characterization process allows only recording worst case

pin to pin delays of blocks, but not necessarily the activation vectors

associated with them. This makes it harder to determine whether a

timing path is false if it contains more than one logic paths. Con-

servative approach is taken at this point so that such a timing path

will not be identified false unless every logic path associated with it

is false.

It is desirable to have a systematic way of estimating the worst case

delay between any input/output pair of a custom circuit accurately

along with the activation vector. This can expose any shortcomings

of the current custom circuit characterization process and improve

the effectiveness of our false path identification technique.

Incorporation of False Timing Path Identification Method

in a Timing/Noise Methodology. Algorithms have been developed

to remove false timing paths once they are identified [8]. Based on our

algorithms, false timing paths identification techniques can be incorporated

into the timing verification flow as indicated in Figure.5.1.
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Currently in industry, coupled noise analysis also largely depends

on proximal structural information to divide up the nets into aggressor

and victim classes. A victim net is a net on which noise is injected by

one or more neighboring nets, i.e. aggressor nets, through cross-coupled

capacitances. The noise may propagate to a state element, changing its

state and causing a functional failure.

If the path sections between a victim net and some of its aggressors

are false, the noise cannot be propagated from the aggressors to a victim

net and can thus be ignored. This reduces the pessimism of noise analysis

through the use of logic correlations in the circuit. BDD-based algorithms

have been attempted in [42]. ATPG techniques and delay information can

also be applied to the noise analysis methodology.

Study of the Impact of Different Effects on Timing Paths.

Currently, the critical timing paths predicted by STA are generally not

the ones which gate the frequencies of the actual silicons. This discrep-

ancy is due to many deep sub-micron effects like process variations, noise,

supply voltage drop, as well as issues in design methodology which fail to

capture process options of manufacturing. Our correlation study method-

ology provides a unique mechanism to study the impact of different effects

and process options on timing paths.

For example, we could measure the different delays of the same

timing path among the different dies within a wafer and among dies from

the same locations of different wafers. This allows us to study the effect of

process variations among all the dies within a wafer, and among different

wafers within a lot.
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Path Rank Correlation Based Path Delay Testing Method-

ology. Even though the exact measured delays of the timing paths are

generally not the same as predicted by STA, if the measured timing path

ranks are in 100% correlation with the predicted ones, then all the tim-

ing paths are affected proportionally. In this case, the worst timing path

measured would be the same as the worst timing path predicted. Thus

we only need to include the worst timing path predicted by STA for path

delay testing in an ideal situation.

As the correlation between the path ranks of timing paths predicted

by STA and those measured on silicons gets worse, it is understandable that

more timing paths predicted by STA are needed for path delay testing

in order to have the most critical timing path on silicon included in the

test with certain confidence level. Sample parts can be used to develop an

analytical model, which predicts the number of top timing paths needed for

path delay testing to cover the most critical timing path on silicon during

the test, based on the correlation between the predicted and measured path

ranks. This model can then be used to provide guidance to the final delay

testing during manufacturing.
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