1,726 research outputs found

    A Survey and Analysis of Cooperative Multi-Agent Robot Systems: Challenges and Directions

    Get PDF
    Research in the area of cooperative multi-agent robot systems has received wide attention among researchers in recent years. The main concern is to find the effective coordination among autonomous agents to perform the task in order to achieve a high quality of overall performance. Therefore, this paper reviewed various selected literatures primarily from recent conference proceedings and journals related to cooperation and coordination of multi-agent robot systems (MARS). The problems, issues, and directions of MARS research have been investigated in the literature reviews. Three main elements of MARS which are the type of agents, control architectures, and communications were discussed thoroughly in the beginning of this paper. A series of problems together with the issues were analyzed and reviewed, which included centralized and decentralized control, consensus, containment, formation, task allocation, intelligences, optimization and communications of multi-agent robots. Since the research in the field of multi-agent robot research is expanding, some issues and future challenges in MARS are recalled, discussed and clarified with future directions. Finally, the paper is concluded with some recommendations with respect to multi-agent systems

    Beacon-based Distributed Structure Formation in Multi-agent Systems

    Full text link
    Autonomous shape and structure formation is an important problem in the domain of large-scale multi-agent systems. In this paper, we propose a 3D structure representation method and a distributed structure formation strategy where settled agents guide free moving agents to a prescribed location to settle in the structure. Agents at the structure formation frontier looking for neighbors to settle act as beacons, generating a surface gradient throughout the formed structure propagated by settled agents. Free-moving agents follow the surface gradient along the formed structure surface to the formation frontier, where they eventually reach the closest beacon and settle to continue the structure formation following a local bidding process. Agent behavior is governed by a finite state machine implementation, along with potential field-based motion control laws. We also discuss appropriate rules for recovering from stagnation points. Simulation experiments are presented to show planar and 3D structure formations with continuous and discontinuous boundary/surfaces, which validate the proposed strategy, followed by a scalability analysis.Comment: 8 pages, 6 figures, accepted for publication in IROS 2023. A link to the simulation videos is provided under the Validation sectio

    Co-Regulated Consensus of Cyber-Physical Resources in Multi-Agent Unmanned Aircraft Systems

    Get PDF
    Intelligent utilization of resources and improved mission performance in an autonomous agent require consideration of cyber and physical resources. The allocation of these resources becomes more complex when the system expands from one agent to multiple agents, and the control shifts from centralized to decentralized. Consensus is a distributed algorithm that lets multiple agents agree on a shared value, but typically does not leverage mobility. We propose a coupled consensus control strategy that co-regulates computation, communication frequency, and connectivity of the agents to achieve faster convergence times at lower communication rates and computational costs. In this strategy, agents move towards a common location to increase connectivity. Simultaneously, the communication frequency is increased when the shared state error between an agent and its connected neighbors is high. When the shared state converges (i.e., consensus is reached), the agents withdraw to the initial positions and the communication frequency is decreased. Convergence properties of our algorithm are demonstrated under the proposed co-regulated control algorithm. We evaluated the proposed approach through a new set of cyber-physical, multi-agent metrics and demonstrated our approach in a simulation of unmanned aircraft systems measuring temperatures at multiple sites. The results demonstrate that, compared with fixed-rate and event-triggered consensus algorithms, our co-regulation scheme can achieve improved performance with fewer resources, while maintaining high reactivity to changes in the environment and system

    Active-passive dynamic consensus filters: Theory and applications

    Get PDF
    ”This dissertation presents a new method for distributively sensing dynamic environments utilizing integral action based system theoretic distributed information fusion methods. Specifically, the main contribution is a new class of dynamic consensus filters, termed active-passive dynamic consensus filters, in which agents are considered to be active, if they are able to sense an exogenous quantity of interest and are considered to be passive, otherwise, where the objective is to drive the states of all agents to the convex hull spanned by the exogenous inputs sensed by active agents. Additionally, we generalize these results to allow agents to locally set their value-of-information, characterizing an agents ability to sense a local quantity of interest, which may change with respect to time. The presented active-passive dynamic consensus filters utilize equations of motion in order to diffuse information across the network, requiring continuous information exchange and requiring agents to exchange their measurement and integral action states. Additionally, agents are assumed to be modeled as having single integrator dynamics. Motivated from this standpoint, we utilize the ideas and results from event-triggering control theory to develop a network of agents which only share their measurement state information as required based on errors exceeding a user-defined threshold. We also develop a static output-feedback controller which drives the outputs of a network of agents with general linear time-invariant dynamics to the average of a set of applied exogenous inputs. Finally, we also present a system state emulator based adaptive controller to guarantee that agents will reach a consensus even in the presence of input disturbances. For each proposed active-passive dynamic consensus filter, a rigorous analysis of the closed-loop system dynamics is performed to demonstrate stability. Finally, numerical examples and experimental studies are included to demonstrate the efficacy of the proposed information fusion filters”--Abstract, page iv

    Estimation and stability of nonlinear control systems under intermittent information with applications to multi-agent robotics

    Get PDF
    This dissertation investigates the role of intermittent information in estimation and control problems and applies the obtained results to multi-agent tasks in robotics. First, we develop a stochastic hybrid model of mobile networks able to capture a large variety of heterogeneous multi-agent problems and phenomena. This model is applied to a case study where a heterogeneous mobile sensor network cooperatively detects and tracks mobile targets based on intermittent observations. When these observations form a satisfactory target trajectory, a mobile sensor is switched to the pursuit mode and deployed to capture the target. The cost of operating the sensors is determined from the geometric properties of the network, environment and probability of target detection. The above case study is motivated by the Marco Polo game played by children in swimming pools. Second, we develop adaptive sampling of targets positions in order to minimize energy consumption, while satisfying performance guarantees such as increased probability of detection over time, and no-escape conditions. A parsimonious predictor-corrector tracking filter, that uses geometrical properties of targets\u27 tracks to estimate their positions using imperfect and intermittent measurements, is presented. It is shown that this filter requires substantially less information and processing power than the Unscented Kalman Filter and Sampling Importance Resampling Particle Filter, while providing comparable estimation performance in the presence of intermittent information. Third, we investigate stability of nonlinear control systems under intermittent information. We replace the traditional periodic paradigm, where the up-to-date information is transmitted and control laws are executed in a periodic fashion, with the event-triggered paradigm. Building on the small gain theorem, we develop input-output triggered control algorithms yielding stable closed-loop systems. In other words, based on the currently available (but outdated) measurements of the outputs and external inputs of a plant, a mechanism triggering when to obtain new measurements and update the control inputs is provided. Depending on the noise environment, the developed algorithm yields stable, asymptotically stable, and Lp-stable (with bias) closed-loop systems. Control loops are modeled as interconnections of hybrid systems for which novel results on Lp-stability are presented. Prediction of a triggering event is achieved by employing Lp-gains over a finite horizon in the small gain theorem. By resorting to convex programming, a method to compute Lp-gains over a finite horizon is devised. Next, we investigate optimal intermittent feedback for nonlinear control systems. Using the currently available measurements from a plant, we develop a methodology that outputs when to update the control law with new measurements such that a given cost function is minimized. Our cost function captures trade-offs between the performance and energy consumption of the control system. The optimization problem is formulated as a Dynamic Programming problem, and Approximate Dynamic Programming is employed to solve it. Instead of advocating a particular approximation architecture for Approximate Dynamic Programming, we formulate properties that successful approximation architectures satisfy. In addition, we consider problems with partially observable states, and propose Particle Filtering to deal with partially observable states and intermittent feedback. Finally, we investigate a decentralized output synchronization problem of heterogeneous linear systems. We develop a self-triggered output broadcasting policy for the interconnected systems. Broadcasting time instants adapt to the current communication topology. For a fixed topology, our broadcasting policy yields global exponential output synchronization, and Lp-stable output synchronization in the presence of disturbances. Employing a converse Lyapunov theorem for impulsive systems, we provide an average dwell time condition that yields disturbance-to-state stable output synchronization in case of switching topology. Our approach is applicable to directed and unbalanced communication topologies.\u2

    Coordination of passive systems under quantized measurements

    Get PDF
    In this paper we investigate a passivity approach to collective coordination and synchronization problems in the presence of quantized measurements and show that coordination tasks can be achieved in a practical sense for a large class of passive systems.Comment: 40 pages, 1 figure, submitted to journal, second round of revie

    Event-Triggered Consensus and Formation Control in Multi-Agent Coordination

    Get PDF
    The focus of this thesis is to study distributed event-triggered control for multi-agent systems (MASs) facing constraints in practical applications. We consider several problems in the field, ranging from event-triggered consensus with information quantization, event-triggered edge agreement under synchronized/unsynchronized clocks, event-triggered leader-follower consensus with Euler-Lagrange agent dynamics and cooperative event-triggered rigid formation control. The first topic is named as event-triggered consensus with quantized relative state measurements. In this topic, we develop two event-triggered controllers with quantized relative state measurements to achieve consensus for an undirected network where each agent is modelled by single integrator dynamics. Both uniform and logarithmic quantizers are considered, which, together with two different controllers, yield four cases of study in this topic. The quantized information is used to update the control input as well as to determine the next trigger event. We show that approximate consensus can be achieved by the proposed algorithms and Zeno behaviour can be completely excluded if constant offsets with some computable lower bounds are added to the trigger conditions. The second topic considers event-triggered edge agreement problems. Two cases, namely the synchronized clock case and the unsynchronized clock case, are studied. In the synchronized clock case, all agents are activated simultaneously to measure the relative state information over edge links under a global clock. Edge events are defined and their occurrences trigger the update of control inputs for the two agents sharing the link. We show that average consensus can be achieved with our proposed algorithm. In the unsynchronized clock case, each agent executes control algorithms under its own clock which is not synchronized with other agents' clocks. An edge event only triggers control input update for an individual agent. It is shown that all agents will reach consensus in a totally asynchronous manner. In the third topic, we propose three different distributed event-triggered control algorithms to achieve leader-follower consensus for a network of Euler-Lagrange agents. We firstly propose two model-independent algorithms for a subclass of Euler-Lagrange agents without the vector of gravitational potential forces. A variable-gain algorithm is employed when the sensing graph is undirected; algorithm parameters are selected in a fully distributed manner with much greater flexibility compared to all previous work concerning event-triggered consensus problems. When the sensing graph is directed, a constant-gain algorithm is employed. The control gains must be centrally designed to exceed several lower bounding inequalities which require limited knowledge of bounds on the matrices describing the agent dynamics, bounds on network topology information and bounds on the initial conditions. When the Euler-Lagrange agents have dynamics which include the vector of gravitational potential forces, an adaptive algorithm is proposed. This requires more information about the agent dynamics but allows for the estimation of uncertain agent parameters. The last topic discusses cooperative stabilization control of rigid formations via an event-triggered approach. We first design a centralized event-triggered formation control system, in which a central event controller determines the next triggering time and broadcasts the event signal to all the agents for control input update. We then build on this approach to propose a distributed event control strategy, in which each agent can use its local event trigger and local information to update the control input at its own event time. For both cases, the trigger condition, event function and trigger behaviour are discussed in detail, and the exponential convergence of the formation system is guaranteed
    • …
    corecore